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ON THE SEGMENTATION AND ANALYSIS OF CONTINUOUS
MUSICAL SOUND BY DIGITAL COMPUTER
(ABSTRACT)

James Anderson Moorer, Ph.D.

Stanford University, 1975

The problem addressed by this dissertation is that of the transcription of musical sound by
computer. A piece of polyphonic musical sound is digitized and stored in the computer. A
completely automatic procedure then takes the digitized waveform and produces a written
manuscript which describes it classical musical notation what notes were played. We do not
attempt to identify the instruments involved. The program does not need to know what
instruments were piaying. '

It would appear that it is quite difficult to achieve human performance in taking musical
dictation. To simplify the task, certain restrictions have been placed on the problem: (1) The
[prieces must have no more than two independent voices. (2) Vibrato and glissando must not be
present. (3) Notes must be no shorter thain §0 milliseconds. (4) The fundamental frequency of a
note must not coincide with a harmonic of a simultaneously sounding note of a different
frequesicy. The first three conditions are net inherent limitations in the procedures, but were
done simply for convenience. The last condition would seem to require more study to determine
the cues that human listeners use to distinguish, for example, notes at unison or octaves.
Numerous other lesser restrictions were also imposed on the music to be analysed.

The method used for this analysis is a directed bank of sharp-cutoff bandpass filters. First, a
pitch detector is used to determine the harmony of the piece at each point in time. Using the
harmony information, the frequencies of a band of bandpass filters is determined so as to
assure that every harmonic of every instrument will pass through at ieast one of the filters.
The output of each filter is processed by a pitch detector and an energy detector. This gives
power and frequency information as functions of time. Each power and frequency function
pair is rated as to its quality. The rating takes into account the constancy of the frequency
function, the smoothness of the power function, and several other measurements on the
functions. This rating is used to eliminate spurious traces and null filter outputs,
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Notes are then inferred from groups of power and frequency function pairs that occur
simultaneously with frequencies that are harmonically refated. Notes with higher overall ratings
are preferred over other note hypotheses. The melodies are then grouped by separating the
notes into the higher voice and the lower voice. Voice crossings are not tracked. For the final
mantuscripting, Professor Leland Smith's MSS program was used. The analysis program
produces directly input for the manuscripting program, thus the entire procedure is automated.

In addition to the above described system, many other techniques were examined for their
utility in this task. Each technique that was explored is described and analysed, with a
description of why it was not found useful for this task.

One interesting observation is that there is considerably more activity in a piece of music than
is perceived by the listner. This is especially common with stringed instruments, because the
strings that are not being manipulated invariably resonate and produce sounds independently
which are generally net heard due to aural masking. This indicates that perhaps we should use
more perceptually-based techniques to help determine what would actually be heard in a piece
of music, rather than determine exactly what is there, although detailed descriptions of the
contents of the piece may be useful for other purposes, such as music education or musicology.

In general, the system works tolerably well on the restricted class of musical sound. Examples
are shown which demonstrate the viability of the system for different instruments and musical
styles. Since the procedure is extremely costly in terms of computer time, only a limited number
of examples could be processed. These examples are discussed with a description of how the
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I PROBLEM STATEMENT

INTRODUCTION

STATEMENT OF THE PROBLEM

‘The problem addressed by this dissertation is the machine perception of
polyphonic music. We seek to play a piece of music into the computer via
an analog-to-digital converter and have the computer return an
abbreviated score of the piece. In order to simplify the task, certain
restrictions have been placed on the goals. First, we do not require the
computer to identify the instruments involved. Second, we do not allow
glissandi, fast trills, or exceptionally fast notes (less than 100 milliseconds
duration). Third, the class of instruments that we will accept is limited to a
subset of the orchestral instruments which excludes drums, gongs, cymbals,
and ather instruments with inharmonic overtones. Fourth, vibrato must be
non-existent or very limited. Fifth, the program will only be expected to
track a small number of independent voices (two at most). Sixth and last,
we must disallow notes such that the fundamental of one note is at the
same frequency as a harmonic of another note. This rules out notes at
octaves, at twelfths, and many other intervals. Some of these restrictions
represent inherent limitations in the methods used and some merely
represent restrictions for the sake of economy. A discussion of each

restriction will accompany its intoduction.

In performing this task, there are some things that we may require of the
computer that we would not require of a human. One is that the pitches
be identified with the actual note relative to the equal tempered scale
based on A4 being 440 Hz. This would require the skill of “"absolute
pitch” which ‘is somewhat rare even among trained musicians. Conversely,
there are some things which people do quite well that we cannot at this
time reasonably ask the computer to do, such as identify the instruments
involved. The reasons why this is a difficuit problem will be treated later.
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A computerized musical scribe probably has its greatest application in the
field of Ethromusicology, where often hundreds of hours of reccrded
ethnic music are commonly transcribed by hand. A more long term
application is in the field of computer music, where we might expect the
compsuter to be able to perceive music as well as play it, thus taking its

cues from the musicians (or other computers?) with whom (which?) it is

playmng.



3 ON MUSIC ANALYSIS

ON MUSIC ANALYSIS

Music may be analysed for any number of purposes. There is analysis of a
score for form, motifs, harmeny, style, etc. These may be termed high-level
analyses because they deal with concepts which are not rigorously defined,
not are they generally amenable to direct mathematical analysis. These
analysis techniques are commenly taught to undergraduate music students
as regular curriculum sub jects. Some attempt has been made to use the
computer to do high-level analysis from scores which have been typed in
by hand [Hiller 1966, 1967, Jackson 1967, Winograd 1968] with some
success, Perhaps the greatest contribution of the computer has been to the
ethnomusicologist who seeks to classify the intervals or frequencies-of-

occurrence of motifs.

Analysis of the acoustic waveform itself has been done for the purpose of
gaining insight into the physics of music-related hardware {instruments,
concert halls, musicians), for the purpose of simulation of musical tones (a
musical "vocoder"), for gaining insight inte human perception of musical
sound, and finally, for the purpose of detecting and tracking the pitch of 2
single-voiced piece. This analysis might be termed low to intermediate-level
analysis because it deals with musical sound on an acoustical level rather

than on the level represented by the score of the piece.

It is, of course, an impossible task to recreate exactly the score that
produced a given piece of music. When we listen to a piece of music, we
cannot tell that a given note duration represents a quarter note, a half
note, or whatever. The composer is free to introduce factors of two in the
notation at will, and the conventions in this respect have changed over the
years. -Also, the amount of voice doubling on a particular line is often
quite difficult for people to determine. Sometimes, a precisely played octave

will not be recognized as such.
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It is our intention to finesse these difficulties by restricting the range of
pieces that will be accepted. With some restrictions in effect, the problem is

manageable.
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WHAT 1S MUSICAL SOUND?

INSTRUMENTS, OVERTONES, AND A
MODEL OF INSTRUMENT WAVEFORMS

Our model of music will consist of the sound pressure wave created by a
finite number of instruments that play notes which begin at some time,
have a finite duration, and are nearly periodic in that interval. For our
purposes, an instrument will be defined as something which produces
nearly periodic sound pressure waves. A note will be defined entirely by its
pitch, starting time, duration, and loudness. Before we proceed any further,

some definitions are in order:

pitch - Pitch is a subjective quality of sound that is not necessarily
' depenclent upon the existence of a sinusoid at tii.: frequency. A
discussion of pitch perception is offered ir later sections (see section
entitled Music Perception), so please accept for now that “pitch”
means what we commonly take it to mean, but "frequency” refers to
the repetition rate of a perfectly periodic signal. "Frequency” is a
physical quantity which can be measured ob jectively. "Pitch” is a

perceptual phenomenon.

harmonic - A perfectly periodic waveform can be decomposed by Fourier’s
sine and cosine series into a sum of sinusoids whose frequencies are
integral multiples of some base frequency, which is called the
"fundamental” frequency of the sound. These sinusoids are
described as “harmonically related” sinusoids, or more simply as

“harmonics.”
inharmonic - An ad jective meaning "not harmonically related."

partial - Many waveforms are not periodic, but may nonetheless be
represented by a sum of sihusoids that are not harmonics. The




INTRODUCTION b

general term for the sinusoids which make up a waveform, be they

harmonic or otherwise, is a "partial tone,” or more simply, a

“partial”

quasi-periodic - This term along with “nearly harmonic" applies to
waveforms which are not perfectly periodic, but are very close.
Stringed iistruments show some inharmonicity due to effective
shorténing of the string at higher frequencies, but since the
deviation is just a few percent, they are called “quasi-periodic.”

half-step - This is the square root of a step, or the twelfth root of 2, which
is 1.05846209. The half-step is the relation between the frequencies
of notes which are played on adjacent keys on a piano keyboard.
The half-step forms the basis of most Western music. This is also
the basis of the equal-tempered scale, which is used throughout this

thesss,

step - A "step” is a ratio of two frequencies which is defined as the sixth
root of 2, or 112246205,

interval - The relation between the frequencies of two simultaneously
sounding notes is cailed an “interval”. We measure intervals in
terms of steps, or half steps. The intervals consisting of integral
numbers of half-steps have names and special meanings in most

western music. If the frequency of one note is f; and the
frequency of the other note is Ty, then the "distance” between those
two notes in half-steps is simply 12%log,{f,/f,}. This is the

interval those two notes represent.

scale - A manner of subdividing a large interval, such as an octave, at
definite points in order to provide a series of tones suitable for

melodic or harmonic use. Two common divisions of the octave in
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Western music are the major and the minor scales, each of which
divice the octave into eight notes (including the endpoints). If we
number the notes of these scales from the lowest to the highest, the

major scale has a half-step between the 3™ and 4" notes, and

between the 7 and 8'™ notes, and whole steps between the other

ad jacént notes of the scale. The minor scale has half-steps between

the 2" and 3" notes and between the 5" and 6! notes.

chord - Three or more hotes sounding simuitaneously, In more comimon
usage, the intervals between adjacent notes is 3 or 4 half-steps
(these intervals are called minor and major thirds, respectively). A
more general term for the simultaneous sounding of three or more

notes without regard for the intervals among them is a "cluster”.

harmony - This is easy to confuse with "harmonic," but it refers to a
sub jective musical quality. When two or more instruments play
different notes at the same time, we refer to the relation of the
notes as the "harmony” of the music. To be more specific, this is
actually the vertical harmony of the music. We may also define the
hovizontal harmony to be the relations among the chords as a
progression in time. In this dissertation, we shall only be concerned
with vertical harmony, although horizontal harmony is much more

important musically.

Music instruments can be divided into many categories, but we shall only
distinguish two: those that have nearly harmonic partials and those that
do not. We shail be concerned here with only those instruments which
have nearly harmonic partials. These instruments can be modeled as a
sum of sinusoids with slowly-varying amplitudes and frequencies. The
frequencies of these sinusoids are very close to integral multiples of the

fundamental frequency of the note,
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With the aid of the Heterodyne filter (see section Heierodyne Filter in
Low-Level Techniques), we can examine the behavior of the amplitudes
-and frequencies of notes played in isolation.

With these data available, we are in a position to test the validity of the
model for describing the perceptually relevant attributes of music
instrument tones. We can do this by resynthesizing the tones and
comparing them with the original tones. We have done this for the
following instruments:

violin, viola, cello, double bass, trumpet, trombone, French
horn, baritone horn, oboe, English horn, bassoon, Bb clarinet,
alto clarinet, bass clarinet, flute, alto flute, alto sax, soprano
8%

The synthetic tones are very similar to the originals. When some white
noise is added into the synthetic tones to simulate the effect of tape
recorder hiss, most of the synthetic tones are extremely similar to the
original. This affirms the validity of the odel and of the Heterodyne
filter for representing this class of instruments. Although we have not
done this tést on every music instrument with nearly harmonic partials, we
have no reason to believe that this model should not be adequate for
representing all such instruments, including the human voice (possibly
excepting frication),

That these instruments can be represented in this manner is somewhat
curious, because some of the instruments exhibit inharmonicity. The
heterodyne filter is not capable of detecting inharmonicity directly. It
would appear that lhese effects show up as amplitude and frequency
modulation on some harmonics. Since the stim of two sinusoids is identical
to a single amplitude-modulated sinusoid, much of the effect of
inharmonic partials seems to be captured in the detail of the amplitude

and frequency contours for each harmonic.
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A great body of work on music instrurient tones in isolation is presented
in a companion dissertation An Explovation of Musical Timbre by John M.
Grey [19758] The heterodyne filter was used to analyze a number of
different instruments as a method of generating psychoacoustic stimuli for
studying human perception of timbre. Figures 26 and 27 were taken from
his work.
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ON MUSICAL HARMONY

There is a well developed body of harmenic practice which is taught as an
undergraduate music course [Piston 1941; Forte 1962]. This is generally
referred to as “classical” or “traditional” harmony. Again, there is a
difference between "vertical” and “horizontal” harmony. We shall only
deal with "vertical” harmony, which does not take contextual information

into account.

We shall discuss the mathematical implications of some aspects of
harmony, notably the chord. The simplest chord is the triad. The triad
consists of three notes sounding simultaneously. The most common triads
are the major triad, and the minor triad. These are defined by the ratios
of the frequencies of the notes in the triad. One simple form of the major
triad in "root” position has the next higher note (which is called the
“"third" of the chord) located four half-steps higher than the lowest note,
which is called the "root” of the chord. The third of the chord is so-called
because it is the third note of a m”ajor scale which begins at the root. The
highest note of the major triad is called the "fifth" of the chord and is
located 3 half-steps higher than the third which makes a total of seven
half-steps higher than the root. The-"harmony” of a piece of music can be
thought of (in an oversimplified manner) as the progression of chiords in a

piece of music.

One of the things that makes music interesting is the fact that we may
shuffle the notes of a chord up or down by some number of octaves and
still have the same (in a certain sense) chord. There are names for many
of the arrangements of notes that define a given chord. For instance, if the
third is the lowest note in a chord, the fifth the next higher, and the root
the highest, the chord is said to be in the "first inversion”. Likewise, if the
fifth is the lowest, the chord is in the "second inversion”. This discussion
is a bit oversimplified, in that the inversion of a chord depends only on
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the lowest sounding note. For instance, a chord can still be in root position

if the third of the chord is raised an octave.

One might ask why a chord such as a major triad is so important in
western music. Why wouldn't any combination of frequencies do? This
question has as yet not been answered. Tt is not clear, for instance, whether
the special nature of the major triad is "universal” or is a manifestation of
ciltural bias. Despite the complexity of the problem;, several interesting
observations have been made. One may observe that in the harmonic

series for a particular frequency, the 4, 5% and 6™ harmonics of a note

form a major triad. The 6 7" and 9 harmonics form a minor triad.

(We should note here that this definition of the minor triad is not quite
suitable for musical use, because the 7 harmonic is actually somewhat
lower in frequency than the usual definition. The interval between the 6'
and 7'M harmonics is about 2.67 haif-steps, rather than the usual 3 haif-
steps). It might be more relevant to describe the minor triad in terms of
the 4™ 5" and 15™ harmonics. All unambiguous chords fall in the
harmonic series somewhere. While we may speculate on mechanisms in the
ear that makes listening to chords both natural and pleasant, it is more
important to note that each chord can be thought of as a manifestation of
(harmonics of) a fundamental frequency which may well not be present.
For each (unambiguous) chord, we can find a frequency whose harmonics
will contain all the notes of the chord. The existence of this "fictitious
fundamental” makes it possible to determine the harmony of a piece of
musical sound without determining the notes that are being played. This
can only be done when the harmony is unambiguous. Often composers use
ambiguous chords to great advantage. It is also important to note that any
interval consisting of an integral number of half-steps will imply one or

more fictitious fundamentals. One does not need a full chord.

Methods for determining the harmony of a piece will be discussed in the
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section on low-level techniques, specifically, the autocorrelation and the

optimum-comb.
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OVERVIEW OF THE ANALYSIS SYSTEM

The musical scribe has been realized for a limited class of musical inputs.
The system begins with the digitization of the waveform itself by an
analog-to-digital converter, operating at 25600 samples per second to a
precision of 14 binaiy bits. The first processing step uses the optimum-
cornb method to determine the harmony of the piece. This step is not
really necessary, but it greatly reduces the amount of computer time used
by subsequent steps by reducing the number of possible notes that could
be present at any givzan time. For music which contains notes which do not
lie in perfect unambiguous harmonic relationship, more than one possible

harmony will be generated by the programs.

The next phase of the analysis involves bandpass filtering the waveform
at frequencies which represent the frequencies of all the harmonics of all
the notes that might be present in the piece, given the results of the
analysis of harmeny from the above step. These filtered waveforms are
processed to see if a sinusoid is present at or near the expected frequency.
¥ one is found, its amplitude as a function of time is smoothed and
approximated by a polynomial and recorded.

The last phase consists of looking at the results of detecting individual
sinusoids and inferring what notes must have been present to produce
those sinusoids. This last step is the least rigorous, the most heuristic, and

the most sensitive link in the chain.

Except for the original diguitization and the "beautification” of the final
graphical output, the entire system is automatic and runs without human
aid or intervention. This was a design criterion. Since the task of taking
musical dictation is commonly taught at the freshman and sophomore
levels in college, it seemed pointless to insert a human i:; the processing
path when a person could do the entire task much more quickly. The only
value the system might have is its ability to do the process all by itself.
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In fact, the system computes the pitches of the riotes much more accurately
than a human could. This is as much a hindrance as it is a blessing when
the final score is produced. The human being perceives the piiches to be
members of the notes of the scale, even if some of the notes are mistuned.
Flumans will tolerate, even admire, large deviations from mathematically
precise rhythm, yet can write down the original score despite the
deviations. Computer synthesized music that does not have this built-in
flexibility is olten recognizable by the “"inhuman” treatment of rhythm
given by the mathematically precise rendering of a piece. It is quite
difficult for the machine to infer what the original scoring was, based on a
totally human performance. For this reason, the output scores can not be
expected to be identical to the input score, but will reflect the modifications

made by the performer.

For a piece of music that is only a single voice, the detection of pitch is a
task which has been treated extensively by the speech understanding and
recognition researchers. The topic treated in this thesis goes one step
further in attempting to deal with more than one simultaneous voice. The
only reason the present implementation is restricted to two voices is
because the notes-at-octaves problem does not appear to have a simple
solution. 1t is not clear how people can distinguish notes whose harmonics

averlap entirely.
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OVERVIEW OF THIS THESIS

In organizing the thesis, many decisions had to be made concerning how
much to include and where to include it. Rather than present just the
program itself, a more complete description of the history of music analysis
and a discussion of the relation of many common signal-processing
techniques to musical sound is included, at the cost of including a large
amount of detail on methods that were not included in the final
realization. Since the failures can be as revealing as the successes, it is
hoped that this additional information will be of use to future researchers

who may avoid some duplication of effort.

Since there has been little effort to produce an automated musical scribe,
10 literature appears on the subject. The only effort known to the author
is the Melograph, a special-purpose hardware device built by Inter-Ocean
Systems of Santa Barbara. This device makes a graph of the pitch of the
input waveform with time. This graph is in fact not a score, but is enough
to get an idea of what was being played.

The historical review thus does not {can not) deal extensively with the
exact problem at hand. There are, however, many analyses of music,
musical instruments, and even musical sound, some of which have been
done on the computer. If we temporarily widen our scope to include
analysis for purpose of insight and analysis for the purpose of synthesis,
then we have an abundance of material for discussion. This is, in fact,
what was done. The historical review includes all analyses of musical
sound by computer that we found, as well as a review of speech processing

literature, a related sub ject.

While doing the research for this thesis, many techniques were discovered
which were not directly useful for the musical scribe, but which had
application in other areas of musical sound analysis. These techniques (the
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Heterodyne filter especially) wili be described, as well as a discussion of
many of the techniques that were not found useful for any aspect of music
processing for one reason or another. The latter were included so that
future researchers will not spend teo much time on known dead ends. To
some extent, these are diversions from the subject at hand, but since they
were part of the research done in the course of this thesis, it seems

reasonable to expose them here.

The thesis is divided into four parts. The introduction (this section), a
section on low-level techniques, a section on high-level techniques, and a

critical review section.

In the introduction, we give background information as well as a detailed
historical review. Readers not familiar with the characteristics of musical
sounds may be interested in the section entitled What is Musical Sound?
Readers not interested in the historical review may easily skip that section,
because little in the thesis is derived from these review topics. The
historical review section is followed by a quick summary of pitch

perception theory, which comes from the field of psychoacoustics.

The next section is on low-level techniques. These are the algorithms that
operate directly on the digitized waveform. They are largely signal-
processing techniques, adapted for this special application. In order, we
review the autocorrelation function and the optimum-comb technique.
These are useful for periodicity detection and tracking. Their application
to the detection of musical harmony is discussed. The heterodyne filter
follows with a method for determining the amplitudes and frequencies of
the harmonics of a single musical note. This technique has turned out to
be very useful for music synthesis, for it can capture all the time-variant
information in a musical tone. Next, we review the bandpass filter.
Although it is a very old device, its application to musical sound has been
little explored in the past. We show several graphs of applications of
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bandpass fiitering to the extraction of a single harmonic from a
polyphonic piece of musical sound. The bandpass filter forms the core of

the musical transcription system.

In this section we also discuss several signal-processing techniques that
were tried but were not found to be entirely useful for the current
problem. These include the cepstrum, the discrete Fourier transform, and
the linear predictor. The cepstrum and the linear predictor seem to be
useful only in the monophonic case. The discrete Fourier transform
assumes that the autocorrelation of the input signal is stationary. If the
signal is changing either in amplitude or frequency, the transform is
distorted. This means that any system based upon the discrete Fourier
transform could never be extended to encompass vibrato or highiy

reverberant environments,

Next, we discuss the way we combine the various signal-processing
routines to form a compiete low-level package for musical transcription.
Here we discuss the utility of determining the vertical harmony of -the
piece as a planning phase for setting up the frequencies of a band of
bandpass filters. The filter output is processed with a pitch detector and
an energy detector to produce power and frequency functions for the
output of each filter. In the planning phase, we assure that every harmonic

of every note wiil be passed by some filter.

The next section deals with intermediate-level techniques. Here we pass
from the world of digital signal processing into the world of artificial
intelligence. These techniques deal with making sense from the outputs of
the bandpass filters, figuring out what hotes were present in the input
signal, and how best to print these for readability. To allow easy
comparison of the filter outputs, we produce a rating of the quality of a
given power-frequency function pair. If this rating is properly prepared,
we can easily separate the spurious traces from the meaningful ones. We
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can thein hiypothesize the existence of notes from their harmonics. We then

discuss some of the aspects of manuscripting.

The last section is a critical review of the system. We begin with some
examples which show the viability of the system. We then discuss the weak
points of the system with suggestions as to how they may be improved.
This involves the development of adaptive pitch tracking filters as well as
further research in other areas.
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HISTORICAL REVIEW

EARLY ANALYSES

There have been many analyses done of music instrument tones, usually in
order to gain insight into the physics of a specific instrument. It was not
until the advent of electronics that music analysis on a quantitative basis
became practical. One of the first examples we have is that of Backhaus
(1927, 1932]. His system consisted of a narrow band-pass‘fﬂter, using a
carbon microphone and a 5 vacuum-tube amplifier, connected to a pen
and drum recorder. The filter was tuned to the frequency of the harmonic
of interest and the bandwidth was set to suppress ad jacent harmonics. The
drum assembly was brought up to speed by hand (turning a crank). Then
all at once, the pen was lowered onto the paper, the threaded shaft that the
drum turned on was stopped, leaving the drum to turn and screw itself
down {by momentum) and thus cause the pen to leave a helical trace on
the paper, and the musician played a single note on his instrument. The
drum was apparently massive enough to keep its speed for quite a while.
The resulting trace was taken to approximate the behavior of a single
harmonic from the insttument. The process was repeated for many
harmonics of many different notes. Needless to say, the process was
cumbersome enough to prevent great volumes of data from being
accumulated. The amplitude of the harmonic with time was then traced
and plotted by hand. Since wire recording techniques were not yet
perfected, the note had to be played again and again to get all the
harmonics. We know nhow thét no two notes are alike in fine structure,
thus casting doubt on the details of the results, but the technique did work
adequately on the steady-state portion of notes. His'principal result was an
analysis of violin resonances in an attempt to find out why the
Stradivarius was so revered in the music world. This same theme recurs

constantly throughout the literature,
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The advance of the oscilliscope in the 40’s brought about a new wave of
research. T he steady-state portion of a waveform could be photographedor
drawn from the face of the cathode-ray. tube, and then analyzed by
calculating the Fourier sine and cosine series. The Fourier integrals were
often computed by hand, until a mechanical device (the Henrici analyzer)
was built to do just that. The operator would trace the curve with the
stylus of the device and then just read off the amplitudes of the harmonics
on the dials. Analyses of this sort are very common in the literature
[Lehman 1964, Parker 1947, Saunders 1946, Fletcher ¢f a!/ 1962]. Saunders
analysed wind instrument tones to try to determine if the wind instruments
exhibited resonances like the string instruments do. He found no evidence
of the existence of formants in the instruments he analysed (Clarinet,
Oboe, English horn, French horn, and Flute). Parker analysed the tones of
wooden and metal clarinets using a mechanical embouchure, finding that
there was little difference between wood and metal clarinet tones. Lehman
analysed the bassgon in great detail, using the Kay sonagraph, a device
consisting of a number of narrow band-pass filters and a recording system
that produced bars on a roll of paper that became thicker in proportion to
the energy output of each bandpass filter. He concluded that there is a
strong formant between 440 and 500 Hz in the bassoon, accompanied by a
weaker formant around 1220 and 1280 Hz.

COMPUTER ANALYSES

Let us jump immediately into the computer analysis of music instrument
tones, leaving behind the large number of articles which were done
without computers. One of the first computer-based analyses of music
instrument tones was done by David Luce [1962]. Using the 709 at MIT,
he digitized and analyzed tones from a large number of music instruments.

Again, this was done for gaining insight into the behavior of the
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instrument and its possible perceptual implications. Since his analysis
technique was the basis for several following works, including our own

heterodyne filter, we will describe and analyze it in some detail.

LUCE

The object of Luce’s method was to determine the amplitudes and
frequencies of each of the harmonics of a tone as functions of time. These
were plotted for further study. The method used was to approximate the
integrals for the Fourier sine and cosine series by discrete summations,
First, the fundamental frequency was determined by filtering the note itself
to remove all harmonics except the fundamental. The fundamental was
then digitized and the zero crossings were used to compute the frequency.
This works in most cases, but sometimes gives errors-of-octave when the
energy in the fundamental is very weak. In these cases, the pitch of the
note was matched by hand with an oscillator and the waveform from the
oscillator was used. This estimate of the fundamental frequency was used
to divide up the waveform from the instrument roughly into separate
periods. For each period, 24 equally spaced points were selected. Since the
period of the signal was not necessarily a multiple of 24 points, linear
interpolation was used to generate the values between the sample points.
From these 24 points, the Fourier sine and cosine coefficients were

generated. This is represented by the following formulae:
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Where s (1) is the input waveform,
Tg is the period of the input waveform,

m is {he number of the period under analysis,

and 1 is the harmonic number.

The result was cne pair of coefficients every period throughout the
duration of the waveform. The pair of coefficients were converted to
radial form and the magnitudes and angles were then plotted. To test the
validity of the analysis procedure, the magnitudes and angles were used to
synthesize a tone. This tone was played through a digital-to-analog
converter (DAC) and compared to the original tone. The first problem
encountered was the fact that the magnitudes and phases that were
sampled once per period lead to a discontinuous waveform. This is
because at the beginning ‘of each period, the phases and magnitudes were
suddenly changed to the values for that period. If the parameters for this
period were significantly different Tor the previous period, a discontinuity
results. This is often the case during the attack and decay portions of a
note. This was remedied in part by filtering (digitally) the waveform at a
frecqquency higher than the frequency of the highest harmonic to remove
spurious harmaonic distortion. The results of listening tests were that the
string family was well reproduced, but the brasses suffered a bit. The

lowest octaves trumpet, trombone, tuba, and French horn were all
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noticeably different than the original notes. The notes sounded very rough.
This was explained by the insufficiency of using 24 points per period.
Since the brass tones have a pulse-like waveform, sometimes the pulse
itself occurred between two selected points, thus reducing the magnitudes
of the Forier components for that period. This hit-or-miss behavior
created great jitter in the magnitudes as functions of time, thus
contributing to a rough sound. Similar difficulties were encountered with

the clarinet tone.

What we mean by "pulse-like” is that the waveform, in each period, has an
initial strong maximum followed by activity of lesser amplitudes
throughout the remainder of the period. This can vccur if the harmonics
of the waveform are all cosines, such that their maxima coincide and

reinforce, producing one strong maximum per period.

FREEDMAN

The next set of analysis programs were written by Morris David
Freedman at the University of liinois [1965, 1967, 1968] In his system,
music instrument tones are modeled by the following equation:
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Where U (1) is the unit step function,
K is the harmonic number,

Wy is the radian frequency of the k'™ harmonic,
My is the phase of the k! harmonic,
Tk is the beginning time of the k™ harmonic,

h (1) is the amplitude envelope of the k'
harmonic.

A

3 the amnlitude of the rth component of the

K
amplitude envelope of the k'™ harmonic,

T is the beginning time of the rth

component of
the amplitude envelope of the k™ harmonic,
o, is the time constant of the r componant of
the amplifude envelope of the kth harmonic,

g{t) is the signal that is to model the music
instrument tone.

This is a sum of sinusoids, not necessarily harmonically related, with
piecewise-constant frequencies. The amplitudes of the sinusoids are
piecewise sums of exponentials and constants. For synthesis, linear
interpolation was used to smoothly change from one frequency vaiue to the.
next, thus eliminating Luce’s preblem of discontinuities. To get the
parameters of the model from an actual music instrument tone, a three step
process was used. The first step gets the phase differences of the
harmonics and the average frequency of each harmonic. The second step

determins the amplitudes and phases of each of the harmonics as functions
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of time, guided by the frequencies of the harmonics as computed in the
first step. The second step can then be repeated with the new frequency
data for a better approximation. This completed the analysis. The
amplitude functions of the harmonics were examined for places of great
change of slope and these places were taken to be the "breakpoints" for the

piecewise-exponential amplitudes as shown above.

The first step of the analysis used what he called the "D-transform.” It is
defined as follows:
jwT

¢
(5) G(t,w) = % _af fime YTy

Where T (7] is the input waveform

This is a Fourier integral of a function that is limited in time to positive
vatues less than t. The second -and third steps of the analysis used what he
called the "G-transform" which is defined as follows:

t+T .
® Gttw = f fine Wy
T

Where T is the period of the input wéveform.

This 1s a Fourier integral over one period of the input waveform. This
returns the quadrature compenents which can be used to derive the
magnitudes and phases of the harmonics as functions of time. Freedman
does not say how often the integral is evaluated, but we assume it is

evaluated once per period of the input signal, as Luce did.

Again, the tones were synthesized using the data from the analysis. The
trumpet and saxophone tones were judged to be nearly indistinguishable

from the originals. The violin was judged the poorest, although it was
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judged as quite good. In each case, the synthetic tone showed the
‘characteristic quality of the instrument. The violin sounded bowed and

the flute sounded “breathy."

BEAUCIIAMP, KEELER

Beauchamp, also at University of Hlinois, built upon the work of
Freedman by using only the G-transform, adding a filtering operation, and
using ptecewise linear functions to represent the amplitude functions
[Beauchamp [969] The amplitude functions were filtered with a low-pass
filter to remove a characteristic ripple in the functions that was at the
frequency of the fundamental. He evaluated the functions "a few" times
per period. The amplitude functions were then approximated with
piecewise-linear functions. For synthesis, the frequencies (phases) of the
harmonics were not varied with time. Just the initial phase angles were
preserved. The frequency of the entire tone was allowed to vary in a
piecewise-linear fashion, with the ratios between the frequencies of
harmonics held constant, as with Luce and Freedman, but explicit and
separate cantrol over the frequencies of each of the harmonics was not

tsed,

Since the publication of the above described paper, Beauchamp [personal
communication, 1974] has applied the Fast Fourier Transform algorithm
(FFT) to the evaluation of the G-transform. This is done by first reducing
each period of the input signal to 64 points by linear interpolation, much
like Luce, multiplying the signal by a Hamming "window” function
[Blackman and Tukey 1959], and then taking the discrete Fourier

transform of each period using the FFT algorithm for efficiency.

Keeler [1972] analyzed tones from organ pipes using techniques similar to
Beauchamp's published method. He evaluated the Fourier integral
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numerically using quadratic approximation by Simpson’s rule and
LLagrangian interpolation to improve the accuracy. In his method, the
worst-case error in the amplitude estimate for a given harmonic was less
than 1.25 percent. He was not concerned about the phase as a function of
time and thus did not carry along that information. He did not attempt a

synthesis of the tones from the analysis data.

THE MELOGRAPH

The computer analysis techniques described above were for the purpose of
gaintng insight into the properties of instruments or musical waveforms,
and simulation of music instrument tores. We have still not described any
method of transcribing a piece of music. This is because, to our knowledge,
no such analysis has ever been done. The closest we have found is work
in speech understanding and recognition, and a peculiar device called the

Melograph.

The Melograph is a special-purpose piece of mostly analog hardware and
a chart recording scheme which has two purposes. One function it can
"perform is that of a high-resolution spectrograph. It can simulate 100
bandpass filters and record the energy output of each oh the graph. The
second  function is that of detecting, tracking, and graphing the
fundamental frequency of an input waveform with time. It can only
operate an a monophornic (one-voice) input signal in a relatively noise-free
environment. It accomplishes this by realizing a band of 1/3 octave band-
pass filters. The outputs of the filters are scanned every 4 milliseconds
from lowest frequency to highest, searching for a maximum in the energy
output of a particular filter relative te its neighbors. When the first
maximuim is found, the output of that filter is assumed to contain the
fundamental of the tone. The zero crossings of the output of that filter are

counted and that number is used to compute the pitch. This pitch is then
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Pplotted on the chart, Since there is no documentation on the operation of
the device, this information was obtained by verbal contact. The device
belongs to the Ethnomusicology department of the University of Los
Angeles and is used for transcribing single-voiced ethnic music, usually
human voice. The device was built by Inter-Ocean systems of Santa
Barbara.

To comment on the operation of the Melograph, let us quote from an
article by M.R. Schroeder [1970];

The oldest approach [to pitch detection] simply isolates the
fundamental frequency of the signal by means of a low-pass
or band-pass filter and then delermines the frequency or
period of the fundamental by means of measuring the rate of
or the distance between axis crossings. Unfortunately, in
many speech signals the fundamental is wea¥% or even absent
{as in most telephone signals).

In general, we cannot rely on the presence of the fundamental, or on the

hope that the fundamental will be stronger than the second harmonic.

SPEECH TECHNIQUES

The research in speech understanding has contributed a great deal of
work in pitch detection and system estimation. Since any musical scribe
must detect the pitch of the incoming waveform, much of this may be

useful. llet us describe some of these techniques in detail
FOURIER METHODS

Qur old standards, the Fourier transform and autocorrelation, were among
the first to be tried [Harris and Weiss 1962]. These techniques were
useful but had certain problems. In either the spectrum or the
autocorrelation, there is a peak in the output at every multiple of the
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fundamental frequency (for autocorrelation, there is a peak at each
multiple of the fundamental period). One could not just take the lowest
peak because it is sometimes not there. Harris and Weiss developed a
method of looking at several peaks in a row and forming an estimate of
the fundamental frequency by averaging the contributions from the two i
strongest ad jacent peaks. Rife and Vincent [1970], although not working
directly with the pitch detection problem, developed a method of
interpolating to get the position of the peak quite accurately by using

weighting functions which had known effects on the transforms.
THE CEPSTRUM

With the advent of the cepstrum, probably first used by Bogert working
on a suggestion by Tukey [Bogert, Healy, and Tukey, 1963], a new tool for
speech research was opened up. Noll's classic article [1967] gave detailed
instructions on the use of the cepstrum for the detection of fundamental
frequency. This system had the advantage that the maximum of the
cepstrum was often unique. When there was another peak, it was generally
at twice the period of the fundamental, and rarely did it exceed the
strength of the peak representing the fundamental. The cepstrum consists
of the inverse Fourier transform of the log-magnitude Fourier transform
of the input waveform. Since the autocorrelation is the inverse Fourier
wransform of the magnitude Fourier transform of the input waveform, the
two processes are related. They both have time as the independent
variable; they plot period rather than frequency. The theoretical basis of
the method was developed in great detail by Oppenheim {1988, 1969], and
Schafer [1969]. Roughly, the way it works in speech analysis is as follows:
the speech waveform is taken to be the resuit of an excitation function (the
glottal pulse) and a realizable filter (the vocal tract). It then follows that
tire log-magnitucde Fourier transform of a segment of a speech waveform is

the sum of the log-magnitude Fourier transforms of the glottal pulse
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waveform and the vocal tract impulse response. This being true, one can
compute what the Fourier transform of this log-magnitude spectrum will
be by superposition, since the sighals add in the log-magnitude domain,
Since the vocal tract is a filter, its frequency response is usualiy a broad,
smooth curve with a small number of peaks (formants). The glottal pulse,
however, is a nearly-periodic waveform which consequently has many
harmonics. Its transform has a peak at thz freguency of every harmonic.
The transform is roughly periodic with a period equal to the fundamental
{requency of the signal. If we take the transform of this quasi-periodic log-
magnituce spectrum, we would then expect to get a strong peak at the
period representing the repetition rate in the frequency {or time) domain.
When we take the transform of the log-magnitude frequency response of
the vocal tract, however, we would expect to get something concentrated
around the short periods, since the frequency response of the vocal tract is
broad and slowly varying. This is, in fact, generally the case. The peak
due to the periodicity of the glottal pulse tends to stand out from the
activity due 1o the vocal tract. In fact, this separation of repetition from
system  response (excitation from filkering) was the basis of several
ingenious technigues for removing echos [Schafer 1968] and for estimating
the impulse response of the vocal tract. This estimation led to the
develepment of the homomorphic vocoder [Oppenheim 1969, Miller 1973],
where the cepstrum was used to determine the pitch of the speech signal as
well as the impulse response. The signal could then be synthesized by
convoiving the derived impulse response with an impulse train at the
original pitch. The impulse response was determined by eliminating the
peak from the cepstrum and then inverting the process to yield a time
series which was, in fact, an estimate of the impulse response of the filter,
The peak was eliminated by simply setting the cepstrum to zero from the
peak on, leaving only the short-time values of the cepstrum. Miller [1973]
made extensive use of this technique to extract singing voice from

orchestral background. Since the cepstrum just picked up whatever was
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Ioudest, there was quite a bit of error in the analysis which was
subsequently corrected by hand. The cepstrum would just as happily track
an orchestral instrument as the voice, if it happened to be dominant at the
time. The result was synthesized with good results. The singing was highly
intelligible and preserved well the character of the singer. One innovation
in the synthesis is worth noting. Since the analysis is somewhat noisy, the
impulse response estimate tended to vary from one estimate to the next.
This produced some undesirable variation in the synthesis which sounded
like roughness in the tone. This was eliminated by repeating each impulse
response not just once, but five times with amplitudes which built up to a
maximum and then f. This had the result of interpolating smoothly
between one impulse response and the next and thus eliminated any
roughness in the sound. Schafer’s thesis gives an excellent review of

homaomorphic filter technigues.

THE LINEAR PREDICTOR

Another technique of system estimation which has been shown useful in
pitch detection is the linear predictor [Itakura and $aito 1968, 1970, 1971;
Markel 1972, Makhoul and Wolf 1972; Makhoul 1975 Bell 1973]. The
idea here is to again medel the sighal as an excitation function, and a
filter. We use the discrete analog of the Wiener-Hopf integral [Wiener
{647 Levinson 1947; Robinson 1967, Lee 1960] to estimate a non-recursive
digital filter that approximates a filter which corresponds to the inverse of
the filter that produced the sound. In other words, the filter we calculate
has an anti-resonance everywhere the vocal tract has a resonance. If we
filter the speech waveform with this filter that we have computed, the
output will approach an impulse traiin. The better the estimation of the
filter, the closer to an impulse train the output will be. This is because this

filter, called an “inverse filter," tends to make the amplitudes of the
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frarmonics equal. Since the periodic signal with harmonics that all have
the same amplitude is a pulse train, the output of the filter approaches the
ideal pulse train. Pitch is then detected by calculating the distance between
suceessive peaks of the inverse filtered speech waveform. Pitch can also be
computed by taking the autocorrelation of the inverse filtered spéech
waveform. The largest peak in the autocorrelation is taken to represent the
fundamental peried. The theory behind this is that the reason the
autocorrelation is not useful when directly applied to the speech waveform
is widening of the autocorrelation peaks by the effect of the vocal tract. If
the effect of the vocal tract is suppressed by filtering the waveform with
the inverse filter, the peaks in the autocorrelation will be sharpened
considerably. Since the speech waveform is constantly changing, the filter
must be recomputed periodically. It is often done every 5 or [0

milliseconds.

The linear predictor can alsg be used, like the cepstrum, as a vocoder.
Since the filter calculated by the predictor is an approximation to a filter
whose inverse behaves like the vocal tract, the speech waveform can be
synthesized by simply filtering a pulse train by the inverse of the filter
produced by the predictor. Inverting the spectrum of a digital filter is a
simple operation. Atal and Hanauer [1971] and iater Markel and Gray
[1974] programmed vocoders based on this principle and found them
quite successful. A marvelous synthesis of the cepstrum and the linear
predictor was done by Tribolet [1974], who joined the two methods to get
an estimate of both the poles and the zeros of the filter. The linear
predictor by itself is an all-pole model and is sometimes inadequate in the
presence of a strong nasal zero. These topics are part of the larger field of
system estimation. In this discipline, the ob ject is to estimate the filter that
could have produced the input signal in as much detail as possible with as
little error and computation time as possible. Tribolet’s thesis gives an

excellent review of system estimation techniques. An excellent review and
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detailed analysis of the linear predictor is given by Makhoul and Wolf
[1972]. Boll has also made significant contributions to the reduction of the
compute time for the linear predictor [1972] by assuming that the filter
which represents the vocal tract changes slowly with time. The estimate at
this point in time can then be used to aid the computation of the estimate

at the next point in time.

MISCELLANEOUS METHODS

Avother method of pitch extraction that is aiso based on spectral
flattening (making all the harmonics more alike in amplitude) was given
by Sondhi [1968]. In his system, a band of bandpass filters are used to
cletermine the spectral envelope. The speech waveform is then accentuated
in frequnncies where it is weakest. The resulting waveform has much more
prominent peaks which can then be used to determine the fundamental
frequency, either dirvectly by measuring the distance between peaks, or by
taking the largest peak in the autocorrelation. Sondhi also noted that the
peaks in the autocorrelation can be enhanced by center clipping. This
process uses an adaptive threshold to gate the signal through only when its
magnitude exceeds the threshold. When the signal is passed, the threshold
is subtracted (added if the signal is negative) to prevent discontinuities in
the waveform. The threshold is set to a fraction (such as .7) of -the
maximum amplitude in a given window. The center clipped waveform is
then autocorrelated, and the strongest peak in the autocorrelation is taken
to be the pitch period.

DIRECT WAVEFORM ANALYSIS

A series of pitch detectors have been devised which base their estimates
directly on the speech waveform itself [Recddy 1966; Vicens 1969; Gold
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1662, Gold and Rabiner 1989, Miller 1975]. Reddy used a three-step
process based on measuring the significant maxima and minima of the
speech waveform. The first step just detected the times when the speech
waveform exceeded a certain fraction of the maximum of the waveform in
a certain region. The second step determitied the significant maxima and
minima of the waveform, looking for places where a maximum and a
minimum occur together, These two methods were related by three
heuristic algorithms which matched the two pitch estimates, eliminated
irregularities and filled "holes” in the pitch estimates. Gold and Rabiner
macle six measurements on the speech waveform, producing six different
pitch period indications. A final stage of processing coordinated these six
estimates to produce the final estimate. Two refinements were offered to
improve the performance. Miller developed a technique which detects the
"principal excursion” of the speech waveform for each period. This
excursion is the large positive pulse which occurs after the glottal pulse. It
is essentially the impulse response of the vocal tract. In most phonemes
except nasals, this pulse is quite prominent. His method consists of
integrating the waveform to locate the position of maximum positive area.
The zero crossing preceeding this position is taken to be the beginning of
the principal excursion. A series of heuristics is used toc prune spurious

and irregular zero crossings from the estimate.

All of the previous methods are based on the fact that the speech
waveform is unique in many respects. It is this special behavior of the
speech waveform that makes measurements on the waveform itself useful.
These methods are somewhat sensitive to phase distortion. Miller's method,
for instance, can be fooled by passing the speech waveform through an all-
pass filter, which causes phase distortion that can eliminate the prominent
peak in the signal. Excessive room reverberation, such as found in large
concert halls, can aiso spoil the method, since reverberation causes great
phase distortion. The method of Gold and Rabiner used a Lerner filter
for bandpass filtering to preserve the phase relations as much as possible.
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MUSIC PERCEPTION
or: A Child’s Garden of Psychoacoustics

PITCH PERCEPTION

In trying to determine a method for analyzing musical sound, it would
seem reasonable to look at what is known about how the ear does it, since
we are trying to rival the ear’s performance. As it turns out, many
interesting observations have been made, but they raise many more
questions than they answer. Let us review the existing literature in one
particular area, the perception of the pitch of one voice. It seems
impossible to cover all the interesting work in this area. We shall not

attempt to do so here,

Our ear is presented with a musical tone. We perceive it as being at some
pitch. What features of the waveform determine that pitch? What starts

out sounding like such a simple problem turns out to be very complex.

in our naivite, we might first postulate something like Ohm’s acoustical
law [Ohm 18421 Ohm suggested applying Fourier's theorem, such that
each tone of a different pitch in a complex sound originates from the
ob jective existence of a peak at that particular frequency in the Fourier
analysis of the acoustic waveform. This would imply that the impression of
pitch depends not only on the existence of a sinusoid at the fundamental
frequency, but also that that sinusoid is of a stronger amplitude than any
harmonics the tone may exhibit. Seebeck [18+42] countered the theory of
Ohm by determining the Fourier spectra of several of his previous
observations [1841] and showing that in several cases, the sinusoid at the
fundamental frequency was quite weak or even missing. A pitch at the
hypothetical fundamental frequency was sull perceived. Ohm [1844] and
later Helmholtz [1862] declared Seebeck’s observations to be invalid and

the result of either illusion or faulty experimental technique.
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We skip a half a century and pick up again with the work of Von Bekésy
[1928], who produced proof that the ear does a spectral anaiysis of some
sort, where different frequencies excite responses from neurons originating
in different places along the basilar membrane. As we progress along the
membrane, the excitory frequency changes smoothly in a vaguely

logarithmic manner.

With the coming of electronics, increasing evidence was gathered for the
case of the missing fundamental, that indeed, a pitch could be perceived
without the existence of any fundamental frequency at all. In fact, a group
of higher harmonics can be heard collectively as a single, unified, percept.

This percept is called the residue.

In an attempt to explain the phenomenon of the residue, one might
observe that several adjacent harmonics added together produce a
waveform which has a periodic modulation at the frequency
corresponding to the difference of the harmonics. One might then
hypothesize that either the ear detects the envelope of the incoming
waveforim, thus demodulating the signal and extracting the frequency of
the undulation, or perhaps the ear perceives the differences between the
harmonics directly and infers the pitch from that. Figure 1 shows the
wavelorm of a signal that has no fundamental frequency. It was produced
by bandpass filtering a signal which has many harmonics, Notice the
regular undulation that might imply some fundamental periodicity. Figure
2 shows the discrete Fourier transform of the waveform in figure 1,
showing that it, indeed, has no fundamental. It aiso shows that the
frequency of the undulation is roughly equal to the spacing of the
harmonics in the Fourier transform. This undulation is a characteristic of

a cluster of isolated harmonics,
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FIGURE 1. This waveform was produced by fillering the waveform of a guitar tone so as to
select only a few of the upper harmonics. The note thal was being played was roughly an E4 (332
Hz). The sixth and seventh harmonics were most prominant in this waveform, although many others
are present to a lesser exlent. It is clear that the waveform is periodic with a period of roughly 3
miltiscconds, which corresponds 1o the frequency of the note,
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FIGURE 2. This is the discrete Fourier transform of the waveform in figure 1, As we can
see, the first and second harmonics are entirely absent. Despite their absence, the waveform in
figure 1 is quite periodic.
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Schouten [1940] in one experiment showed that neither of these could be
the case. This was done by shifting the set of harmonics collectively by
some arnount. This makes the sinusoids no longer harmonically related,
but it preserves the constant differences among them. In fact, one does
perceive a change in the pitch of the residue even though the envelope of
the waveform has not changed, nor has the differences of the frequencies

of the sinusoids.

So. It is not the envelope, nor is it the differences among the harmonics,
Well, what is it? De Boer [1956] did some revealing experiments which
began the current trend in thinking on this question. If one takes a
sinusoid of some frequency f, say 2000 Hz, and amplitude modulates it
with some other frequency g, say 200 Hz, one gets three sinusoids of
frequencies f-g, f, and f+g. As usual, these are heard as one percept of
pitch @. A change in the carrier frequency, f, results in a proportional
shift in perceived pitch. A mare remarkable observation was that the pitch
shifted downward when the modulating frequency, ¢, was raised! This
erfect was met with doubt up to incredulity. De Boer made the observation
that these phenomena could be explained by hypothesizing that the ear
detected the time difference between peaks of comparable amplitude. This
is called the fine structure hypothesis, that the ear detects the details of the
fine structure of the waveform and uses that data as the basis for pitch.
Tigure % shows the essence of this theory. We see a waveform which has a
regular unclulation. We have chosen an ambiguous case, where there are
two separate maxima of equal amplitude, such that the time between the
maximum of the previous undulation and this undulation can have one of
two values. This theory predicts that the pitch will be ambiguous in this

case.
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FIGURE 3. This illustrates one theory of pilch detection which is sometimes called the
"fine-structure hypothesis”. This theory states that the pilch is determined by measuring the time
between the peaks in successive wave groups. In the case pictured above, the theory predicts a
perceptual ambipuity in pitch, that some subjects would report f Hz. and some subjects would
report ¢ Hz as the pitch of this tone. This tone is inharmonic. As was pointed out by Wightman
[1973], this theory is highly suspect because it depends on the phasing of the component
sinusoids, whereas pitch perception does not seem to. The effect of phase change can be
demonstrated simply by inverting the waveform. If we measure the distance between the negative
peaks rather than the positive peaks, there is no longer any ambiguity in the pitch measurement.
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Ritsma [1970] extended this theory a bit by showing that if pitch
information is available along a large part of the basilar membrane at
once (that is, if a tone has many harmonics), then the ear uses only the
information from a narrow band. This band is positioned at about 3 to b
tunes the pitch value. This is called the concept of dominance. Ritsma
sums up the theory as follows:

The sound is subjected to a speciral analysis on the basilar
membrane. Because of the limited resolving power of the
membrane, on each place of the membrane, a waveform is
generated. According to the concept of dominance, only one
region on the basilar membrane is dominant with respect to
the perceplion of pitch. This region is roughly 4 fimes the
pitch value. On the waveform generated in this dominant
region, the ear performs an aulocorrelation-like process
determining the fime -interval between two proncunced
positive peaks in the fine structure.

This is what is called the place versus period controversy. The place
advocates, of which Helmholtz and Ohm were members, attribute the
perception of pitch to the position ¢f maximum stimulation on the basilar
membrane. The basilar membrane is known [Bekésy 1934] to be frequency
sensitive, with the frequency distributed motonically along the length of
the membrane. The period advocates use the existence of the residue to
show that there doesn't have to be any maximum at the place where pitch

is perceived.

There is, again, evidence that the fine structure process is not the whole
story.  Smoorenburg did experiments with the perceived pitch of
complexes consisting of two pure sinusoids. The problem is that given two
tones at frequencies T and T, (f;<f,), one not only hears the difference
tone f,-f;, but one hears the combination tone 2f=f,, and it is louder
than the difference tone. This effect can not be explained by any of the
methods discussed so far. Hmmm! One explanation might be that there

are nonlinearities in the ear that produce cross-frequencies. The problem is
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that although one can hear tones at frequencies {n+1) f,-nf,, one does
nat hear the corresponding higher tones at (n+1) fo=nf,. One can only

wriggle out of this one by declaring that the nonlinearity must be
freuency-selective, that it suppresses the higher sideband itself. Further
work places more and more restrictions on the nonlinearity, such that it
can only be considered as tentative, and the existence of the combination

tones has yet to be explained satisfactorily.

Terhardt [1970] advanced De Boer's {and others’) work and found smail
deviations in the pitch of the residue from what would be predicted by the
fine-structure hypothesis. His conclusions imply that the ear itself
‘transduces primary sensory data on the level of frequencies and
amplitudes of the partials of a tone, and some higher level of processing is

responsible for many of the funny effects, like the residue.

This was all fine and good until Wightman [1972, 1974] came along and
showed that a change in the relative phases of the harmonics of a tone
changes the fine structure drastically, but does not alter the perceived
pitch. This essentially eliminates the fine-structure hypothesis. This can be
seen in figure 3 by merely inverting the picture. This changes the fine
structure entirely. For instance, there is no longer an ambiguity in the

distance between maxima.

There are any number of other effects which should be mentioned just to
give one arr~idea of the complexity of the issue. One marvelous effect is
that of repetition pitch. If one takes a signal (like white noise) and delays it
by some amount (say, 10 ms) and adds it back into itself, a listner generally
perceives a pitch at the frequency represented by the delay. If the original
signal is p'assed through a bandpass filter, and its delayed repetition
passed through another bandpass filter whose passband does not overlap
that of the first filter, the sum of the two filtered waveforms does not
produce any pitch effect [Bilsen 1970] The point here is that this effect



INTRODUCTION 42

could not be due to comparing successive peaks in the waveform for
repetition because there are not necessarily meaningful repeating peaks.
This argues for a more gross, averaging sort of process, like
autacorrelation. There is a dichotic repetition pitch also. The original can
be played into one ear and the delayed sound can be played into the other,
thus producing a pitch. This could only be produced at the first place
where the signals from different ears meet at the same place, where they

can be compared. The first place this is done is in the cortex itself.

Another effect reported in the literature is that of the binaural residue
[Houtsma and Goldstein 1972]. In this experiment, two higher harmonics
are used to produce a perceived pitch at the frequency of the missing
funcdamental. The difference is that one harmonic is played into one ear
and the other harmonic is played in the other ear. At low levels, one
indeed does get a residue phenomenon. Like the dichotic repetition pitch,
this implies that some aspects of pitch formation are done at a high level
of processing. Our informal listening tests have failed to confirm this

effect.

Siebert [1970] calculated entirely from statistical arguments that human
perception of pure sine tones was based on place rather than periodicity.
His calculations show that not only weould the frequency resolution be
much more acute, but the form of the behavior as a function of the
frequency of the tone would be different if time cues were used, It would,
for one thing, be dependent upon the amplitude of the tone. Except in the
limit (very loud or very soft), the resolution is independent of amplitude.
Three more recent theories (Wightman, Goldstein [1973], Terhardt) go on
'to propose modified place theories, In these theses, the place of stimulation
is transmitted to the brain, where some higher-level process pieces together
thae evidence and registers a pitch. Terhardt even shows a learning model

which must indergo a training sequence to acquire effects like the residue.
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In none of these theories is the fundamental necessary for pitch perception.
It is inferred from a sequence of harmonics. Both Goldstein and Terhardt
present mwodels that are essentially statistical in nature, leaning heavily
toward decision-theoretic methodology. Wightman is still using a modified
autocorrelation approach with reasonable results so far. None of the
models is comprehensive enough to explain all the effects of pitch
perception that have been noted, but they all show promise of being

extendable. If implemented on the computer, Terhardt’s model would

require more than 10° words of memory just for the decision table.

In any case, it would appear that the current concensus is that the ear
resolves separately each of the harmonics of a complex tone. The existence
of and pitch of these harmonics is sent to the brain. The brain then
examines them (and the immediate past, presumably) and decides what
pitches are present. The theory to date is not detailed enough to directly
code for the computer, but it is somewhat suggesiive of promising

directions for research.

It is not clear what the residue and combination tones have to do with
music perception. Most music is polyphonic, which already implies that
weak effects like residue and combination tones are of secondary

importance,

There is a great deal more literature in psychoacoustics that deal with
topics that are related to music to one degree or another that will not be
reviewed here. These include works on consonance and dissonance, timbre,

cognitive (high-level) processing, and mény others.
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LOW-LEVEL TECHNIQUES

INTRODUCTION

The low-level techniques are those which operate directly on the digitized
waveforin. They belong largely to the realm of digital signal processing.
The purpose of these techniques, in our application, is to determine what
frequencies are present in the input waveform, how strong they are, and
over what intervals in time they exist. This is, of course, a statement of
the variables in our model of musical sound. We wish to determine how
many sinusoids are present at any given time as well as what the slowly-
varying amphtude and frequency functions are, as functions of time. Since
we are not interested, for the moment. in identification of the instruments,
nor are we interested here in synthesis of music instrument tones (synthesis
will, however, be discussec briefly in the fdﬂowing sections), we do not

need to determine these functions to great accuracy.

The routines group themselves into two broad categories: pitch detectors
and harmonic extractors. The pitch detectors (more precisely, periodicity
detectors) take a signal in and produce as output a list of what frequencies
are present in the signal as.a function of time. Pitch detectors work best
when the signal is a single periodic waveform, but have some application
in polyphonic sound. Although any number of techniques have been used
as pitch detectors in the past [Gold 1962; Goid and Rabiner 1969; Moorer
1974 Miller 1975, Harris and Weiss 1962, Markel 1972; Noll 1967; Sondhi
1068; Reddy 19661, we will only deal wiih two autocorrelation-like methodls:
the aptimum-comb method and the autocorrelation function. The reason is
that these methods are more useful in the polyphonic case than any other
common methods. The methods that use direct waveform measurement
A[Recldy 1966, Gold 1962; Miller 1975] are biased toward monophonic
human speech. The spectral flattening methods [Markel 1972, Sondhi
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1968] are based entirely on the assumption of monophony and have no
application in polyphony. The spectral methods [Harris and Weiss 1963;
Noll 1967] have various probléms and will be discussed individually later.

The purpose.-of a harmonic extractor is to produce the waveform, or at
least a model of the waveform, as a function of time, with all other
simultaneous activity eliminated. We will discuss two such extractors: the
heterodyne filter and bandpass filtering. The heterodyne filter is a
harmonic-based technique, in that it requires that the input waveform be
periodic. It then veturns the amplitudes and phases of each of the
harmonics as functions of time. Bandpass filtering has no such restriction,
but has a problem with resolution of time-cetail. There is a direct tradeoff
between frequency resolution and time resolution with the bandpass filter.
This is sort of the signal processing enthusiast’s "Heisenberg principle”. {or

perhaps the signal processor’s own personal albatross!).

And then there are all the methods that didnt work. These are, of couise,
far tao numerous to detail in one lifetime, but three of the more important

failures are discussed.

The techniques that were found useful are interesting in their own right,
but they must be merged into a unified whole to accomplish anything. The
fast section of this chapter deals with the algorithms used to weave

meaningful threads through the data.
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METHODS FOUND TO BE USEFUL (AND WHY)
THE AUTOCORRELATION FUNCTION

INTRODUCTION

The autocorrelation function is one of the cldest and best understood
signal-processing techniques. It is defined as follows:

w

7V AT) = f FCOF (t4m) at

-y

Where F (1} is the input waveform at time t;

In the world of sampled-data, we do not have the function from the
beginning of time to the end, nor do we have the function at all points.
For sampled-data systems, there are several analogous functions. we may

use:
(8) Ap = 2, FoFpum (discrete analog of (7) )
[2E=X )
N-m-1 ‘
(9 Ay = 2 FoFpm ("windowed" to N points)
n=@
N-1
(18} A, = Z F o Finem mod N ("cycéic“ attocorrelation)
n=0
N-1 .
(1) Ay =20 FoFpm : (covariance)
n=0

Where F is the input waveform at ihe nth sample,

that is, at time.nh where h is the time
between samples
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We shall use the definition of equation (11). To see what this does to a
signal, let us calculate and observe its behavior on a pure sinusoid.

N-1
(12) A, = 2 B sinlnwhtd) B sinlinsm) whid]
n=98 '

Where B is the amplitude of the sinusoid
W is the radian frequency of the sinusoid

¢ is the phase of the sinusoid
And by the magic of the summation calculus we get:

(18) Ay = 5 B2 {N costawn) - SOBORY cogren, v-1)wha2gi)

This is plotted in figure 4 for certain values of the parameters. By
equation 1%, we can sce that A is periodic with period Am = 27/ wh. It
has maxima and minima-that recur with that period. As a function of m,
it is, in fact, a perfect sinusoid. This can be seen because it is the sum of
two sinusoids of the same period (277/wh) with differing but constant

phases and ampliturles. The result is another sinusoid.

Since the autocorrelation is not linear, superposition does not apply. We
caniot  generalize by inspection. We can, however, compute the
autocotrelation of a perfectly periodic waveform of arbitrary spectral

content.
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N-1 L L
(14) An = 25 [ 3 Bysintnjwhaty) ] [ D By sintnkwhid,) ]
) nz@ j=1 k:tl

Where N is the harmonic number,
B, is the amplitude of the n'™ harmonic,

w is the radian fundamental frequency of the
waveform,

P, is the phase of the n'™ harmonic.

Which comes out to the following:

(15) A = = Z 2 Bj B, {cos [mkwh+¢k-¢j+—— e
2 j21 kel 2 S;n[.__:..l..é?&b_]
N-1 sin[N(k+él)wh]

- cos [mkwh+d +¢ +—= .
} sinl (k+1)2wh ]

is plotted in figure 5 for several values of the variables
involved. Again, it is periodic in m with peried Am = 2r/wh. Again,
the maxima and minima recur with that period. While this result is no

Jonger a pure sinusoid, it is a harmonic series, and is thus periodic.

It is interesting also to observe the results when a waveform with missing
harmonics is applied. Figure 6 shows the autocorrelation of a waveform
with only three harmonics, numbers &, 6, and 7. The autocorrelation is still
periodic with a period equal to the period of the missing fundamental
frequency. Figure 7 shows the autocorrelation of a waveform with
harmonics 2, 3, 4, 6, 8, 9, and 10 present. This is what you might get if two
notes were present at 200 Hz and 450 Hz, an interval of a perfect fifth.
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FIGURE 4, This is the autocarrelation of a pure sinusoid. The result is, as we would
expect, a pure sinusoid with a maximum at integral multiples of the period.
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FIGURE 5. This is the autocorrelation of a periodic signal with 5 harmonics. As we see, the
result is also periodic, although the harmonic amplitudes are entirely different from those of the
inpul waveform.
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FIGURE 6. The autocarrelation of a periodic signal with only three harmonics: the 5th, 6th,
and 7th. The autocorrelation is periodic with a period equal to the missing fundamental of the
waveform. :

n a.1r-04

TiNE IK SLCONDS

FIGURE 7. The autocorrelation of a periodic signal with only harmonics 2, 3, 4, 6, 8, 9, and
10 present. This is what would occur, for instance, if two tones at 300 Hz and 450 Hz were
present siinultaneously. This represents the musical interval of the perfect fifth. Any two tones at
this interval will proauce a periodicity i the autocorrelation equal to an implied fundamental period
of the composit waveform.
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Two instruments playing at perfect fifths will produce an autocorrelation
with a period equal to that of a fictitious "fundamental” period.

With this theoretical base, let us see what this function does with actual

music waveforms.
USAGE

We see in figure 8 the waveform of a trumpet playing an G4, roughly 292
Hz. This waveform and the next were taken from a recording of Ravel's
orchestration of Mussorgsky's Tableaux D’une Exposition. This is the first
note of the piece. We can easily see that the period is near 2.5 milliseconds.
What small deviation exists is due to inaccuracies in tie rotational speed
of the turntable. In figure 9 we see equation (11) evaluated for 3.5 periods
of the input waveform. We see that the output is periodic also with period
of about 2.5 milliseconds.

In figure 10 the waveform of the first brass chord of the piece. This is a
G-minor triad. The note, G, corresponds to a frequency of about 9§ Hertz,
which is slightly over 10 milliseconds in period. The evaluation of
equation (11) for this waveform is shown in figure 11. The greatest
maximum is clearly at about 10 milliseconds. This demonstrates the
principle of determining the harmony of a piece of music without
determining what notes are being played at any given time. ’
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FIGURE 8 A segment of the waveform of a solo trumpet in a highly reverberant
environment, This was taken from a recording of Tableau D'une Exposition.

1
|
f . 0.75¢-07 8.51-02 0, 750-02
TIME IN SELCONDS

FIGURE 9. The autocorrelation of the waveform shown in figure 8. As we would expect, it
is periodic with the same period as the input waveform.



53

.1 "'ﬁ

Figure 10, A segmeni from a recording of a brass choir. This is a root-position G-minor
chord taken from a recording of Tableau D'une Exposition.
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Figure 11. The autocorrelation of the waveform shown in figure 10. It has maxima at
multiples of 98 Hz, representing the low G2 root note.
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THE COMB FILTER
DEFINITION AND ANALYSIS

Another function that is closely related to the autocorrelation function is
the magnitude of the output of a comb filter whose delay is swept over
some range of interest. This was discussed by Moorer [1974] and by [Ross
et al 1974].

A comb filter is defined by the following difference equation:

(16) Y, = XX,

Where X, is the n™ sample of the input waveform,

and Y,, is the n't sample of the output waveform

There are, in fact thiee other things that are called comb filters. The first
is produced by changing the subtraction to an addition. The other two are
formed by delaying and cifferencing the output rather than the input. We

will only discuss the form shown in equation (16).

It is easy to show that the magnitude-frequency response of the comb filter

as defined above is

{(17) isin2imwh) + [l-cosfimwh)}l?} 2

This comb filter has a zero of transmission at frequencies which are
integral multiples of 1/mh Hertz. Thus, if the input waveform is a
stationary signal consisting of nothing but frequencies which are multiples

of 1/mh Hertz, the steady-state output of the filter will be identically zero.

What we do is to sum the magnitude of the output of the filter for some
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number of points, say k points. The minima in this sum represents
periodicities present in the input waveform. This sum may be written in

the following manner:

k-1

as 2 x,,, X
, i=0

This is related to the autocorrelation function as defined in equation (11).

m»i-ml

In fact, it is approximated by the following function [Ross et al 1974
(19) (A, -A,) '/

Where A, is defined by equation (I11). This shows that where A has a
maximum, equation (18) will show a minimum. Computationally, equation
(18) is easier to compute than equation (I1) because it involves only

additions, no multiplication or division.
USE FOR DETERMINATION OF HARMONY

A program was written using the comb filter as the fundamental technique
for the purpose of determining the harmony of a piece of music. Figure
2 shows a display of the results of this program when applied to the first
brass choir in Tableau D'une Exposition. The graph shows time in
milliseconds on the horizontal axis and frequency (actually, inverse period)
on the verticai axis. The vertical axis is period in seconds, but it is
labeled in frequency. This places the highest frequency (smallest period)
nearest the origin and the lowest frequency (largest period) is at the top.
The heavy squiggly roughly horizontal lines represent minima in the
evaluation of equation (11). The equation was evaluated every 10
milliseconds throughout the excerpt. The minima in ad jacent time slices
which were extremely close in frequency were linked into lists, The
beginning of each list is cdenoted on the figure by a vertical stroke. The
long, light horizontal and vertical lines were placed there by hand as a
guide to interpretation of the figure. The vertical lines denote the places
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where the chords change, as determined by hand (by ear?) by the author.
The horizontal lines point out some selected frequencies. The names of tne
chords have been placed above the graph as a guide to interpreting the
data. One attribute which is used by subsequent programs but is not
shown here is the depth of the minimum. Many of the traces are weak and

will be subsequently ignored.

One of the interesting features is that the first G minor triad produces a
strong trace on the low G natural, but the second G minor triad produces
a strong trace on the low Bb. This is because on the second G minor triad,
the Bb is doubled in the trumpets, giving it much more strength. The
score of the first few bars of the piece is shown in figure 13 for reference.

One thing to notice is how the traces often continue to run on after the
chord has changed. This is because the recording was made in an
extremely reverberant environment. The tones continued to ring long after
the chord changed.

There are many other traces for each chord than just the root of the
chord. These other traces are subharmonics of the notes in the chord.
They are clear to see in figure 14 as all the other minima. One must
remember that any periodic compeonent of the waveform will produce some
kind of minimum in equation (11). The minima get deep when trz periods
are rational multiples of one another. Then their subharmonics will

coincide to produce a deep minimum.

To demonstrate both the power and the limitations of this method for
determining harmony, 9 test chords were synthesized and processed. The
first was a C-major triad in root position. The results are shown in figure
I5. We see a strong minimum at slightly over 15 milliseconds, which is

samewhat over 64 Hertz, which is about C2. This is as if the notes of the

chotd were the ‘i"‘, 5"‘, and 6™ harmonics of C2.
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FIGURE 12. This shows the nutput of the optimum-comb pitch detector when applied to the
first brass chair in Tableaux D'une Exposition. The minima in adjacent time slots have been linked
together into lists. There is a verlical stroke at the beginning of each list. The horizontal axis is
time in milliseconds. The vertical axis is period, but is labeled in frequency. This means that the
labelings in frequency are not equally spaced and the highest frequency (smallest period) is at the
.origin. Naturally, the scale goes asymptotic at zero period (infinite frequency). To help in
evaluating the results, light vertical bars have been placed at the places where the chords change.
The chord names have been printed at the top of the figure. The light horizontal bars denote
some important frequencies for comparison. The strongest traces seem to occur when notes are
doubled in the orchestration. Compare this plot {o figure 13 which shows the score of the first
part of the piece,
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FIGURE 13. This is the first page of Ravel’s orchestration of Mussorgshy’s Tableaux D'une
Exposition. The original piano score is shown al the bottom. This is from the Boosey & Hawkes
pocket cdition, 1929,
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FIGURE 14. This is the resuils of applying the optimum-comb to the first chord of the
brass choir in Tableaux D'une Exposition. The chord is a G-minor. The principal minima are
subharmonics of G2 (about 98 Hz.).
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When we add an A4 to the chord, the chord becomes ambiguous. It is ilie
superposition of a C triad and an A-minor triad. This chord is usually
referred to as an A-minor seventh chord. A major seventh chord produces

unambiguous deep minimum, because the major seventh chord represents

the % &™ 6! and 7" harmonics of the root (even though the 7™
harmonic is lower in frequency than is commonly used in the major
seventh chord). The minor seventh chord does not have such a clean
correspondence to the harmonic series. The minima in the comb filter
output for ambiguous chords are subharmonics of the notes of the chord.
This is shown in figure 16. When we apply the formula to a C-minar
triad, we get two strong minima. One is at Fl, which makes the notes of

the chord the 6“‘, 7”‘, and 9" harmonics. The other is at AbO, which

makes the notes of the chord the 10™ 12" and 15™ harmonics. This is

shown in figure 17. In figure 18 we see the results from a C-diminished
chord. The sfrong minimum is at Abl, which makes the notes the 5"‘, 6"’,
and 7" harmonics. In figure 19 we see the results from the famous
diminished-seventh chord. This is one of the most ambiguous chords in
common usage. As we might expect, there is no strong minimum. Figure 20
" reports the results for a C-augmented chord. There is a minimum at FO,
which makes the notes the 12'" the 15" and the 19" harmonics. Now we
have 2 simpler examples. Figure 21 shows the results from a C-major-
nineth chord, figure 22 is for a C-major triad in first inversion, and figure
2% if for a C-major triad in second inversion. These three all show strong

minima at C2.

Thus we see that the comb filter can be used to detect and identify any

unambiguous chord with reasonable accuracy.
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FIGURE 15. Equation (18) applied to C-major chord in root position. The nctes in the
chord are C4, E4, and (4, We see a distinct minimum at 15.5 milliseconds, which is C2,
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FIGURE 16. Equation (18) applied to a C-major-sixth chord in root position. The notes in
the chord are C4, E4, G4, and Ad. Since this chord is ambiguous, no strong minimum occurs This
chord is usually called an A-minor-sevenih, in which case this chord is in the first inversion.
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FIGURE 17. Equation (18) applied to C-minor chord in root position. The notes in the chord
are C4, Eb4, and G4. There are two strong minima. One at slightly over 23 milliseconds, or 43

Hertz, 43 Hertz is Fi. There is another minimum at 39 milliseconds, which is AbO
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FIGURE 18. Equation (18) applied to a C~diminished chord in root position. The notes in
the chord are C4, Ebd, and Gh4. The strong minimum is slightly over 18 milliseconds, or about 52

Hz, which is Abl.
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FIGURE 19. Equation (18) applied to C-dimished-seventh chord. The noles in the chord are
C4, Eh4, Gb4, and A4, There are no strong minima because this chord is highly ambiguous.
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FIGURE 20. Equation (18) applied to a C-augmented chord in root position. The notes in
the chord are C4, E4, and Ga#4. The strong minimum is slightly over 46 miiliseconds, or about 22
Hz, which is FO.
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FIGURE 21. Equation (18) applied to C-major-nineth chord in root position. The notes in
the chord are C4, £E4, G4, and D5, This chord, like the C-major chord, has a strong minimum at 155
milliseconds, or 64,5 Hertz, which is C2. The traditional definition of the nineth chord includes the
seventh degree, which in this case would be Bb4. It is ommitted here to help separate the effects
of the DS, although its inclusion would not greatly perturb the plot nor disturb the location of the
minimur,

o

] g.1F 81 9.2t-01 8.38-01 8.4E-01

TIME IN SECONDS

FIGURE 22. Equalion (18} applied to a C-major chord in the first inversion. The notes in
the chord are E4, G4, and CB. The strong minimum is again at 15.5 milliseconds
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FIGURIZ 23, Equation (18) applied to C-major chord in second inversion. The notes in the
chord are G3, C4, and E4. This chord, like the C-major chord, has a strong minimum at 155

milliseconds



LOW LEVEL TECHNIQUES 66

THE HETERODYNE FILTER
INTRODUCTION

This tool is an adaptation of the discrete Fourier transform, hereafter
abbreviated DFT. The heterodyne filter is used as a filter or operator. It
takes a function of time as input and gives many functions of time as
output. It is used to determine the amplitude and frequency functions
which make up nearly-periodic waveforms.- More directly, we represent

such waveforms as follows:

M
29 F, = 3, A

sin (nmam@m)
n=4

&

Where F , is the signal at time ah,

his the !ime.between consecutive samples,

W is the radian fundamental frequency of the note,
1 is the harmonic number,

A, is the amplitude of harmonic N at time ah,

0o is the phase of harmonic 1 at time ah.

This models the waveform as a sum of sinusoids with time-varying
amplitudes and phases. We must insist that the amplitudes and phases
vary slowly with time, or the analysis procedure does not give correct

results.

This is not a Fourier series representation, although it looks similar. The
Fourier series demands that the sinusoids be perfectly harmonic and of
constant amplitude. If we allow the amplitudes or phases to vary, the
sinusoids are no longer orthogonal by summation over one period, thus the
sinusoids do not constitute a Fourier series. We mention this fact because
this means that the tone can not be resynthesized by use of the fast

Fourier transform algorithm. To resynthesize the tone from A, ,., and

w, we must evaluate M sinuscids for every point in time.
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The heterodyne filter has its main use in analysis for the purpose of
insight into music instrument physics and for resynthesis of the instrument
tone. It could be used for analysis of music that formed unambiguous
chords at every point, that had no notes outside of the chord. This is the
case with very little music, thus making the filter of little use to the musical
scribe, Qne would be hard put to find any such music outside of harmony

texthooks.
METHOD AND ANALYSIS

The method is defined as follows:

' a+N-1
(21) &, = 2 F, sinlnw;ihidy)
| =X
’ otN-1
(22) b = 2 F, cos(nwgih+d,)
=0 !

"

(23) Any = (3,2 +D )12

(24) 6,, = atan(@,,/b,,)

1

Where Wy is the radian frequency of analysis,
g is the phase of analysis,
I is the harmonic number,

N is the nearest integral number of samples in one
period of the input waveform,

The initial phase angle, ¢, is included for generality. The method is

indepenclent of this phase angie.

The summations are taken over one period of the input waveform. Since
N must be an integer, we can not analyse for an arbitrary frequency whose

period may not be an integral number of samples. We must settle for
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taking the nearest integer. Having chosen the number of samples in the
sumrmation, we must then set wy to 271/Nh. If this is not done, a very
strange kind of inaccuracy sets in. We will show an example of this

presently.

We apply equations (21) through (24) to the digitized waveform of a single
note of constant {requency for each harmonic of the waveform. This
produces two output waveforms for each harmonic. The waveform
represented by Ay, in equation 22 corresponds to the amplitude of the
harmonic as a function of time. The waveform represented by 8, in
equation 24 corresponds to the phase of the harmonic as a function of
time. We may convert this to frequency by taking the slope of the function
at each point in time. This may be done with a band-limited differentiator
[Kawser 1962, 1966]

To better understand what the heterodyne filter does, we may examine its
output when a pure sinusoid is applied. The heterodyne filter is a
nonlinear filter, so the principle of superposition does not apply.
Equations 21 and 22, however, are linear. The transformation to equations
22 and 24 does not change certain principles. If a signal is annihilated
entirely by equations 21 and 22, it will not be present in the outputs of
either equations 23 and 24, Signals greatly suppressed in equations 21 and

22 will be greatly suppressed in equations 23 and 24.

If we apply'a pure sinusoid of frequency w, we may compute the output of
the heterodyne filter exactly by means of the summation calcuins

[Hamming 1962].
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1 . 2 ,WNh 2 r {W+nWyl h 2 ¢ (W-nWgl h
(25) A e (— ) {csc {—-—-——_2 ] +esc [.__.__2_...._]

. 2 cos [nWgh~2ds]

The expression for the phase is not included here because it is so complex
as to he almost meaningless. Equation 25 is plotted in figure 24a. The
frequency of analysis was the bth harmonic of 300 Hz, We can see that the

response is identically zero for all multiples of 500 Hz except the bth.

It is interesting to compute the limit of the exact expressions for the
response to a pure sinusoid. If we define Aw to be {w=1nwy) , the limits
may be computed as shown in equations 26 and 27.

(28) Jim A = —L @ = L
4N2

N ne

wW-nlig

o~

gre i {2nwon (L sal} 4 N sin{awn [ 4ol )
(27} lim = 2
wW-nwe Pre  cos {2nwgh [N—;- +a] } + N cos {Awh [%_1 +a] }

.

The first important point is that the results are, in the limit, not dependent
upon the absolute phase of the input sinusoid. Also, the magnitude of the
output converges to a constant times the amplitude of the input sinusoid.
The phase converges to a linear function of the frequency difference, Aw,

if the number of points in the summation, N, is large compared to 1.
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USAGE

The biggest problem with using the filter is that the assumptions upon
which it is based are rarely true. That is, all music jnstruments have
harmonics that change with time, and many have frequencies that are not
exact multiples of the fundamental frequency. Since the principal source of
error cue to these deviations from the ideal comes from “leakage” from
‘ad jacent harmonics, the output may be improved somewhat by further
filtering of these harmonics. Since the important part of the output of the
heterodyne filter is around zero frequency, we can simply filter out the
harmonics other than the one under analysis by replacing each point in
the output by the average over one period of the fundamental frequency.
This places an additional zero of transmission over each ather harmonic.
Figures 24b, 25a. and 25b show the results of applying such a filter once,
twice, and three rimes. The sideband rejection becomes quite strong. We
could use a classical filter, like the Butterworth or Chebychev low-pass
design, but this would not put a zers of transmission at the other

harmonics. We feel this feature is very important.

To get the slope of the phase function, we replace each point by the slope
determined by a least-squares fit of a linear polynomial centered around
that point. This provides further noise reduction by averaging as well as

producing a band-limited approximation to the slope at each point.

Figure 26 shows a plot of the amplitudes of the harmonics of a music
instrument tone. Time is the axis going from left to right (about .5 seconds
total), and frequency is depth into the page. The first harmonic is in the
rear. Figure 27 shows a spectrogram-like plot of this data as well as the
detailed frequency deviations of each harmonic as functions of time. The
analysis technigue as described so far was used to analyse 16 music

instrument tones for a study in perception of musical timbre [Grey 1975],
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Tones were synthesized from these data. Putting the tones in this form
allowed them to be normalized independently for pitch, duration, and
loudness, as well as to be modified and blended. The synthetic tones were
judged quite similar to the original tones. This is, of course, the final test
of the analysis procedure. Appendix A shows the results of analysing
several synthetic tones to determine how much perturbation the filter can
telerate hefore producing results that are grossly in error. It would appear
that as much as a 2 percent deviation in frequency with rise times as shott

as b periods can be tolerated with reasonable results.

It is of interest to list the ways that this technique has been misused in the

past with the hope that future users will avoid these problems.

As was described in the historical review, Luce used a method that was
very similar to this, but limited by the extreme cost of computer time in
those days. He selected single periods of the waveform and interpolated
them to get exactly 24 points per period. He then did the summations to
produce amplitudes and phases for 12 harmonics. Note that this method
only gives one 24 numbers per period, whereas the heterodyne filter gives
one 2NM numbers, where N is the number of points in a period and M is
the number of harmonics under analysis. The advantage of this extra
computation is that a particular difficulty of Luce's is avoided. The

following quote is from Luce's thesis:
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"Another wvery serious difficulty arises for

"waveforms containing very narrow pulses well-
separated from each other if only 24 ordinates per
cycle of the fundamental of the note analyzed are
used, Two neighboring data points are used in each
interpolation. It is .possible that none of these 48
data poinls, corresponding to the 24 points in time
selected for interpolation during the cycle, contain
the narrow pulse. Because of this phenomenon, a
small error in the measurement of the fundamental
frequency of the note may result in the pulse being
missed in some cycles entirely and being selected
in others, Large fluctuations (from cycle to ¢cycle) in
the calculaled spectral components result.”

By taking all the points in a period, we avoid this problem. We cannot,
however, avoid a small (order of 1/N) fluctuation due to the fact that the
true period is not an integral multiple of the sampling interval. Since this
fluctuation is periodic with the same period as the note, the further

filtering operations eliminate it entirely.

Pulse-like waveforms are quite common in music. All brass instruments
have pulselike waveforms. The human veice is often quite pulse-like.

Pulse-like waveforms cannot be ignored in musical contexts.

Seauchamp and Freedman hoth thought of the summations in equations
21 and 22 as discrete analogs of the Fourier integrals. This is dangerous
because gt leads one to sum over one period, but to use an analysis
frequency (wp) which does not correspond to a period equal to an integral
multiple of the sampling interval. This produces imperfect pole-zero
cancellation and all the resulting distortion. They too obtained only "a
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few” points per period, letting themselves in for the same kind of errors

Luce's methad obtains.

Beauchamp lfater used the FFT algorithm [personal communication 1974]
with a Hamming window. The Hamming window is equivalent to a

convalution in the frequency domain. It is equivalent to replacing each

frequency-domain point (@, bn,,.} with the sum of itself and a portion of
its neighbors [Bertram 1970; Blackman and Tukey 19591 This means
that "leakage" between adjacent harmonics, that very problem we have
tried so hard to filter out, is directly encouraged by the application of a
window function. Figures 28a and 28b show the frequency response of a
filter designed this way. The zeros of transmission at the neighboring
harmonics have been removed. This method cannot possibly produce

accurate results,

This technique can be salvaged by doing the analysis at one-half the
frequency (twice the period). This will produce an output that has only
even harmonics, indicating a tone an octave high. This way, when we
analyze for a certain harmonic, the ad jacent "harmonics” will, of course, be
zero, because the odd harmonics will be zerc. This way, anything the
technique produces on the odd harmonics can be ignored as artifacts of

the analysis.

[Keeler [1872] used Lagrangian interpolation to produce a much higher
effective sampling rate and then computed an approximation to the
Fourter integral by use of Simpson's rule. Even if we ignore the fact that
the Lagrangian interpolation does not have good band-limiting properties
[Schafer and Rabiner 1972], there is a severe problem with the use of
Simpson's rule rather than direct summation when considered from a

signal-processing point of view,

With Simpson's composite rule, the sticcessive samples are weighted by the
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following coefficients: 2, 4, 6, 4, 6, 4, . . , 4, 6, 4, 2. The weighted samples
are then summed. The problem is that this is equivalent to the sum of

three separate weights:

first: Sy 20 20 20 2,2, v 0wy 2,2
second: O, 2, 2, 2, 2, 2y « o «, 2, D
third: b, B, 2,8, 2,8, ...,0,00

We see that the first sequence is pure summation. The second sequence is
a summation, but over N=2 points; a different fundamental frequency.
The third sequence has every other sample zero, which is characteristic of
a sampling rate a factor of 2 slower. This means that massive aliasing
occurs, as well as annihilating the zeros of transmission. Figure 29a shows
the frequency response of such a fiiter. We can see the aliased band up in
the high frequency range, as well as the fact that the response no longer
goes exactly to zero at every other harmonic. Probably the only reason
that IKeeler got as good results as he did is because he was analysing large
organ pipes, which presumably had few high harmonics, and thus little
aliasing. Figure 20b shows what happens if just a straight triangle rule is
used. The plot does not show it, but the minima in the frequency response
are not actually zeros of transmission. The use of the triangle rule has
made the response non-zero at each of these points. This is because it is
.equivalent to the sum of two weightings, one of length N and one of length
N-2.

Thus we see that there are a number of ways of doing this process
incorrectly. It is hoped that this exposition will help others to find even

better methods.
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FIGURE 28. This is the magnitude frequency response of the heterodyne filler when a
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convolution in the frequency domain, the spectral zeros at the fourth and sixth harmonics go away.
This cannot give accurate results. The lower plot uses the "Hamming" window.
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FIGURE 29. This is the result of approximating the Fourier integral by Simpson’s composit
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BANDPASS FILTERING
INTRODUCTION

The bandpass filter is one of the oldest techniques for separating out a
single harmonic. Backhaus [1927, 1932] used a bandpass filter for studying
mdividual harmonics of music instrument tones, notably the violin. The
bank-of-filters method of speech analysis has been widely used. There is
much evidence that the basilar membrane in the ear is like a bank of

bandpass filters,

We will not attempt to repeat the wealth of literature that exists on linear
systems and linear filters, but let us just review some basic principles cf

filtering in general.

The output " of a filter consists of its particular response and its
homogeneous, or transient response. The particular response is directly
related to the input signal. In fact, the spectrum of the particular response
is just the product of the spectrum of the input signal and the frequency
response of the fiiter. The transient response is, however, somewhat more

compicated.

Any linear filter has what are called natural frequencies. These can be
resonances or anti-resonances. The transient response of a filter is made up

of sinusoids of these frequencies,

There is a relation between the frequency selectivity of a filter and how
fast it can respond to changes in the input signal. A very narrow-band
filter has a very long transient response and changes very slowly. This is
illustrated in figures 20 and 21 In the first figure, we see the response of a
very narrow band filter to a suddenly-applied pure sinusoid. The second
figure shows the response of a wide-band filter to a suddenly-applied

sinusaid. ty each figure, the upper plot is the input signal, the middle plot
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ts the output signal, and the lower plot is the frequency response of the
filter. Witiv this in mind, let us see how the bandpass filter can be used in

pracrice.
USAGE

If we suspect that a harmonic exists at a certain frequency, we can use a
bandpass filter to select it from a complex signal, with some ensuing loss of
resolution in time. In fact, unlike the heterodyne filter, any sinusoid of
nearly-constant frequency can be selected. It does not have to be
harmonically related to any other sinusoids in the signal. Figure 32 shows,
iin the top plot, the response of a 4th order bandpass filter (Butterworth,
20 Hz between the 2dB points) to a complex signal. The center frequency
of the filter is set to exactly the frequency of one of the harmonics of the
signal. Notice the smooth amplitude envelope of the harmonic. The upper
plot in figure 32 shows the output of a filter with the same input as the
previous figure but its center frequency does not correspond to any partial
in the input signal. The response consists almost entirely of transient

response. The particular response is highly suppressed, as it should be.

We may apply a pitch detector to the output of the bandpass filter to get
the frequency of the harmonic as a function of time. This is also a good
way to tell if there is really something there or not, because the output of
the pitch detector wil be gibberish if there is not a near-sinusoid present.
The center plot in figures 32 and 23 shows the output of a pitch detector
(the optimum comb) applied to that output of the bandpass filter shown in
the upper plot. As we see, the frequency varies smoothly throighout the
cluration of the plot. 1f no harmonic is presenr, we do not get a consistent
reacling of pitch throughout the duration of the signal, thus no trace like

the one shown is produced.



80

FIGURE 30. The response of a narrow bandpass filter to a pure sinusoid applied suddeniy

FIGURE 31. The response of a broad bandpass filter to a pure sinusoid applied suddenty.
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a piano tone in a piano duet. The upper plot shows the response to a bandpass filter the center
frequency of which coincided closely with the frequency of the harmonic. The center plot shows

the resuits of applying the optimum-comb to the waveform in the upper plot.

The minima in

adjacent time slices have been linked by a nearest-neighbor rule to form lists represeiting the
frequency of the signal as a function of time. A vertical stroke has been placed at the beginning of
The lower trace shows the resulls of eliminating obviously spurious frequency lists. The
dominant list has a horizontal line drawn through it representing the average frequency of the
harmonic. The verlical stroke at the beginning of this lire is two standard deviations high.

each list.
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FIGURE 33. This figure, like the previous one, shows the processing of a single harmonic
eviracted fram a polyphonic piece by a narrow bandpass filter, The upper plot shows the output
waveform of the filler. The ceonter plot shows the results of the application of the optimum-comb
to delect any periodicity which may be present in the filter oulput waveform. The minima of the
optimum-comb have been linked together to form lists. In the lower plot, obviously spurious traces
have been eliminated. The remaining list has a horizontal bar through it dencting the average
frequency in the list. There is, in fact, no sinusoid present at this frequency. This is a transient
response and is entirely an artifaci of the bandpass filter. -This trace will hopefully be eliminated
later due to its large frequency variation.
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FIGURE 34. This figure is similar in format to

the previous two. This shows the resulls of

applying a bandpass filter at a very low frequency. The filter does transmit the lowest sinusoid in
the signal greatly aitenuated. The optimum-comb cannot by itself distinguish subharmonics of the
filter output, so it finds many minima. These are linked into lists and shown in the center plot. A

vertical «troke i piaced al the begioning of cach list.
zero ¢rossings in the filler outpul.

all the spurious subharmonic traces, as shown in the pottom plot,

To eliminate subharmonics, we count the
This gives a rough pifch estimate that is sufficient to eliminate
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If the center frequency of the filter is very low, it is possible that the pitch
detector can track sub-harmonics of the lowest -hafmonic in the sound at
that pomt. Some of this low harmonic will sneak through the filter and
fool the pitch detector. As was shown before, the autocorrelation-type pitch
detectors respond just as well to integral multiples of the fundamental
period as to the fundamental period itself. Figure 24 shows multiple traces
of subharmenics of a harmonic produced by the optimum-comb technique.
To elimmate the spurious traces {all of the traces in this figure are
spurious), we may make some other crude measurement of the pitch which
does not have this problem and compare the resuits. One simple technique
1$just to count the zero-crossings in the filter output. This provides a
crude estimate of the pitch of the signal and is enough to eliminate the

Spurious traces,

To use the filter, we must know how to set its center frequency. One
convenient method is to use a pitch detector (autocorrelation and comb
filtering have been previously described) to get an estimate of the harmony
of the signal. Since music uses ambiguous chords, we may expect several
significant pitches to be indicated. We may then apply bandpass filters to
all multiples of these pitches, up to some maximum. This will get
approximations to the harmonics with limited resolution in time. We may
then apply a pitch detector {(again, autocorrelation or comb filtering witl
do) to get the frequency of the harmonic as a function of time, and we
may average the encrgy of the signal to estimate the amplitude of the
harmonic as a function of time. The bottom plot in figure 22 shows the
final frequency contour of a harmonic of a complex signal. The straight
line through the plot indicates the average frequency of the harmonic. The
vertical bar at the beginning of the horizontal line is two standard
deviations high. Figure 35 shows what happens if the center frequency of
the filter is not exactly upon the frequency of the harmonic. This trace
was not accepted, as is shown by its absence from the lower plot. The

frequency deviation throughout the trace was unacceptably great.
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In practice, the use of a pitch detector to determine which bandpass filters
to apply only reduces the number of applications of the filter by a factor
of about 2 from a dense covering. For example, a 30 Hz bandwidth was
used in the analysis program. A dense covering from 100 Hz to 2000 Hz
would be about 200 applications. In fact, only about 75 applications were
needed, This is still a ot. It is enough so that this method of analysis can
hardly be called practical at this point in time. Perhaps with the advent of
high-speed special-purpose signal processing hardware, the method may
becorne more than a demonstration. 1t should be noted that just as much
time was spent doing the pitch detection on the filtered waveform as was

spent doing the filtering itself,
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POPULAR TECIHNIQUES NOT FOUND USEFUL

INTRODUCTION

In this section, we will expose some of the weaknesses in other popular
signal processing techniques that make them not useful for the musical
scribe. We present these negative results for several reasons, perhaps the
most important being the fact that the science and art of digital signal
processing is new enough that a great deal of experience with its
techniques has not had time to accumulate, Each of the techniques to be
discussed has been found to be very useful in.general. The linear predictor
forms the core of most speech analysis systems in use today. The FFT is
the "workhorse of the industry”. The cepstrum is useful in speech as well

as picture processing, sonar, radar, and many others.
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THE CEPSTRUM
INTRODUCTION

The cepstrum is defined as the inverse DFT of the log of the magnitude
of the DFT of an input signal. This may sound a bit perverse, but if we
recall that the autocorrelation of two time-limited signals can be computed
by the mverse DFT of the magnitude of the DFT of an input signal, we
can see that the processes are related. The cepstrum of a signal is a signal
(a function of time) whose DFT is the log-magnitude of the DFT of the
input signal. The cepstrum is a time sequence, just like the signal itself,
and aiso like the autocorrelation function.

The cepstrum is useful for dealing with signals that have been multiplied
or convoelved with other signals. For instance, we may think of the speech
prociuction mechanism as an excitation (the glottis) followed by a filtering
operation (the vocal tract). In picture processing, the signal can be
represented as the excitation (the light source) multiplied by the reflectance
function of the Hluminated object. In each of these cases, the log-
magnitude DFT is related to the sum of the transforms of the individual
signals, 1f these signals, by themselves, occupy different parts of the
spectrurm, then they can be separated by simply partitioning the cepstrum.
In this manner, we may use the long-time end of the cepstrum to detect the
pitch of a speech waveform [Noll 1967}, or the short-time end of the
cepstrum to compute an approximation to the impulse response of the
vocal tract [Qppenheim 1968, 1969, Miller 1974). In speech, the signals

separate icely.

One place where the cepstrurn may be of great use in music is in analysis
for the purpose of synthesis. Since we can separate the functions of
periodicity generation from spectral shaping with the cepstrum, we may

use it to generate the impuise response of a filter which can duplicate, as a
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tunction of time, the spectral shape of the waveform of a music
instrument. Since a number of instruments are almost perfectly periodic
(brasses. most woodwinds except during the attack), it may be possible to
synthesize many tones using these impulse responses. There are, however, a
large number of instruments which are not perfectly periodic (all stringed
instriments) and are thus not suitable for simulation in this manner,
unless some technique for deriving and modeling the excitation function is
found. (We can compute the excitation function simply from the long-time
part of the cepstrum, but unless we can madel it more simply, it is not

amenable to modification and is thus not useful for musical purposes).
DISCUSSION

The problem with using the cepstrum to compute, say, the pitch of music
instruments is that in polyphonic music, we are dealing with the sum of a
number of waveforms. When we take the log of the magnitude of the
DFT of the input signal, we get a very complex result where the signals do
not partition nicely. The information for each voice is spread all over the
cepstinin in complex ways. For instance, figure 26 shows the cepstrum of a
single violin tone. Notice the single peak corresponding to the period of
the input signal. Figure 37 shows the cepstrum of two violins being
played at different frequencies. The peaks no longer correspond to
frequencies in the original signal. There is no ciear way to extract from the

cepstrum the information about the pitches of the two notes being played.
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FIGURE 36. This is the cepstrum of a segment of the waveform of a trumpet solo. The
waveform was taken from the first nofe of Ravel’s orchestration of Tableaux D'une Exposition. The
note is a G4, or about 396 Hz. As we see, a single peak is evident at about 25 milliseconds, which
represents the period of the detecled signal. The cepstrum is quite insensitive to reverberation,
as the trumpet was recorded in a large concert hall with extensive reverberation.

A am——

ﬁ

e

I | i
Lt

FIGURE 37. This is the cepstrum of a segment of the waveform of a brass choir. The
waveform was taken from the first brass chord of Ravel’s orchestration of Mussorgsky®s Tableaux
D'une Fyposition. The cepstrum does not seem to produce a distinct peak corresponding to any
periodicity in the inputl signal in this polyphonic case.
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THE DFT
INTRODUCTION

The Fourier transform in all its many forms is possibly the oldest and
most widely useful signal processing technique of all. Special processors to
compute the DFT by the Fast Fourier Transform algorithm [Cochran ¢t a/
1067, Gentleman and Sande [966; Gold and Rader 1969 Rabiner and
Gold 1975 Oppenheim and Schafer 1975 Singleton 1967, 1968, 1969] are
available from numerous sources. When we began this project, the DFT
was the first technique called upon to help accomplish the task. It was later
abandoned for reasons that will be explained below. It may, in fact, be
possible to accomplish the task at hand with the DFT, but certain
problems would have to be solved which did not seem to have simple

solutions.
DISCUSSION

Let us begin by examining the DFT of a pure sinusoid with an
exponential amplitude. The (complex) sighal that we shall transform is as
follows:

(28) 5, = e"(OHWT

Where S is the value of the sinusoid (the input

signal) at time NT, where T is the time
between conseculive samples

o is the decay rate. 170 is the time constant of
the signal, i.c., the time it {akes the signal to
decay to 17e of its value at time=0.

W is the radian frequency of the sinusoid.

j is the square-root of =1,
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The transform can be computed as follows:

N-1 M-l
(29) A, = 3 5e 2 kiMN | 5 gno+jwIT-207jk/N)
n=8 n=0

A, is the k™ value of the discrete Fourier
transform. It represents the frequency

k7 (NT).

N is the number of points in the transform.

Since this 15 just the sum of a finite exponential series, we can compute
this summation in closed form:

o N@+j@I T2k} _ 4

o L (@+j) T-27 jk/NE_

(38) A, =

After some manipulation, we find that the squared magnitude of this

expression is then the following:

o IN-110T sinh? (NO'T) +sin? (NWT-27k)
sinh? (T} +sin? (WT-27k/N)

(31) (A% =

It is easy to show that this expression is maximized when the following is

true:

NwT
(32) kK = =
21

This maximum is unique in the range B<wT<n/2. We can see from the
expression above that the peak widens as N gets smaller and as o gets
larger. Figure 28b a shows equation (22) evaluated for N=128, figure 38d
for N=2B4&, and figure 25f for N=16384. We see that as N is increased,

the peak becomes sharper and sharper.
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due to roundoff error which tends to increase the apparent background noise.
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Figures 28a, 28¢, and 28e show the actual DFT of a pure sinusoid at
214.158265 Hz evaluated by the fast Fourier transform algorithin for 128
points, 2048 points, and 16284 points. The results differ from the
calculated values because of roundoff error, In the longer transforms, the
error manifests itself as a spreading of the peak. 1t is roughly analogous tc

a multiplicative noise (rather than an additive noise).

Likewise, figures 29a, 20b, 29c, and 29d show the spreading of the peak as
o increases. The reciprocal of 0 is the attack time in seconds, so O
increasing means faster and faster attack. A 0 of 100 implies a 10

millisecond attack, which is quite common in music waveforms.

These cases were idealized. In general, the attack is not a pure exponential.
Figure 40 shows the DFT of a segment of a 2-voice piano piece. The time
window is centered over the boundary between two notes. The lower voice
persists throughout the wincdow at a constant C4 (261.6 Hz). The upper
voice is changing between an E4 (3296 Hz) and an F4 (2492 Hz). Tt is
clear that the region around the E4 and the F4 is quite muddied with
many peaks in evidence. This DFT used 409 points and occupied about

200 milliseconds width in time,

There is another problem with the use of the DFT for sounds that were
recorded in highly reverberant rooms. In this case, the effect of the room
can be modeled by a linear time-invariant filter. The music is then
convolved with the impulse response of the room. This is equivalent to
multiplying the transform of the music by the frequency responise of the
room (or adding the logarithms of the transforms). Since it is well known
that concert halls have frequency responses with many natrow peaks and
valleys of depth up to 20 and 30 dB [Schroeder 1962, 1962, 1970], these
peaks and valleys can produce spurious peaks in the DFT of music

recorded in such a room.
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FIGURE 39. Comparison of predicted DFTs of exponentially-damped sinusoids for different values
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FREQUENCY IN KHZ

FIGURE 40. Discrete Fourier transform of a 4096 point (200 miilisecond) segment of a
piano duct. The time window is centered over the boundary between two noles. The lower voice
persists thiroughout the window at a constant C4 {261.6 Hz). The upper voice is changing between
an [4 (329.6 Hz) and an F4 (349.2 Hz). The region around the E4 and F4 is quite muddied with

many peaks in evidence,

FREQUENCY IN KHZ

FIGURE 41. Discrete Fourier transform of a 4096 point (200 millisecond) segment selected
from the center of the first G-minor brass chord in Tableaux D’une Exposition. Some of the
principle notes present in the chord are G2 (98 Hz), G3 (196 Hz), Bb3 (233.1 Hz), and D4 (293.7
Hz). This recording was made in a highly reverberant concert hall. Since this is equivalent to
multiplying the transform of the rusic with the frequency response of the concert hali, we see
many superfluous peaks representing the natural modes of the hall. Near the Bb2 (233.1 Hz) there
is an extra peak lhat is only B dB lcwer than the main peak. This causes considerable confusion in
trving to use the discrete Fourier transform for polyphonic music analysis in reverberant
environments,




97 THE DFT

Figure 41 shows the DFT of a 200 millisecond segment near the center of
the first block chord. This chord is a G-minor chord. It has notes at G2
(98 Hz), G2 (196 Hz), Bb3 (232.1 Hz), D4 (292.7 Hz), and many more. We
can notice many spurious peaks. In the region of the Bb3 (233.1 Hz), there
is an extra peak that is only 5 dB lower than the main peak. The same is
true of the G2 (196 Hz).

For these reasons, we decided not to use the DFT in this investigation.
Later on, we show cases where we used the DFT as the front end of a
hypothetical music analysis system and compare the results with our

preferred implementation.
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THE LINEAR PREDICYTOR
INTRODUCTION

The linear predictor [Atal and Schroeder 1968; Atal and Hanauer 1971;
Doll 1972 Griffiths 1975, ltakura and Saito 1988, 1970, 1971; Levinson
1947, Wiener 1947, Makhoul and Wolf 1872; Makhou} 1975 Markel 1972]
is a technique for computing an ali-pole filter the frequency response of
which best approximates the spectrum of the input signal. It has become
very popular recently in the speech community because one can_
approximate the spectrum of a speech signal and then determine the
formant regions by examining the frequency response of this filter. It
provides much-needed smoothing of the spectrum, giving quite often clear,
unambiguous peaks at the formant frequencies. This technique belongs to
the world of "systom estimation”, in that the filter thus created models the
filtering activity of the vocal tract. The linear predictor estimates the

system consisting of the resonant regions of the vocal tract.
DERIVATION

A simple way to derive one form of the linear predictor was given by
Markel [1972] First, we define a linear finite impulse response filter of

the following formy:
f

(33) Alz) =1+ 2 a 2
izl

Where A{Z) is the Z-transform of the filter
transfer function.

Z is the unit time-advance operator

a; are the coefficients of the difference equation

that defines the filter, shown below
equation {35).
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If X, is the input sequence and Y; is the output sequence of the filter, we
may obtain the energy in the output of the filter by merely suming the

squares of the output of the filter,

L
(34) Energy = 2 Yi

=B
Where Y, is the output of the filter at time 1T,
and also:
y
(35) Y, = X, + 2, aX._,
i=1

After substituting (35) into (34), differentiating with respect to &, setting
the energy to zero, and collecting terms, we get the normal equations for

the filter coefficients:

f L
(36) 2 a, 2, XX, = ~28 Xn-k%n
n=z

L
f=1 nh=0

for k=1,2,... M

This is a system of linear equations in the variables, the &, It can be
solved in a number of efficient ways [Levinson 1947, Markel 19721 It
produces a filter that best reduces the input sequence to zero. Such a filter
has a frequency response that is the inverse of the spectrum of the input
signal. We can mvert the filter simply by making it an all-pole filter, using
the coeflicients, @, on the delayed output sighal rather than the delayed
mput signal. This filter has a frequency response that approximates the

spectrum of the input signal. This is a discrete realization of the Wiener-
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Hopf integral [Levinson 1947, Wiener 1947, Lee 1960], and uses the RMS
error criterion for optimality. This technique also belongs to a larger topic
of "system estimation” [Tribolet 1974; Sage and Melsa 1971, wher2 one
atternpts to infer a linear system from its impulse response. A superb

review of linear prediction may be found in Makhoul [1975].
USAGE

This is commonly used in vocoder and speech analysis systems. For
vecoder use, the input speech is processed for pitch, voiced-unvoiced
decision, and filter coefficients @, These parameters are transmitied to the
receiving station. The speech is then resynthesized using a pulse train at
the computed pitch for voiced excitation, and white noise for the unvoiced
excitation. The filter then simulates the spectral shaping imposed by the

vacal tract.

This technique can also be used to aid pitch detection. The input signal is
filtered by the inverse filter. This evens out the spectrum, removing the
effects of the formants. The resulting waveform is much more pulse-like.
This output can then be autocorrelated to produce peaks which arc much
more sharp than those produced by autocorrelating the unfiltered

waveiorm.

This techiique of "spectral flattening” or "prewhitening” does not apply to
polyphony. Unless the filter is of extreme order, making it expensive to
compute, the interleaved harmonics of the notes will not be ad justed
equally. T he autocorrelation then shows one sharp peak corresponding to
the dominant tone and a multiplicity of other peaks, corresponding to the

other tone.

Another possible usage would be to compute a filter of high enough otder

that it simulated the harmonics themselves as high-Q) resonances. Figures
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42 and 43 thow frequency responses of filters of varions order computed
by the antocorrelation method [Markel, ltakural. As we see, the frequency
response approaches the spectrum as the order is increased. This points up
again that the linear prediction algorithm is a spectral matching process
[(Makhoul 19721 Siuce the DFT itself has not proved useful in this task,
there is no reason to believe that an approximation to the DFT would be

any muie nseful.

Griffiths [1975] used this method for determining the frequencies of a
number of sinusoids which were adderd together. With a 12 pole filter and
a 25 dB signal-to-noise ratio, he obtained estimates for the frequencies of
up to three sinusoids added together, The error was as much as 12
percent, and sometimes peaks were not even located. In our case, we must
detect up to 40 sinusoids and determine the pirches to better than 3

percent in all cases.
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FIGURE 42. Frequency responses of filters computed by the linear predictor for different filter
orderc., The lop plot is the sound waveform ilself. The second plot is the discrete Fourier
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milliceconds long. The next plots are the magnitude frequency responses of linear predictors of
orders 50, 160, 320, and 640 respectively. As the order approaches the number of points in the
sceund cample, the frequency response of the filler approaches the magnitude of the discrete
Fourier transform of the sound sample.
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INTERCONNECTION
OVERVIEW

The music analysis system as it was implemented for the purposes of this
thesis combines the previously discussed low-level routines into a complete

system. This is done in the following steps:

An estimate of the frequencies present is obtained by running the
optimum-comb  pitch detector over the entire music sample at 0
millisecond intervais. We cail these "windows" into the sound file. If a
partticular period appears in many consecutive windows, a list is made of
its accurrences. A list is redundant if it is a harmonic of some other list.
Redundant lists are eliminated. This produces a list of regions which have
the same periodicities present. These are regions wherein the harmony
cdoes not change. These are arbitrarily grouped into larger regions so that
more data may be dealt with at once. These macro-regions are then used

as the guide for the bandpass filter.

The bandpass filter is set to all harmonics of all the periodicities that are
present in a given macro-region up to a certain maximum frequency. For
the examples shown later, a maximum frequency of 1.5 KHz was
sufficient.  Any more comprehensive systern would have to use a much
Higher frequency range than this. The output of the bandpass filter is
run through an optimum-comb pitch detector which is swept over the
frequencies in the passband of the filter. The minima of the optimum-
comb output are linked into hists which indicate the existence of a
frequency at that pitch over the time that the minima are found. The
amplitnde envelope of the filter output indicates the amplitude function of
the harmonic in question. [t is these amplitude and frequency functions
that are passed to the intermediate-level routines for scoring and grouping
into notes.  Before we leave this level, many checks are done to throw out
traces that are obviously spurious, '
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We will first discuss the theoretical basis and the constraints on the music
that allew us to analyse it in this manner. We will then discuss the details

of the algorithms.
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THEORETICAL BASIS

To allow this dissertation to be completed in a finite amount of time,
certain restrictions have been placed on the music that will be allowed.
These restrictions, combined with the properties of music instruments,
make the problem manageable. These properties and restrictions are

discussed below,
ALL TONES ARE NEARLY PERIODIC

This restricts the class of instruments to woodwinds, brass, strings, and
some percnssive instrurents (piano, marimba, etc). This assumption allows
us to infer a note from its harmonics. It insures that notes will have
harmonics. It dees not tell us what the harmonic structure will be, or how
the hrarmonic structure changes with time. It can still be that the note will
not have a first harmonic {3 sinusoid at the fundamental f!‘equency}. The
note can also consist of a single sinusoid. Later, in the intermediate-ievel
processing, further restrictions will be placed on the tones. For the low-

level, this is sufficietit.
ALL FREQUENCIES ARE NEARLY PIECEWISE-CONSTANT

This restriction eliminates strong vibrato, glissandi, and other cases of non-
constant pitch. This allows us to filter out a single harmonic by using a
filter of a constant frequency. We are assured that the tone will not jump
out of the range of one filter and into the range of another. Vibrato can
be tolerated up to a point, but some intermediate-level routines attempt to
model the sound as having constant frequencies, and would thus make

crrors if strong vibrato was present.
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THE FUNDAMENTAL OF ONE NOTE WILL NOT OVERLAY A
HARMONIC OF ANOTHER NOTE

This is very important. If the fundamental frequency of a note is the same
as the frequency of a harmonic of another note that is sounding at the
same time, it appears to be very difficult to distinguish this case from the
case of a single note with a complex harmonic structure. It is not clear how
{or that) we distinguish these cases. It is possible that we hear differences
in the times that the instruments begin, or that we can distinguish because
the instruments are invariably at slightly different pitches. It is clear that
a more advanced transcription system should be able to separate the notes
in these cases. It is certainly the case that separate vibratos on the tones
makes them aurally separate much more convincingly. The subject of
when a group of harmonics fuses into a single percept has not been
researched fully i the past. Rather than attempting to solve the problem
here, we will {inesse it by requiring that the input music not exhibit that
property. Or lLikewise, if it exhibits the property, we will not expect the
higher note ‘to appear in the output manuscript. This gives us the
property that a set of harmonics uniquely infer their fundamental. All we
must deal with is noise and processing ervor which may cause some
harmonic to be missed. We do not have to try to expand a single set of

harmonics into more than one note.
THE PIECE CONTAINS NO MORE THAN TWO VOICES

This rvestriction allows us to compute the musical harmony from the
periodicity of the wavelorm without having to worry about whether some
voice 1s lost because it is masked by several other voices. When using the
diatonic scale, any two notes infer a harmony, thus a two-voice piece will

atways infer at least one root frequency, and generally will infer several.



LOW LEVEL TECHNIQUES 108

OTIHER CONSIDERATIONS

We also expect the tones to be smooth. The amplitude and frequency
functions of the harmonics of music instrument tones vary slowly with
time, except during the attack and decay portions of the note. Since these
[portions are relatively short, compared to the total length of a note, we
need not consider them. This assures us that the amplitude and frequency
contaurs will be continuous and will not vary greatly. This is important,
because then we can use this smoothness criterion to eliminate noisy traces.
This eliminates certain instruments, like drums and cymbals, which not
only do not have harmonics, but they do not have smoothly varying
partial tones. This also eliminates heavy reverberation. Recording in a
highly reverberant room causes phase and amplitude jitter in each
“harmonic. Each time a reflection reaches the microplione, the attack of the
note with all its inharmonicity, occurs again. Figure 44 shows the
amplitude and frequency trace of a harmonic from a piece that was
recorded in a highly reverberant concert hall. The jitter due to the
reflections is quite apparent here in both the ampiitude and frequency

plot.

With the above restrictions, we have some hope of accomplishing the task.
Let us look now at how the routines can coax out the secrets of the input

waveform.
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FIGURE 44, The upper plot shows the waveform of the output of a bandpass filter
cenfered ot G2 (196 Hz) on the first brass chord in Tableaux D'une Exposition. The center plot
shows the pilch as a funclion of time as tracked by the optimum-comb. The jitter both on the
amplitude of the signal and on the frequency is due both to the extremely reverberant
environment of the concert hall and the choral effect of having many musicians playing the same
note (or notes at octaves), The notes and their harmonics beat highly due to the inevitable
mistunings among the musicians. Despite this variability, the frequency function is accepied as is
shown in The lower plot,
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waveform.
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FIGURE 46. When the optimum-comb is applied to this waveform, it produces the above
plot, We can clearly see the minima at about 4, 8, and 12 milliseconds. These correspond to 250
Hz, 125 Hz, and 625 Hz. The F#4 is roughly the 3rd harmonic of {he & nillisecond period and the
B4 i roughly the 4th harmonic of the & millisecond period. The frequencies detected by the
oplimura-comb are generally sufficient to assure that all the harmonics of all the notes in the piece
at thal time are at frequencies which are multiples of those found by the optisum-comb. This is
very important for planning at which frequencies the bandpass filters should be placed.
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PRIMARY SEGMENTATION

We sezk first'to partition the piece on the basis of its musical harmony.
This gives us a guide as to where to look for harmonics. As mentioned

before, this can be done using the optimum-comb as a periodicity detector.

Figure 45 shows the waveform of two violins playing simultaneously. One
is playing B+ (194 Hz) and the other is playing Fe4 (370 Hz). It is difficult
to detect any periedicity in the waveform by direct observation. Figure 46
shows the output of the optimum-comb for the above mentioned
waveform. We can see strong periodicity at about 4, 8, and 12 milliseconds.
These correspond to about 250 Hz, 125 Hz, and 62.5 Hz. The Fa4 is
roughly the 2rd harmonic of the § millisecond period and the B4 is
roughly the +th harmonic of the 8 millisecond period. This shows that the
periods detected by the optimum-comb are sufficient to assure that we can
find the frequencies of all the harmonics present by taking multiples of the
frequencies represented. by those periods. The problem is that there are
more periodicities found by the optimum comb than are actually needed
for this task. Since there does not seem to be any good a priori way of
elimmatimg-the unnecessary ones, we must settle for doing more work than
we have to. We can, however, netice that one period is a harmonic of
other periods and is thus redundant. For instance, in the set 4, §, and 12

rmilliseconcs, 4 milliseconds is redundant and need not be included.
ON THE OPTIMUM-COMB

The first pass through the piece is a straightforward application of the
aptimum-comb periodicity detector. There is little of interest here except
that there is a way to reduce the computation time. If the time step
between applications is less than the summation interval, then the
..summation can he broken up into intervals whose length is just the time

between applications. The total summation may be obtained by summing a
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number of these intervals, thus reducing the computation to a fixed

amount, regardless of the total summation width,

Ta enhance the accuracy of locating the minimum, the four points around
the murmmum are used to generate a Lagrange polynomial which is then
differentiated and the location of the minimum extracted. This allows us
to get somewhat finer resolution than an integral number of samples

would allow,

Consecutive minima which are very close in period are linked together
into lists. Figure 12 shows these .sts as determined for the first brass
chorale in Tableaux d'une Exposition. The only special consideration here
is that loss of a minimum at a single point is tolerated. A list remains
continuous even though an application of the optimum-comb does not
have a minimum at that period, but has one in the neighboring

applications.
ON THE ESTIMATION OF ROOTS

These lists are then examined to generate regions. Each region is
characterized by a number of “roots”. A root is a frequency such that a
vumber of the harmonics present in the region are integral multiples of
the oot frequency. Some number of roots will account for all the
harmonics in a region. For N-voice pieces, only N roots at most are
required. We cannot, however, tell on an a priori basis which roots form a

complete set. We must settle for some duplication.

The first estimate of the regions is determined just by the beginning and
ending times of the lists of minima. For each region, the minimum number
of frequencies is determined which can produce all of the frequencies in
the region. In other words, redundant harmonics are eliminated as
candidates for the roots in a region. Adjacent regions are then merged if

they contain the same roots.
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The following is a table that presents the results so far for the first second

of a two-violin piece. The first column gives the beginning time of the

region, the second column gives the frequencies of the roots found in that

region. The third column gives the frequencies of the notes that were

sounding during that region, and the last columin comments on the roots.

TIME
{15, 1

ROOTS
HZ,)

NOTES
(HZ.)

COMMENTS

428
449
450

a0
720

570

1835

189
-y

s ¥

162.4
178.8
2@'1

173.8
186.8
126.8
272
186
209
272
2089
272

51

42.6
51
42,6
48

G3.7
85.7
24

63.7
85,7
24

63.7

165, 196

165, 185

DY
[#2]
N
]
&
[%3)

262, 220

262, 196

11th harmonic of 1G5 Hz
Foor approximation to 196 Hz
Sth subharmonic of 165,

Bth subharmonic of 198
Poor approximation to 165 Hz
Poor approximation to 185 Hz
8th subharmonic of 165,

9th subharmonic of 185

Approximation to 185 Hz
Leftover from last note
Poor approximation to 262 Hz

Foor approximation to 288 Hz

4th subharmonic of 288,
5th subharmonic of 282
S5th subharmonic of 288

difference tone betueen 262
and 228

4th subharmonic of 262

3rd subharmonic of 262

Sth subharmonic of 138,
114h subharmonic of 262

From this table, it should be clear that the roots determined by this process

are not entirely reliable. The problem is thai there is no way to judge the

quality of a minimum produced by the optimum-comb method. The exact

depth of the minimum is highly variable from application to application,
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depending on the exact amplitudes of the notes involved. The period
estirnates cdo not vary appreciably from application to application. Since
we cannot tell whether a particular periodicity estimate is better than any
other, there is no way to eliminate the less useful root estimates. To make
sure that no tones are lost, root estimates for ad jacent regions must be
merged before planning the filter frequencies,
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BANDPASS FILTERING
ON LOCATING CENTER FREQUENCIES

First, we must determine at what f{requencies to apply the filters. This
comes from examining the estimates of the roots of each region of the
piece. The only measure of quality of the root estimates is the length of a
region. A long region means that these roots were present for a long time.
This is evidence that they are not transient phenomena. Based on this
ohservation, we form macro-regions by starting with the widest regions
‘and grow outward by absorbing ad jacent regions until the entire piece is
covered. Because of memory limitations, we cannot handle more than .5
seconds of sound at a time in the filter routines, thus we cease growing a

region when it approaches .5 seconds in length.

To some extent, the procedure described above is an ad #4oc one. This is
because there does not seem to be, at this time, anything better to be done.
Since the purpose of locating the roots of the regions is to reduce the
number of filtering operations over what would be required for a dense
covering, it 1s not damaging that we include spurious roots. This just
means that we will not realize the minimum number of filtering
operations. In every case examined so far, some savings have been
realized, so the procedure seems worthwhile. The average savings seems to

be roughly a factor of three over the dense covering.

Once the macro-regions are defined and the roots determined, a list is
made of all the harmonics of each root up to some maximum frequency.
This maximum could have been set as high as the Nyquist rate, but was
arbitrarily set to include up to the bth harmonic of the highest note in the
piece under analysis. This maximum frequency setting coes not affect the
analysis, providing it is set high enough, so that setting it any higher
simply wastes time without adding to the quality of the analysis.
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This list of candidate center frequencies is examined for redundant entries.
An entry is redundant if it is within the passband of a filter set at an
ad jacent frequency. This reduced list is then taken as the final list of

center frequencies,
ON FILTER PARAMETERS

A bandpass filter is defined by many parameters. For communication
value, we use traditional filter types: Chebychev, Butterworth, etc
[Guilliman 1957, Karni 1966], transformed to the discrete domain by use
of the bilinear transform [Gold and Rader 1969]. The resulting filters
have infinite length impulse responses. The filter coefficients are
determined by a program which takes the filter specifications and
computes the coefficients (see Appendix B). In selecting a filter type and

parameters, the considerations are as follows:

I - What is the band width? A bandpass filter attenuates frequencies
outside of its passhand. We determine the band width by cheosing

two frequencies which represent the endpoints of the passband.

2 . What is the attenuation outside of the passband? This determines the
order of the filter. The order of a filter is an integer. It determines
how many natural frequencies the filter has. Qutside of the
passhand, the frequency response (before transformatior to the
discrete domain!) drops off roughly 20 dB per decade (factor of (0
in frequency) for each order. Since a bandpass filter has two skirts
{places where the response drops off sharply), the effect is halved.
That is, increasing the order by 2 causes an increase of the
attzration rate of 20 dB per decade on both sides of the passband.

% - IHow close to constant is the response in the passhand? This determines
how accurate the harmonic amplitudes will be as they emerge from

the {ilter.
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The relations among these parameters are complex. Generally, it works like
this: the transient response is directly related to the band width. It is
secondarily related to the attenuation rate. The more narrow the band, and
the faster the falloff, the longer the transient response. There is a tradeoff
hetween constancy in the pasﬁband and the attenuation rate. In the
Chebychev filters especially, there is a direct relation. The more ripple

(distortion) you allow in the passhand, the greater the attenuation rate.

Making a choice of exactly the parameters to use is an exercise in whim,
since there is generally no “optimum” setting. When thinking about
musical sound, we might conclude that since harmonics are linearly spaced
in frequency, a linear frequency scale is what is. called for, that we should
maintain a constant bandwidth throughout the frequency range, and that
conter frequencies should be placed at uniform intervals. Linear distance,
however, on a piano keyboard reaches frequencies that increase
exponentially. This might lead one to think that the bandwidth could be
wider for higher frequencies because the spacing of musical notes gets
wider with frequency. The ear is physically set up on a scale that is
somewhat between linear and exponential, and since we are mimicing the
ear’s performance, we perhaps should - take advantage of the
experimentation that nature has done for us. Figure 47 shows the relation
between cistance along the basilar  membrane {corresponds to filter
bandwidth) with frequency. lt is clear that this refation is not simply
logarithmic or simply linear. The vertical axis on the plot represents what
is called "tcaalness” (a poor translation from the German) and is measured
in "Darks", after the great researcher Barkhaus. Tonainess represents
critical bandwidths in the ear. 1f we think of the ear as a band of
bandpass [ilters, a critical band is analogous to the bandwidth of the filter.
For instance, two sinusoids will sound rough if their frequency separation
is smaller than a critical bandwidth, and will sound smooth for frequency

separations wider than a critical bandwidth.
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FIGURE 47. This is a plot of length along the basilar membrane versus frequency (after
Zwicker). The vertical akis label is called "tonalness™ and is measured in "barks” (after Barkhaus).
One bark corresponds {0 one critical bandwidth. Thus {his curve gives us the frequency resoiution
of lhe ear. Note that a critical bandwidth is not the inherent bandwidth of the hairs along the
basilar memwbrane, but is a much more narrow bandwidth which is hypothesized to be a
coneeqguence of the neural interconnections of the hairs. The point is that the curve is neither
exponential (like the piano keyboard) nor linear (like harmonics) but is something in between. The
greatest «lope is below 500 Hz and represents the greatest resolution. Most of the lower partials
of musical sound can be independently discriminated. Generally, it is thought that "dissonance"
occurs when more than one partial falls within a single critical bandwidth. This plot is suggested as
a poscihle guide for placement of bandpass filter frequencies for a dense covering of the
frequency spectrum.
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A difference of 1.0 on the tonaluess scale represents one critical bandwidth.

This corresponds to equal lengths along the basilar membrane.

However, the program currently uses a linear frequency scale. The
bandwidth is set to a constant 20 Hz throughout the range, which extends
from about 80 Hz to about 5000 Hz. It would be very interesting to use
the biological model and see if good results were obtained and time was

saved. This experiment is deferred for the time being.

The program uses a 4th order Chebychev filter with a 2dB passband
vipple. 1f it were being done again, we feel that less ripple is in order. The
ripple caused certain harmonic amplitudes to be estimated incorrectly.
Figure 48 shows the impulse respoase and the frequency response for this

Lind of filter when centered around 100 He.

The impulse response associated with a 20 Hz bandwidth is quite long, as
can be seen from the figure. With some of the higher harmonics, where
the activity is quite weak, considerable transient response was excited,
The use of wider bands, as suggested by the physical model and the

exponential models mentioned above, would help alleviate this problem.
ON PROCESSING FILTER OUTPUT

The output of each filter is sent to an optimum-comb pitch detector. The
detector searches for frequencies within the passband of the filter. 1t is
applicd every 2.5 milliseconds throughout the macro-region. The output of
the puitch detector at each application is a list of the frequencies where
minima in the comb output were found. Again, polynomial interpolation is
used to locate the mmima more accurately. This is essential. At b Khz, for
instance, at 50 KHz sampling rate, the period is only 10 samples fong. A
shift of one-half sample 1s equivalent to a frequency change of about 250

Hz. Interpolation, then, is essential for the higher harmonics.
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FIGURE 48, Impulse and frequency responses of the bandpass fillers that were used for
the harwonic extraction. The bandwidth is about 20 Hz. This filter is centered on 100 Hz. The
filler was made by first designing a 2nd order Chebychev low-pass filter with 3 dB of ripple,
trancforming it fo a 4th order bandpass filter (all in the continuous domain), then transforming to
the diccrete domain via the bilinear transform. Of course, the 3 dB points had to be mapped first
to assure the correct culoffs after transformation. The advantage of designing the filter in this
manner is thal it is a closed form solution (no iteration) and thus can be programmed very
efficiently. It {akes only a few milliseconds on the compuler to set up the coefficients for a filter
of arbilrary ripple and cutoff frequencies. If we were to atltempt the task again, a filter with less
pas<band ripple would be preferred. The passband attenuation sometimes reduced the amplitude
of a good harmonic 1o the point that it could not be distinguished from a noise trace.
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Lach such frequency is compared with the previous application.
Frequencies whose periods are within 2 samples are considered for linking.
Each frequency is linked to its best match from the previous application.

T hese links produce lists of minima.

After all the lists have been formed in this macro-region, a “weakest
boundary first” merging algorithm [Vakimovsky 1972] is used to link
ad jacent lists whose average periods ave very close. This merging
algorithm is used because each time two lists are merged, the resulting list
has m general a different average period, so that it must be compared
again with its neighbors. Each time two lists are merged, the boundary
between them is deleted and the "scores” (magnitude difference between
the average periods of the lists) of the two remaining boundaries are
recomputed based on the new composite average period for the list. We
cannat  just merge lists which have scores better than some threshold
without recomputing the averages. This could allow glissandi, which would

have small ocal changes in frequency but large global changes.

This procedure is sensible because we know that the frequencies present in
the music change slowly and smoothly, so we can be sure that minima
whose frequencies are very close are quite likely to belong to the same
harmonic. Since we know that the frequencies of notes, and thus their
harmonics. are nearly piecewise-constant, we can eliminate glissandi, and

certam noise fraces which appear to have swiftly-changing frequencies.

With the lists that remain, some simple tests to eliminate noise traces are
done. A list whose total deviation (maximum frequency in the list minus
the minimum frequency) is too large 1s eliminated. Lists whose frequencies

changes too rapidiy (has too great a slope) are eliminated.

As was mentioned before, the optimum-comb pitch detector (and, in fact,

all autocorrelation-type pitch detectors) responds as well to subkarmonics
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of a frequency as to the frequency itself. We must have a way to eliminate
these subharmonics. This is done by applying a crude pitch detector which
does not have this problem and comparing the results. The pitch detector
used is just the length of the list in time divided by half the number of
zero crossings in that interval. This gives an order-of-magnitude pitch
estimate  which is then used to eliminate lists correspending to

subharmorcs.
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INTERMEDIATE-LEVEL
TECHNIQUES

INTRODUCTION

At this point of the analysis, we are presented with a list of sinusoids that
are present in the original sound. We have their amplitudes and
frequencies as functions of time. The purpose of the intermediate-level
programs is to infer from these data what notes are present, their

frequencies and their extent in time.

At this level, we must also eliminate information that is not strictly
erroneous, but nonetheless is not desired. One example of this is found. in
string instruments. When a musician plays a string instrument, like violin
or guitar, the strings other than the ones being manipulated also sound. It
would be extremely difficult for a musician to damp the other strings all
the time. It is not common practice to do so on stringed instruments except
in some schools of classical guitar. The resonances of the other strings are
usually 15 dB or more softer than the principal sounds, so they are
generally not heard unless one listens very carefully. Our program,
however, picks these extraneous tones out quite nicely. They appeér in all
the output. Rather than report exactl)i what is present, we wish to mimic
human behavior and suppress these tones that do not have immediate
musical meaning. Other extraneous sounds include box resonances
(stringed instruments, for instance, have very strong boX resonances), and
strings that continue to vibrate past the intended ending of the note
(common with open strings).

In the following sections, we describe the processes as they roughly
correspond to separate programs in the processing path. First is
segmentation and scoring. The scoring is the key to this entire section.
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Without rating the output of the low-level processes as to quality and
suitability, no cogent decisions as to what notes are present could be made.
With these ratings, the notes can be inferred by accumulating groups of
high-quality harmonics without combinatoric searches, After the notes are
derived, we proceed to separating the notes into the upper and lower
voices. This is done using the assumption that the piece has no more than
two voices at any given time. Finally, the output is prepared for the
manuscripting program. This involves some cleverness to assure good

readability.
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HARMONIC PROCESSING

SEGMENTATION AND SCORING
INTRODUCTION

From bandpass filtering and pitch detection, we get rough traces of the
amplitude and frequency contours for each harmenic present in the piece.
The problems are many. First, any given trace may not include the full
duration of a note. This is because of space limitations in the filtering
program. The signal must be broken up at arbitrary places and processed
in pieces. These pieces must be glied back together later. Second, any
‘given trace may include more than one note, one after another. This is
because the transient response of the filter may continue to ring after a
harmonic disappears. It can be excited by activity elsewhere in the
spectrum. This can continue indefinitely, or another harmonic of similar
frequency may be picked up. Third, poot traces are caused not only by
weak signals, such as extraneous resonances or high harmonics, but can
also be caused by having the center frequency of the filter be offset from
the actual frequency of the harmonic. In fact, there are usually 2 traces for
each harmonic: one right on the frequency, one above, and one beiow.

From this, we can see that the first thing that must be done is to break up
the traces into units that we know contain no more than cne harmonic of
one note, if they contain anything meaningful at all. The next thing that
must be done is to produce a score for the trace which reflects its "quality"
in some way. We must decide what “quality” means in this context. Gluing
together component pieces of a long note can be done later.
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SEGMENTATION AND SCORING

The segmentation is actually the easiest part of the processing. Here, we
simply determine the threshold on the amplitude function such that 90
percent of the energy in the harmonic is at amplitudes above this
threshold. The amplitude function is then scanned for regions that exceed
this threshold. Segments that are shorter than 35 milliseconds are assumed
to be unimportant and are discarded. This is based on the fact that most
meaningful musical notes are longer than 100 milliseconds. Occasional
grace notes and trills will involve notes as short as 50 milliseconds. Our
programs are set up {from this point on) to favor notes of duration 80
milliseconds or longer. This number is a compromise with the desire to
include meaningful musical notes and the desire to eliminate noise traces.
We must set the threshold on length long enough to eliminate as much
spurious transient response of the bandpass filters as possible. We include
harmonics at this point of durations 35 to 80 milliseconds because they

may get merged into a longer note subsequently.

Before we proceed further, let me point out an ambiguity of terminology.
When a piece of music is written down in traditional music notation, the
resulting document is called a score. Alternately, when we rate an entity by
assigning it a number which reflects its quality, this number is often called
a score. We hope the context will distinguish these meanings clearly. In
this section, we are interested in assigning a quality measure to the traces,

s0 it is the second meaning that is relevant here,

The scoring of a harmonic is the most important process because it is the
only clue as to the viability of a note that is assembled frem a group of
harmonics. As an example of how much data is assembled, a single 2-bar
piece that was processed contained 27 notes, or about 150 meaningful
_harmonics (about 5 harmonics per note). The output of the bandpass
‘fiitering and pitch detection produced about 2000 amplitude-frequency
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traces. That means that over 90 percent of the traces produced by the
filtering and pitch detection must be discarded. The traces come from
multiple detections of single harmonics, and traces of transient responses
and noise patterns in the high-frequency ranges. The score must reflect the

likelihood that a given harmonic is real and not just a noise trace.

The criterion we have chosen is smoothness of the curves. We require the
amplitude curve to correspond well to a low-order polynomial (6th order or
_so), and we require the frequency to be nearly constant. Since the
sluggishness of the bandpass filter smooths out any fine detail in the
harmonic, this is a reasonable consideration. Strong, valid harmonics tend
to have clean, smooth traces and nice even frequencies. Vibrato can cause
the frequency to be non-constant. Rather than deal with this aspect now,
we have finessed the problem by not considering it. Any more
comprihensive musical scribe should allow certain forms of frequency

variation like vibrato, glissando, and expressive frequency changes.

We produce a composite score for the trace by taking into account the
residual error of the amplitude and frequency fits as well as the
coefficients of the frequency fit. This not only gives a measure of the
quality of the fit, but also a measure of the constancy of the frequency
during the note. We also use the distance between the center frequency of
the filter and the frequency of the harmonic. Since the traces are better as
they approach the center frequency, because they are maximally distant
from the high-Q resonances of the filter, this is a reasonable measure to
help discriminate good traces from transient response. Each of these
measures must be made commensurate with one another. For instance, the
coefficient of the second degree term of the frequency polynomial is a
squared quantity and its square root must be taken.

One of the bigger problems in normalization of the components of the
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score is equalization for duration. We want scores for long notes to be
‘commensurate with scores for short notes. The terms in question here are
the residual errors for the polynomial fits. If we view the fit as a
regression process, then the residual error will be distributed as X2, To
show this and the assumptions it involves, let us show where this result
comes from. This presentation is patterned after Freund [1962]. Since this
is a standard derivation, we shall only present the results, not the

intervening steps.

Given a sequence of abscissa, X, and their ordinates, Y. representing, in
this case, equally spaced points in time and the value of the amplitude or
frequency curve at that point in time. We assume, then, that the Y; are
independent random variables having the following conditionzi
probability distribution: ‘

-—(vi 2 a)(‘}
@7 Py x) = ——8 X

O~/ 21

Where X; are the independent variable, 1 <i<M

Y; are the dependent variable, but are independens
random variables distributed normally about
an N"-order polynomial.

0 is the standard deviation of said distribution.

8, are the coefficients of said polynomial,

Here, the @ are the same for each value of i. We obtain maximum
likelihood estimates of the regression coefficients, 8;, and then compute the

residual error as follows:

N N
(38) P° = %I-Z V-2 axf)
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Where 0 is the root-mean-square residual error of
the abscissa and the polynomial

02 will ther be an estimator of 0% and is thus distributed as X2, The
main assumption here is that the ordinates are distributed normally
around a polynomial. This is, of course, not entirely true. There is nothing
in the physics of music production that requires the harmonic amplitudes
to be polynomials. We violate the assumption with the hope that the

resulting computations will still be meaningful.

The use of the X? property of the residual error is that traces of different
lengths (different values of M, ie. different numbers of degrees of
freedom) can be compared by first normalizing by the X? value for that
number of degrees of freedom. In fact, we find that this does help produce
more commensurate residual ervors between long segments and short
segments, but due to the fact that the assumptions fundamental in the
process are violated, the correction does not seem to be enough. Long
segments still have somewhat higher residual errors than short ones.

To be explicit, the score, representing the "badness” of the trace (that is,
inverse quality) is computed as the sum of the following terms:

&, - The quotient of the residual ervor of the amplitude fit, as defined in
equation (38), and the average amplitude of the harmonic. The
residual error of the amplitude fit was normalized by the X2 value
for the number of degrees of freedom (points) in the amplitude
function that were used in making the polynomial fit.

(%, - The quotient of the residual error of the frequency fit and the
average frequency of the harmonic. The residual error is again

normalized by the x2 value.
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(. - The first-order coefficient of the frequency fit, divided by the

average frequency of the harmonic.

(4 - The square root of the second-order coefficient of the frequency fit,

again divided by the average frequency of the harmonic.

(85 . The magnitude of the difference of the average frequency and the

center frequency of the filter.

The total score was then computed as the weighted sum of these terms:

Where the K; are the weightings of the various
error terms

The first four terms, &, through &, were normalized by the average
value (amplitude or frequency) of the harmonic. This gives a measure of
the relative error rather than the absolute ervor. This allows us to compare
strong harmonics with weak, high frequency harmonics with low frequency
ones. Otherwise, the expected error range would vary with these

parameters.

In ¢4, the square root was taken because the second-order coefficient is a

squared quantity. The root must be taken to make it commensurate with
the other error measures, which are all linear quantities.

For reference, the values for the weights, k;, were K,=108, k,=30080,
k3=189 k4=2@' k5=4.
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FIGURE 49: Plots from the segmentation and scoring algorithm. tach picture shows an amplitude
and a frequency curve. The horizontal line across the amplitude plot denctes the threshold where
95% of the energy of.the plot lies at amplitudes above this line, The small arrows denote the
region being fit and scored. The smooth curves through the amplitude and frequency plots are the
polyncmial fits to these curves. In figure 49¢, the polynomial fit for the frequency rises at the end
of the plot. This is a boundary effect common in this kind of approximation that the slope of the
approximation strays at the ends of the window. The numbers at the top represent the various
scoring contributions, already weighted and normalized, as described in the text. CF represents
the center frequency of the filler that produced these plots, AVFR represents the average
frequency in the region being fit, and SCORE represents the sum of the contributions from all five
error «ources. These traces were faken from the analysis of a two-part piano piece. There was a
262 He oote and a 332 Hz nole being played al lhis time. We see four traces of the same
harmonic: the second harmonic of the 262 Hz note, at about 525 Hz, It is clear that the score
improves {sets smaller) as the center frequency of the filter (CF) approaches the actual frequency
of the harmonic. This is a good demonstration of why a scoring system is necessary. Fach
harmonic produces many traces. The good ones must be separated from the spurious ones, The
error criteria used here seems to accomplish this effectively.
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Figure 49 shows four examples of segmentation, polynomial fitting, and
scoring on a single harmonic. The harmonic chosen is the second
harmonic of a 262 Hz note (C4), which is at about 525 Hz These traces
are taken from the first notes of a two-part piano piece. There is also a
322 Hz note (E4) soundling at this time. The four traces in the figure are
separate traces of the same harmonic. This shows how ad jacent filters wiil
pass the same harmonic with differing degrees of faithfulness. Over each
figure is a list of parameters. CF represents the center frequency of the
filter that produced the trace. In each figure, the upper plot represents the
‘amplitude envelope of the filter output. The bottom plot represents the
output of the pitch detector which was applied to the filter sutput. Across
the amplitude plot is a horizontal line which represents the threshold such
that 95 percent of the energy in the amplitude envelope is at values above
that threshold. This is how the segmeniation is done. The small arrows
point out the limits of the region above threshold that is being processed.
Sometimes a single trace will have several disjoint traces above the

threshold. The next figure shows such an example. Both the amplitude ‘
and frequency functions were fit with polynomials. The polynomials are
also plotted. They are the smooth lines through the plots. The amplitude

polynomial is of order 6, and the frequency polynonual is of order 2.

Above each figure is listed the contributions to the total score from each of
the five error functionis. The label CONT1 on the figure refers to the
weighted, normalized quantity K&, The label CONTZ refers to the
weighted, normalized quantity k;®&,, and so on. The totai score, which is
the sum of these contributions as expressed in equation (39), is labeled

SCORE in the figures. The parameter AVFR is the average frequency in

the region uncler analysis.

As we can see, the error score decreases monotonically as the center

frequency of the filter approaches the actual frequency of the harmonic,
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even if we discard the contribution from ks‘(f*s. which represents exactly
the distance from the frequency of the harmonic. The contribution from
kg5 is included to strengthen this bias toward centered filters.
Remember that the frequencies of the filters was determined by the comb
filter, so that they do not necessarily represent the frequency of the
harmonic that passes through the filter. We include this last term to
represent only the fact that the trace is better when the frequency of the
harmonic is near the center frequency of the fiiter, and thus the overall
score for the harmonic is more likely to be meaningful.

In figure 50 we see four more piots, again of the same harmonic, which is
the third harmonic of the 332 Hz note (E4) at about 987 Hz. Since the
strengths of the harmonics generally decrease as the harmonic number
increases, these upper harmonics become increasingly difficult to follow.
Often, even when the filter is exactly centered on the harmonic a good
trace with low error cannot be obtained. As a result, these upper
harmonics cannot be used with great confidence to infer the existence of

notes.

Figure 50a and 50b show how a singie harmonic can got spuricusly broken
& i 7

into two pieces. Here the harmonic was beating with the transient response
of the filter and went below the segmentation threshold and was thus

broken up.
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FIGURE 50: Plots from the segmentation and scoring algorithm. As with the previous figure, these
iraces were laken from the analysis of a two-part piano piece. There was a 262 Hz note and a
332 Hz nole being played at this time. We see four iraces of the same harmonic: the third
harmonic of the 332 Hz note, at about 987 Hz. As we ascend in harmonic number, the traces get
weak and noisy, such that there are many spurious traces, and high crror scores on the good
traces. For this reason, we cannol rely on the higher harmonics as evidence for notes except for
cerfain instruments with especially strong high harmonics.
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INFERRING THE NOTES

At this point in the analysis, we have a large set of possible harmonics.
For each possible harmonic, we preserve only a few numbers: the average
amplitude, the beginning time, the ending time, the average frequency, the
error score, and the amplitude function polynomial. All information
regarcing the exact shape of the amplitude or frequency function has been
discarded.

It seeiwis to be a property of machine perception programs that they get
more anrd more heuristic and less and less defensible on theoretical bases
as they proceed to higher and higher levels of processing, away from the
low-level, signal-processing techniques. This program is no exception.
Each heuristic is based in the properties of musical sound, but sometimes

the connection is especially tenuous.

Qur first task is to merge duplicate traces. Since we get several traces for
each harmonic, we can combine these inte one composite harmonic. This
reduces the data immediately by a factor of three or sa. This initial
merging is only done for traces that overlap significantly in time and
whose pitches are within a few peicent of one another. We call these
reduced harmonics. The parameters of the reduced harmonic are taken
from the parameters of the harmonic with the lowest error score. In the
case of several harmonics with low scores, a weighted average is taken to
- form the new amplitude and frequency. The parameters are weighted by
the reciprocals of the scores of the individual harmonics.

Next, a list is formed of these reduced harmonics in order of their average
amplitude divided by their ervor score. This provides simultaneously a
measure of the strength and the quality of the reduced harmonic. We
then attempt to group together a number of harmonics that infer a note.
One problem in so doing is avoiding a combinatoric search. Assuming
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that the lower-level procedures have produced faithful traces, we can just
pick off the best reduced harmonic (in the sense of having the largest
amplitude-error score quotient) and assume that this is the first, second or
third harmonic of a note. This is a purely heuristic assumption but if is
based on the observation that most musically interesting tones have strong
lower harmonics. This does not account for many effects present in human
hearing, like the existence of residue pitch, but it is a reasonable

compromise for the current study.

With this reduced harmonic, we first search the entire reduced harmonic
list to see if there is another reduced harmonic existing at the same time
that has one-half or one-third of the frequency. If there is no such tone, we
take our original reducec harmonic to be the fundamental of the note, else
we take the lowest reduced harmonic found as the fundamental. We can
then race through and pick out harmonics for this fundamental just by
locating reduced harmonics that exist at the same time and which have
-irequencies that are close to the predicted frequency of the harmonic in

questiot,

Once the harmonics are selected, the note can be tested for viability. The
first test is whether the fundamental is at all strong. We require the
fundamental to be of substantial strength and quality.‘This is, again, a
departure {rom human perceptial performance. If the fundamental is
strong, we examine the strengths of the harmonics that are not multiples of
two and not multiples of three. The Ist, 3rd, 5th, and 7th are examples of
harmonics that are not multiples of two. The Ist, 2nd, 4th, 5th, 7th, and
8th harmonics are examples of harmonics that are not multiples of three.
This is to try to determine whether the fundamental is a spurious trace
and the note is really two or three times higher than we are hy.- liesizing.
We threshold the ratio of the sums of the qualities for these selected
harmonics with the sum of the quality for the remaining harmonics. This



137 INFERING THE NOTES

seems to be an adequate technique, although it occasionally eliminates

useful notes.

We require also that the harmonics be dense. That is, for two or more
harmonics, we require that the note possess all but one harmonic for
acceptance, unless it is only odd harmonics, in which case it must possess
all the odd harmonics up to the highest harmonic in the hypothesized
note. A note consisting of just one harmonic, the fundamental, we require

to be quite strong for acceptance.

We then merge notes that have very nearly the same frequency and
overlap considerably in time. These can be produced by having a very
long note. The initial segmentation based upon the musical harmony of
the piece is made, s:ome errors in segmentation result. The most common
form of this kind of error is that a long note can get broken into smaller
pieces. These pieces must be glued back together at some point. We have
chosen to do so after the note hypothesis has been formed.

The data representing the note is then reduced to just four numbers: the
pitch, the beginning time, the ending time, and the quality (amplitude over
error score). The beginning and ending tirmes are oblained by producing
an overall amplitude profile for the note based on the polynomial
representations of the amplitude curves for each of the harmonics. This
overall profile is subjected to a threshold that assures that 95 percent of
the energy is above the threshold. The times where the profile drops below
this threshold are taken to be the beginning and ending times of the note.

Figure bl shows a representation of one of the notes inferred by this
procedure. The curves on the plot represent the amplitude polynomials for
each of the harmonics. The text in the lower part of the picture represents
information on each of the harmonics. The first column is the beginning
time, the second column is the ending time of the harmonic. These times
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are in tens of milliseconds. The next column is the average amplitude of
the harmonic. The fourth column is the error score of the harmonic.
Sometimes there is not a space between the figures in the third and fourth
columns. The last column represents the average frequency of the
harmonic. The isolated pitch figure at the bottom of the plot represents
the weighted average pitch of the tone, which is derived by dividing down
the average pitches of the harmonics, weighting them with the quality of

the reduced harmonic, and averaging them,

Even at this late stage, imprecisions occur. Figure 52 shows one such error.
There is a strong noise burst on the end of one of the harmonics. This
burst is enough to cause the ending time of the note to be overestimated.
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DERIVING THE MELODIES

Given this list of notes from the previous processing stage, we must now
link them into melodies. For convenience, we do not attempt to handle the
case where parts cross. To handle crossing parts correctly, we would have
to identify the instrument involved, as well as examine the musical context

in great detail.

We have decided upon a very simple algorithm for selecting melodic
groupings. At this point in the algorithm, we make use of the assumption
that there are no more than two independent voices in the piece. This way
we can search for places where there are two notes sounding
simultaneously and identify the voices positively. Any place that can be so
identified is called an isfland. This island represents a place where there is
no doubt as to the voices {(upper or lower) a particular pair of notes belong

to.

To finish the assignment, we use a global scoring algorithm. We assign a
"score” to a particular assignment which is the sum of the magnitudes of
the differences of the frequencies of ad jacent notes in the meladies. We
can then search all possible assignments of the unassigned notes and
compare the various possibilities by comparing their scores. The

assignment with the best (lowest) score is chosen.

Figure 53 shows the initial melodic assignment for a guitar duet. The score
for the duet is shown in figure 60. What we see in this figure are the
assignments based on the existence of islands in the piece. Each note is
represented by a horizontal line. When a note is assigned to a voice, a
"tail" is drawn at the end of the line which poeints up, denoting
membership in the upper voice, or down, denoting membership in the
lower voice. The dotted lines represent melodic connections made between
notes which indicate melodic adjacency. In this figure, there are 8

unassigned notes,
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With a small number of notes and a branching factor of two, it is
reasonable to do an exhaustive search to determine the best melodic
- assignment. For this to be practical, the algorithm which determines the
melodies once the notes =Liw ~assignhed to the voices must be fast.
Fortunately, this can be done in a very simple manner. With the voices
already assigned, we merely start at the beginning of the piece. We locate
the first notes in the piece in each voice. We then locate the second notes
in each voice simply by seafching forward in time. We proceed through
time in this manner, annexing notes onto their respective voices, until we
exhaust the notes in the piece, This assignment is linear and can be macle
very fast by sorting the notes into time order. This sort only has to be

clone once.

Figure 54 shows the results of the melodic grouping for the guitar duet.
Figures 55 and 56 show the same plots for the pseudo-violin duet whose

score is shown in figure bS.
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Figure B3. This shows the [irst stage of the melodic grouping. This is from a guitar duet.
The score for this piece is shown in figure 60, Each note is specified by a horizontal line. Some
notes have already been assigned to the upper or lower voice. There is a "ail" on each assigned
note that points up or down, denoting membership in the upper or lower voice, respectively.
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acijacent notes of a melody.
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Figure 54. This shows the final melodic grouping. This is from a guitar duet. The score
for this picce is shown in figure 60. As in the previous figure, each note is specified by a
horizontal line. Some notes have already been assigned to the upper or lower voice. There is a
“tail” on each assigned noie ihal poinis up of down, cenoting membership in the upper or lower
voice, respectively. The remaining melodic membership was assigned by determining the voice
assignment which minimized the sum of the magnitudes of the differences in frequency between
each pair of adjacent notes in any proposed melodic assignment. Since the number of notes is
small, this was done by a factorial search.
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Figure 55. This shows the first stage of the melodic grouping for the pseudo-violin duet.
The score for this piece is shown in figure B8, The format of this figure is like that of the
previous two figures.
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Figure 56. This shows the final melodic grouping for the pseudo-violin duet, The score for
this piece is shown in figure 58,
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ON MANUSCRIPTING

Once the melodies are determined, the manuscripting is just a matter of
preparing input for Leland . Smith's manuscripting program [1973].
Smith's program relieves us of having to consider the exact geometric and
spacing details, but it does not guarantee that what is printed makes good
musical sense. For instance, it is a convention that once an accidental
occurs in a measure, the effect of the accidental persists throughout the
measure. This means that we must keep track of each accidental and reset

the flag at the end of the measure.

It is also a convention that a note of a certain duration shall oniy be
written on an integral number of those durations into the measure. For
instance, a syncopated note of three eighth-notes duration which begins
after an eight rest at the beginning of a measure is usually not written as a
dotted quarter. It is usually written as an eighth tied to a quarter. Thus
we must build up each duration from an assemblage of notes connected by

ties.

Still, compared with the difficulties involved in the low level tasks, this

aspect of the problem is simple.

There is, of course, indeterminacy in a musical score. We can scale all the
note representations by any number of factors of two and still make
musical sense. A piece written in 4/4 can be written equivalently in 2/2
with little difficulty. We rely on the human to resolve the ambiguity in this

case,

Although some work has been done on inferring the key and time
- signature of pieces [Longuet-Higgens and Steedman, 1971], we did not
attempt to do so here. The reasons are that it would appear that any
algorithm to do this must be dependent on the style, and that some of the
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pieces we were interested in were atonal pieces and thus had no key
sigriature. It would be an interesting exercise to see if the key and time

signatures could be inferred.in general in some meaningful way.

Also not discussed here is the problem of tracking rallentando,
accelerando, or other slow changes in tempo. This provides a special
problem for the musical scribe. Detecting the beat, especially if any
syncopation is involved, seems to be quite difficult, It is hard to define a
straiegy that will do this in any general fashion.

There is also the problem that the times. and durations that the computer
determines will be, in general, real numbers, whereas these must be
converted to simple rational lengths for the score. We do this by asking the
user what the smallest length note is that he will accept. All note positions
and durations are forced inte multiples of this length. This means that the
user can ask for a quite grotesque score by giving a very short duration as

the fundamental length.

This is not really a satisfactory arrangement, because we are generally less
concerned with when very long notes end than when shorter notes end.
Thus, to specify the auration of a note that is slightly longer than a whole

‘note down to the nearest 64" note may not be exactly what is called for,
Yet, if the composer wishes to specify a tone that continuously melts into a
rapid, syncopated segment, that is exactly how he would write it. In other
words there seems to be many options as to how to notate such cases,
depending on the exact style of music involved and the ideas the composer
is trying to embed in his piece. We have taken a somewhat neutral attitude
here by attempting to do only an adequate job, rather than a superiative

one in choosing among the printing alternatives here.
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THE DFT AGAIN

‘A trial system using the discrete Fourier transform (DFT) was made before
‘we realized that such a system was not capable of dealing with
reverberation or vibrato. Although we do not attempt to deal with vibrato
here, the ability can be worked into the current framework without too
much difficulty. This is not true for the DFT. In any case, iet us present

the results of low-level analysis using the DFT.

The DFT-based system made one complete pass through the sound
waveform and applied a 4096-point DFT every 10 milliseconds. At a
sampling rate of 25600, the DFT window was 160 milliseconds wide. Since
a second-order weighting function was used, the effective width of the
window was less than half of this. This is similar to the averaging period
of the bandpass filters that were previously discussed. The magnitude of
the DFT was computed. Peaks were detected in the spectrum and were
interpolated to get the frequencies and amplitudes more accurately. The
method of Rife and Vincent [1970] were used for the weighting and
interpolation. In their terminology, method II was used with a class-II1

weighting function of second order.

The first measures of two pieces were done. The guitar duet, whose score
is shown in figure 60, and the pseudo-violin duet, whose score is shown in
figure 58. Figures 57a and 57b correspond to the guitar duet, figures 57c

and 57d to the pseudo-violin duet.

In ecach piece, the left-hand figure has a point for every peak in the DFT
that was found. The vertical axes are labeled in Hertz and represent the
frequencies of the spectral peaks. In the right-hand figures, the points in
ad jacent time slots have been linked together into lists. The head of each
list is marked on the plot by a small vertical stroke. Isolated vertical strokes
are lists of one element. We can see in the pseudo-violin duet that some
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harmonics which actually belong to different notes have been merged
because of their proximity in frequency. We can see this in the lower plots
(57c and 57d) in the fundamental frequency of the first twn notes in the
lower voice. These twe notes actually occupy the first and second 200-
millisecond windows of the piece. In 57d, we see that the two harmonics
have been linked together, because the peak in the DFT representing these
harmonics moved smoothly from one frequency to the next at about 200
milliseconds into the piece. This can be dealt with later by noticing that
the frequency has a quantum jump over the duration of the harmonic.

This method might be viable for non-reverberan:, non-vibrato cases,
although for the guitar piece, some method would have to be developed to
recover the missing harmonics, such as the secord harmonic of the A3
(220 Hz) at about 1400 milliseconds (figure 57b). The second and third
harmonics of the note only appear briefly in the DFT.
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FIGURE 57. These are the results of an sxperimental system using only the discrete Fourier
trancform as the low-level routine. Every 10 milliseconds, a new DFT was computed. In the left
fipures (3 and ¢}, each point represents a peak in the DFT. All horizontal axes are in milliseconds,
the vertical axes are in Herlz, The right figures (b and d) have been processed to link peaks in
adjacent time windows. A vertical stroke denotes the beginning of a list of consecutive peaks. The
piece that produced the top plols {a and b) is the guitar duet whose score is shown in figure 80.
The pisce that produced the botiom plots (¢ and d} is the pseudo-violin duet whose scare is shown
in figure B8, In cach case, only the first measure of the plece is shown here. The iransform was
4096 points {160 milliseconds long) and a second-order time window was used. The method of Rife
and Vincent [1970] was used to interpolate the peaks. We can see, especially on the guitar piece,
that harmonics of notes known to exist are often missing. Although there is nct an exactly
analogous illustration, we can compare this with the results of the programs using bandpass

filtering in figure 53.
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YES, BUT DOES IT WORK?

INTRODUCTION

In this section we present the results of our work, a critical review of its
faults, and some ways that a future system might better be constructed.

One of the pieces shown was entirely synthetic, essentially untouched by
the disturbing properties of transmission through the air. This was done
for debugging purposes. The other piece was performed by the auther and
recorded at home on a cheap Sony tape recorder. Both pieces were
composed by the author. They are both segments of larger pieces. They
were chosen because they both exhibit properties that make them
compatible with the restrictions we have imposed on the kind of music

that will be accepted for analysis.

In discussion possible improvements, we deal with each stage of the
analysis separately. We outline a possible two-step filtering scheme that
uses wide band filters to determine the strongest sinusoid in a given
frequency region, then a narrow band filter to extract that sinusoid

individually.

A rating scheme for notes is suggested which is somewhat like that applied
to individual amplitude and frequency traces. This would allow
comparison of note hypotheses and a similar sort of maximizing search

would be possible.

Other improvements include changing the tempo to compensate with the

performet’s tempo changes, and many other fine points.
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. SOME EXAMPLES

Here we present two examples to show the operation of (he system as a
wholz. The first example is synthetic and was both synthesized and
analyzed entirely within the computer. This was the piece the programs
were debugged on. The utility of working with a synthetic piece is that one
knows exactly when each note begins and ends, exactly what the pitches of
the notes are, and exactly what their amplitude and frequency functions
are. It is a little unreal in that there is no digitizing noise, no room noise,
no spurious sounds from box and string resonances, and no reom

reverberation. The second piece, however, possesses all these problems.

Even though the synthetic piece has no noise, it is still not a trivial
example. It is non-trivial because the tones were generated from the
analyses of actual violin tones by use of the heterodyne filter which
preserves all the highly time-variant properties of the tones. Another
reason why the piece is non-trivial is that it is quite fast. Quarter-notes
occur at 160 per minute, making the length of each eighth-note only 200
milliseconds. Since the note is staccato, its effective lergtt: is even shorter.
These short notes spell death to most signal-processing techniques because
there is little or no steady-state portion of the signal. Transient responses

are strongly excitzd.

Figure 58 shows the original score of the synthetic piece. This piece was
synthesized for pseudo-violin, using the analysis data of an actual violin. It
sounds a little strange because only the analysis data of an Eb4 was used
to synthesize all the notes. When you resynthesize a note off the original
frequency, the timbre of the tone is altered, sometimes quite a bit, although
the spectral shape and the transient behavior is identical at either

frequency.
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Figure 59 is the final output of the transcription programs, As is easily
seen, all the notes are [present, they begin at the correct times, and they are
at the right pitches. The note lengths, however, have been consistently
underestimated. This is because the segmentation algorithm threshold was
set quite high to eliminate noise traces and consequently eliminated some
good data. Any more comprehensive system should go back and, knowing
the pitch and rough duration, analyze specifically for the time limits of
each note. Knowing the pitch of the note and all the simultanzously
sounding notes would enable us to perform this analysis.

Figure 60 shows the original score of a guitar duet. This piece is
somewhat slower than the previous one. The eighth-notes are of about 250
milliseconds duration, for an overall tempo of 120 quarter-notes per

minute.

Figure 61 shows the final output of the transcription programs for this
piece. Again, the durations are consistently underestimated. There is one
note missing toward the end of the piece. This was lost due to one
harmonic being coincident with the other note sounding at that time. and
a second harmonic being lost due to noise. The remaining harmonics were
not strong enough to infer a note at that position. This points up another
deficiency of the program that infers the notes from the harmonics: when
a harmonic is used to infer a note and that note is accepted, that harmonic
is removed from the list of harmonics. This means any subsequent note
that might also use that harmonic must do without it. The program was
arranged in this manner to help eliminate the problem of hypothesizing a
note based on each harmonic present. This way, we hypothesize the lowest
one, and remove all the harmonics from further consideration. Clearly,

some compromise could be arranged.

One hopeful sign is that thi¢ guitar piece was recorded in a noisy
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environment, with poor equipment and no special care taken in type of
tape used, type of tape recorder, type of microphone, microphone
placement, or any of a number of considerations that define good
recording technique. The only consideration was that the recorder was not

saturated during the recording.

In fact, the guitar was not tuned to A4=440 Hz. for the recording. The
result of this is that aii the pitches were about 2 percent higher than
concert. The program rounded this upward and printed the score
uniformly one half-step higher throughout, This shows the literal-minded
nature of the computer. We did nothing to correct this mistuning. A more
comprehensive program would notate this piece in the key of C« or Db.
“We made no attempt to do so here. We might expect that doing this for a
capella vocal work would result in the score slowly drifting from the
originai key. The program is arranged so that this would be notated as a
sudden shift in key by one half-step.
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FIGURE 58. The original score for a pseudo-violin duet. The tempo is rather fast. There
are 160 quarter-notes per minute, or about 200 milliseconds for each eighth-note. Since this piece

goes below G3, this score could not have been played on actual violins.

With computer

synthesized violin-like tones, we have no such restrictions.
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FIGURE 59, This is ihe score produced by the computer. The lengths of the longer notes
are consistantly underestimated. This is because the threshold for noise rejection is set so high

that the tail ends of the notes are lost.
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FIGURE 61. This is the score produced by the computer. Again, the lengths of the longer
notes are consistantly underestimated. Also, there is a note missing in the last measure, The most
conspicuous change, however, is due to the fact that the guitar was mistuned somewhat high. The
literal-minded computer faithfully reports the score here one half-step high throughout. The'
intervals between consecutive notes is correct in terms of the number of half-steps the interval
represents. Please note that this is not good musical notational style. This should be notated in
the key of Db, which would make all the accidentals dissapear. We retain this notation because it
is cimple, general, and can represent 12-tone pieces as well as tonal pieces, although the
represeniation is quite clumsy in many cases.
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'WHAT NEXT?

After this exposition, we ask the question how can we do this better? As it
turns out, constructing the programs to actually demonstrate the concepts
of the system were very enlightening as to how it all shouid have been
done. We shall examine the system one piece at a time to give a
presentation as to how this task can be done better and what the weakest

parts of the current implementation are.
PREDICTION AND FILTERING

Since most of the computer time for the task is used by prediction and
filtering, we might look to see how they might be improved. One could

imagine a two-level search strategy something like the following:

First, a bank of wide-band (third-octave perhaps) filters is applied. If the
energy in the output of the filter is too small, that frequency band is not
analyzed further. A filter of this wide bandwidth will, in general, pass
several sinusoids at once. A pitch detector is applied to the output of the
filter. There exist pitch detectors that will detect the pitch of the strongest
sinusoidal component in the signal. This gives us the frequency of one of
the sinusoids that is passed by the filter.

Once we optain this frequency, we may apply a more narrow band filter to
exactly this frequency as well as to integral multiples and integral fractions
of this frequency, so as to capture the subharmonics and harmonics of the
sinusoid. We may progressively narrow the band of the fiiter until it is
clear that no sinuscid is present at this fiequency or until we get a good
estimate of its frequency. Once we know a sinusoid is present at a
particular frequency and what bandwidth filter is necessary to extract it,
we may sweep forward and backward in time, searching for the true extent

in time of this sinusoid.
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There are various complications that may occur which should be noted.
First, another noté may sound af some other time that would require us to
make the filter much more narrow. We can tell this by noting that the
output of the pitch detector suddenly becomes garbage when there is still
plenty of energy at that frequency.

If another sinusoid suddenly were to appear at very nearly that same
frequency, we could notice the sudden phase change, which would
manifest itself as a spike in the frequency trace. The total energy in the
filter output would presumably increase, unless the sinusoids cancel each

other out. They may also beat.

Another thing that may happen is that there may be vibrato on the
sinusoid, which would imply that its frequency is constantly changing. We
may track the frequency by making the filter frequency follow the
frequency estimate from the pitch detector. This has stability problems.
We must introduce some smoothing so that instabilities do not occur. We
must force the filter to stay within certain bounds, such that excursions
outsicde these bounds will be taken tu mean that the trace is noisy and that
~ either nothing is present or a mare narrow filter must be used. Let us note
‘that the problem of tracking the frequency of a single (monophenic)
periodic signal is one that has been addressed extensively by the speech
community. Some groups consider this to be a solved problem. We believe
that there is still work to be done in the case of a noisy environment, as we
have in this case. Even if the piece is recorded in a very quiet room, there
is always the "noise" consisting of the vibrations of the strings that are not

being played.

We persist in using bandpass filters rather than DFT or other signal-
"processing techiiques on the grounds that the filter gives us a great deal
of flexibility, it can deal with reverberant environments, it preserves time
information, and can handle continuously-changing frequencies. This last
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feat cannot be performed with the DFT simply by looking for a peak at a
certain place. Only a time-variant (adaptive, in this case) filter can deal
successfully with vibrato.

These procedures, we believe, can accomplish the low-level tasks well in

somewhat less compute time, providing much more power,

To show how this might work, we have computed some test cases using a
200 millisecond segment of a two-part piano piece. The nates being played
during this segment are a D4 at about 294 Hz (3.4 milliseconds period)
and an F4 at 249 Hz (286 milliseconds period). Figure 62a shows the
waveform of the signal itself. Figure 62b shows the discrete Fourier
transform of the waveform. We can see the notes and their harmonics
clearly (plus a lot of other stuff). Figure 62c shows the cepstrum of this
waveform. As we might expect, the cepstrum of this polyphonic piece is a
mess. The peaks do not seem to correspond to the periods of anything that
we know is present in the signal. Figure 62d shows the autocorrelation of
the waveform, and figure 62e shows the optimum-comb applied at a place
in the middle of the waveform segment. These last two plots show
significant activity at multiples of the periods of the notes that are present.
We notice that the peaks coincide at about 17 milliseconds. This is because
D4 and F4 form a minor third. This implies that their frequency ratio is
about 5/6. Indeed, 5:3.4 milliseconds is 17, and 6:2.86 milliseconds is about

17.16 milliseconds.

The next figure, number 63, shows the same sequence of plots for the
filtered waveform. The waveform in figure 63a was filtered with a 4th
order Butterworth bandpass filter with 3dB points at 170 Hz and 230 Hz.
The filtered waveform is shown in figure 63a. As can be seen from the
successive plots, we seem to have isolated a signal at about 174 Hz. This is
a subharmonic of the F4 which is probably caused by a lower string

resonating.
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FIGURE 62: This and the following three figures examine a 200 millisecond segment from the middle
of a two-part piano piece, Present at this time are a D4 at 294 Hz (3.4 milliseconds period) and an
F4 at 349 Hz (2.86 milliseconds period). Figure 62a shows the sound waveform itself. Figure 62b
shows the discrete Fourier transform of this segment of sound. We can see the peaks
corresponding to the notes quite clearly. Figure 62c shows the cepstrum of this segment. As we
might expect, the peaks in the cepstrum do not seem {o have any obvious meaning. Figure 62d
shows the autocorrelalion of the music waveform. We can see peaks corresponding to the
subharmonics of the two notes present. At just over 17 milliseconds, the peaks line up. This is
because DA and F4 form a minor third which implies a frequency ratio of nearly 5/6. In fact, 5x3.4
milliseconds is about 17 milliseconds and 6x2.86 milliseconds is about 17.16 milliseconds. Figure
62e ~hows the optimum-comb applied to this waveform. We can see that it corresponds greatly to
the inverse of the autocorrelation with the exception that the minimum at 17 milliseconds is more
proncunced than the maximum in the autocorrelation at 17 milliseconds. Neither is very prominant,
compared {o the other fealures in the plots.




I61

#ohT 04

=
ll!l!!i_L!Lll!tl
=
pC——
Rt

a.ht g

-
e
r
E
3 wond

-
=
-
-

@. TIME IN SECONDS

8y - N §
fl
[N 4
e | ‘ - 249
!
o] J | h " a E 5]
4 ,_‘¥ e
n t . il 8. 1E-81 8.20-01
b. FREQUENCY IN KHZ. €. TIME IN SECONDS

E {/.\
o '.r‘ 5~
o] \/\/\/\/ 7.t
a4 i o —,
...... | e .
n a.§1 8} 6.20-0814 )] 8.16-01 0.2E-01
d. TIME IN SECONDS €. TIME IN SECONDS

FIGURFE 63: The upper plot shows the waveform of figure 62a filtered by a 4th order Butierworth
bandpass filler whose 3 dB points were at 170 Hz and 230 Hz, Again, figure 63b is the discrete
Fourier transform of the waveform shown in figure 63a, figure 63c is the cepstrum, figure 62d is
the autocorrelation, and figure 63e is the oplimum-comb. We can see that the autocorrelation and
the optimum comb seem to have detecled a frequency at about 5.8 miliiseconds. This is about 174
Hz, or an F3, This is a subharmonic of the F4 that is being played. It is quite likely that this
represents a spurious resonance of one of the lower piano strings.
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We can see that the amplitude of the filtered sighal is somewhat low. This

may be our only clue for eliminating this sigiial from consideration later.

Figure 64 shows the original piano waveform filtered by a similar filter
with 2dB points at 255 Hz and 345 Hz. We see the D4 shining through on

the subsequent plots.

Likewise with figure 65, the 3dB points are 425 Hz and 575 Hz. We get
indications of a signal of period about 1.7 milliseconds, which corresponds
roughly to the second harmonic of the D4.

We hope that these examples show that the 2-level search procedure

described above has potential.
INTERMEDIATE LEVEL PROCESSING

One of the most important techriques that should be incorporated into the
intermediate-level routines is the ability to consult the original sound
waveform again to verify details, such as the exact beginning and ending
times of harmonics. Since the intermediate-level routines know what
frequencies are hypothesized to be present, they are optimally suited to

determine how a sinusoid to be verified should be extracted.

We could envision a system which formulated many hypotheses before
beginning to eliminate them. The current approach is myopic, in that it
formulates a note hypothesis from the harmonic data and decides then and
there whether to accept it. We should formulate the N strongest hypotheses
at each point in time and find a rating system to decide among them.
.These hypotheses then might serve as guides to returning to the original
sound file and searching for missing harmonics.
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FIGURE 64: The upper plot shows the waveform of figure 62a filtered by 2 4th order Butterworth
bandpass {ilter whose 3 dB points were at 285 Hz and 345 Hz. Again, figure 64b is the discrete
Fourier transform of the waveform shown in figure 64a, figure 64c is the cepstrum, figure 64d is
the aulocorrelalion, and figure Gde is the optimum-corab. We can see that the autocorrelation and
{he optimum comb seem to have delected a frequency at about 3.4 milliseconds. This corresponds
well to the pericd of the D4 that is being played.
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FIGURE 85: The upper piot shows the waveform of figure 62a filtered by a 4th order Butterworth
bandpass filter whose 3 dB points were at 425 Hz and B75 Hz, Again, figure 65b is the discrete
Fourier transform of the waveform shown in figure 65a, figure 65c¢ is the cepstrum, figure 65d is
the sutocorrelation, and figure 65e is the optimum-comb, We can see that the autocorrelation and
the optimum comb seem to have delected 4 frequency at about 1.7 milliseconds. This corresponds
well to the period of the second harmonic of the D2 that is being played.
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In the current programs, the filter bandwidth is a constant small size. This
means that the timing mformation, such as when the harmonic starts, ends,
and its exact amplitude envelope, is not terribly accurate. It has been
greatly smoothed. If we used variable filter bandwidths, such that the
widest filter was used that successfully extracted the harmonic, some of this
time resolution might be regained. This would allow us to use this detailed
time information in the intermediate-level processing. For instance, we
could easily distinguish a spurious resonance by noting that its onset
corresponds to some time after the onset of another stronger note in the
piece. We might b2 able to distinguish notes at octaves by the onset times.
The detailed frequency variations will help with that also, especially since
one is likely to have different vibratos. We might also think about using
the detailed amplitude envelope of the harmonics. In plucked or struck
instruments, the time of the initiai maximum that each harmonic attains
soon after the beginning of the note could be used as a cue that these
harmonics belong to the same note. One must be a bit careful, in that
-generally the high harmonics of a plucked string occur first, followed by

the fundamental.
ON IDENTIFICATION

It is theorized that the attack portion of the tone is a very important cue
for human identification of the instrument. It is possible that by increasing
the time resolution of the low-level routines, machine identification of the
instrument will be possible. It is clear that identification, human or
otherwise, cannot be done on the average amplitudes of the harmenics
alone. For instance, with two instruments playing at octaves, the harmonics
overfap entirely, such that each pair of harmonics will either add or cancel
to some degree. This produces a completely unique spectrum. Either we
must theorize that the human can recognize that this is the octave
con junction of two instruments, or that the human can somehow separate
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the individual contributions of the instruments, or we must admit the
possibility of factors other than the harmonic amplitudes being used. In
John Grey's dissertation [Grey 1975], three cues for timbre were strongly
suggested. One was the bandwidth of the signal, which roughly means the
number of harmonics present. Another factor was the type of noise burst
at the beginning of the tone. A third factor was roughly related to the
overall attack time of the tones in question. Two of these three cucs are in

the attack portion of the tone.
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CONCLUSIONS

In this dissertation, we have examined the problem of the transcription of
musical sound by digital computer. A series of programs were developed
using many signal-processing and artificial-intelligence techniques which
accomplish the task of automatic musical transcription on a limited basis.
Most of the limitations were introduced for convenience and for the
purpose of finishing the dissertation in a finite time. In fact,
straightforward extensions of the techniques used in these programs would
allow elimination of many of the restrictions.

The overall plan of the system was as follows: First, an attempt was made
to determine the Aarmony of the piece through the use of a periodicity
detection algorithm. This gave us root frequencies whose multiples were
guaranteed to represent the frequencies of all the sinusoids present in the
signal. Narrow bandpass filters were then centered on these frequencies to
try to extract each of the harmonics of each of the tones present separately..
A pitch detection algorithm was used at the output of each filter to
determine if there was any periodicity at that frequency. A rating of each
filter output was made which represents the quality of the filter output.
This rating was nsed to choose the "best” signals to use to infer the notes.
The notes were inferred by choosing high quality signals and then finding
harmonics around them to form a complete note. Th> note hypotheses
were compared and the best ones selected. A melodic grouping 2lgorithm
divided the notes into upper and lower voices. The melodic information
was then formatted and delivered to the manuscripting program which

produced the final hard-copy score output.

The restrictions imposed on the music were as follows:
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All tones are nearly periodic. This eliminates drums, gongs, and other
percussive instruments. We have not dealt with the problem of
detecting and tracking wide-band and inkarmonic signals which

these instruments represent.

All frequencies are nearly piecewise-constant. This eliminates trills,
vibrato, and glissando. This was just so that we could use filters at
fixed frequencies. The programs can be upgraded to use adaptive
filters which chase the tone around as the pitch changes.

The fundamental of a note will not overlay a harmonic of another note
sounding simultaneously. We do not understand at this time all
the factors that are involved in human separation of notes with
these characteristics. We do not understand why people "fuse” the
harmonics of an instrument into a single percept, but distinguish
two separate instruments which are playing in unison. Perhaps if
the frequencies and attacks were exactly synchronized, people could
not so distinguish them. We must do further experiments in

human perception to gain insight into these processes,

The piece’ contains ne more than two voices. This was done for
convenience. There is no inherent limitation which necessitates

this.

Other limitations. Notes must be longer than 80 milliseconds in duration.
This is because we distinguish between transient response from the
bandpass filters and sighals by assuming that the transient responsé
will die out in less than 80 milliseconds. The use of variable-width
filters' can help distinguish this better. We also require that the
fundamental frequency of a tone be present. This is because we do

" not have a convenient way of assighing a rating to an entire note

right now. Presumably such a measure couid be made. For the
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same reason, we require that the harmonics be dense, that is, have
no missing harmonics, unless a/l the even harmonics are missing, as
in the case of the clarinet.

With these restrictions in mind, examples were processed through the
programs with relatively good results. The computer usage was enormous.
This system can hardly be called practical at this time.

We feel the main contribution of this thesis is the knowledge that this task
can be done by computer and it seems likely that it can be advanced to a
relatively high level by simple extensions of the procedures developed

here.
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APPENDICES

APPENDIX A:
THE HETERODYNE FILTER

INTRODUCTION

This appendix is devoted to implementation details and a critical
evaluation of the heterodyne filter. The filter has been run on a series of
synthetic tones which demonstrate its powers and its weaknesses well. For
implementation details, we have chosen ALGOL as a vehicle for
communication of algorithms. This is not necessarily directly useable on
everyone’s system, but we hope the implementation will be a simple matter

of conversion.
A CRITICAL TEST

To empirically test the performance of the filter, we have chosen a
periodic waveform with harmonics such that each harmonic is some
fraction of the previous harmonic. We have placed an overall amplitude
envelope on the test signal that consists of a line segment for the attack
and constant amplitude for the steady-state. It is interesting to vary the
time of the attack and see how the output of the filter behaves. In each of
the cases shown, three smoothings were applied, each smoothing done by
averaging over about one period of the signal. We present the results of
these tests in figures A1 through A12. All of the figures except A6 have
each harmonic 70 percent of the amplitude of the previous harmonic.
Figure A6 has each harmonic 50 percent of the previous harmonic. We
experiment with a 505 Hz sigﬁal and a 101 Hz signal. The first two
figures, Al and A2, show simple cases where the attack time is several
periods long. In A, the attack time is 25 periods, and in A2, the attack



171 HETERGDYNE FILTER

time is 10 periods. In each figure, there are four plots. The upper left plot
is a perspective drawing showing the amplitudes of all the harmonics as
derived by the heterodyne filter. In each case, we analysed up to the 10%
harmonic. The first harmonic is in the rear, the 10'"™ harmonic is in the
fore. The upper right plot in each figure is a similar plot for the
frequencies of the harmonics, except that the first harmonic is in the front
and the 10™ harmonic is in the rear. The lower left plot is a pair of
graphs showing the amplitude {(upper) and frequency (lower) contours for
just the first harmonic (fundamental) by itself. The lower right pair of
graphs is the same thing for the 10" harmonic. This is so that we can see
exactly when the frequency trace stabilizes. In general, it takes a few
periods before the frequency curve settles down. There is some confusion
at the end of each plot due to the edge effects. For any practical situation,
the tone should be surrounded by silence of length at least 4 periods on

each side.

In figures A3 and A4, we shorten the attack time to exactly 5 periods.
This causes the frequency trace to lag behind the amplitude curve. In

figure A2, we see that for the 10™ harmonic, the frequency curve is about
25 milliseconds late in stabilizing. In figure A5, the attack time has been
shortened to one period. This is an extreme case and causes the frequency
trace to be greatly in error, especially in the higher harmonics. In figure
A6, we see the case where each harmonic is only 50 percent as great as the
_previous harmonic. Here, the 10" harmonic is so weak that it cannot be
traced at all. It is a typical form of behavior for the frequency curve to
drop down to the frequency of the next lower harmonic when the
amplitude of the harmonic is too weak. ’
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FIGURE Al. This shows the output of the heterodyne filter for a synthesized input signal which
conaists of a 505 Hz sighal with a B0 millisecond linear attack on each harmonic. Each harmonic is
70% of the amplitude of the previous harmonic. The upper left figure shows a perspective plot of
the amplitudes of ihe harmonics as determined by the heterodyne filter. The upper right plot
shows the frequencies of the harmonics. The lower left pair of plots show the amplitude and
frequency of the first harmonic, the lower right pair show the amplitude and frequency of the 10th
harmonic. There is error in the frequency plots around the attack and the ending, but the
amplitude plots seem o be accurate excepl for a slight rounding of the ends of each line segment.
If we set the amplitude of the fundamental to 1.0, then the harmonic amplitudes are as follows: 1.0,
0.7, 0.49, 0.343, 0.240, 0.168, 0.118, 0.082, 0.058, 0.040 These plots were generated using a
prozram which was written by John Grey for his dissertation,
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FIGURE A2. Thir shows the output of theé heterodyne filter for a synthesized input signal which
consists of a }00 ke signal with a 100 millisecond linear attack on sach harmonic. Each harmonic is
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FIGURE AB. This shows the output of the helerodyne filter for a synthesized input signal which
consists of a 100 Hz signal with a 10 millisecond linear attack on each harmonic. Each harmonic is
70% of the amplitude of the previous harmonic. The attack portion of the tone lasts only 1 period,
which is exiremely fast. The heterodyne filter cannot track the frequency during the attack
portion and throughout some of the steady-state portion. The amplitude curves, however, are not
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FIGURF A6, This shows the output of the heterodyne filter for a synthesized input signal which
conninte of a BO% Hz signal witlh a 10 millisecond linear attack on each harmonic. Each harmonic is
50% of lhe amplitude of the previous harmenic, This case is similar to figure Ad, but the higher
hartaonics are much weaker. In fact, the 10th harmonic is s0 weak that its frequency cannot be
enceoscfully fracked. The plots are correct, however, up to the 9th harmonic. The relative
ampliludes of the harmonics in this case are as follows, setting the amplifude of the first harmonic
to 1 for convenience: 1.0, 0.5, 0.25, 0.125, 0.063, 0.031, 0.016, 0.008, 6.004, 0.002. Thus, the
amplitude of the 10th harmonic is only 1/20th of the amplitude of the 10th harmonic in the
previous figures. :
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In figures A7 through A 12, we experiment with changing the frequency of
the tone while the analysis proceeds. Figures A7 and A8 show a | percent
change through the note, figures A9 and A 10 show a 2 percent change,
and figures A1l and A 12 show a 5 percent change. We can see the failure
start to set in in the 10" harmonics with a 2 percent change. With a 5
percent change, the top several harmonics do not track properly, especiaily
with the lower tone. When the frequency deviates this far, we can no
longer guarantee absence of "leakage” between ad jacent harmonics.

IMPLEMENTATICON

There are several things that can be done to simplify the computation of
the heterodyne filter. The first is to use "sliding” summations rather than
computing the entire summation at each point. This is an old and well
known trick that has great use here. The only problem is the accumulation
of roundoff error. Although not included in the program thai follows, one
feature that was included in our own program was resetting all the sums
every 1000 sampies.

In converting the phase angle at each sample into a continuous phase
function, it is somewhat difficult in the presence of noise to avoid
.occaisional jumps of multiples of n. Schafer [1969] gave an algorithm for
A"un«.«rapping" the phase in this manner. Unfortunately, his algorithin is
not effective in the presence of large amounts of noise. Qur approach has
been to use the angle sum and difference formulae to compute not the
angle, but the difference of the angle with the angle at the previous sample
point. This works as follows:

a .
(AD) sin(g) « —=—2—

ha nx

b
(A2) coslg ) « ——=——

no na




179

wer s e N
DN .-
PR S

Hienn H10HD

- 109
tuga rrem—— -
it A n i
A l .
) LI
[LI h " A
4 ala 7 3\11
i R N
0ot 0L o
N N
1 4 ' R
1 X £ 4
1" {1 a
¥ ¥ . Bk 4 T ¥ T T ’ 1 “ 1 T L T ¥ L] L L] ¥ l L]
4] @ B | 8 H
f 0
" %4 !
1 E po »age
HEEA I s
L ; o B0
FERNY: u 4
T o huidn
1 will ! i y
3 Laga
§ i ¢
y G 't
118 L R
LL] 14

>
"]

FGURE A7, This <hows the output of the helerodyne filler for a synthesized input signal which
concicls of a BOO Hz signal with a [0 millisecond linear attack on each harmonic. Each harmonic is
7074 of the amplilude of the previous harmonic. Here we slew the frequency of the note from 500
Hz 1o %05 Hz over the duration of the tone. This is a 1% change, less than a quarter-step. Even in
this cace, the heterodyne filler seems 1o track acceptably.
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FIGURE A8, This shows the outpul of the heterodyne filter for a synthesized input signal which
consists of a 100 Hz signal with a B0 millisecond linear attack on each harmonic. Each harmonic is
70% of the amplitude of the previous harmonic, Here we slew the frequency of the note from 100
Hz 1o 101 Hz over the duration of the tone. This is a 1% change, less than a quarter-step. As in
the previous fizure, the heterodyne filler seems to track acceptably.
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FIGURE /9, This <hows the outpul of the heterodyne filter for a synthesized input signal which
conviti.af 2 BOO Hz signal with a 18 millisecond linear attack on each harmonic. Each harmonic is
70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 500
Hz to B10 Hz aver the duralion of the fone, This is a 2% change, slightly less than a quarter-step.
This sonms to be about the limit of the allowable frequency change. Some of the frequency traces
for the higher harmonics are not fracking properly.
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FIGURE AlD. This chows the output of the helerodyne filter for a synthesized input signal which
concicle of a 100 Hz signai with a B0 millisecond linear attack on each harmonic. Each harmonic is
70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 100
Hz to 102 Hz over the duration of the tone. This is a 2% change, slightly less than a quarter-step.
Thic <eems (o be about the lmit of the allowable frequency change. Some of the frequency traces
for lhe higher harmonics are not tracking properly,
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{A3) sinf{Af) « sin{g Jcosly ) - cos{g )sinlg )

i

(A4) sin(Af) « coslp )cosld, o) t 8inlg Jsinle )

sin(Af8)

o ~1 reeerem—rsrres————
(A5) A ~ tan (coshﬂe)

(AB) 8 « 0 + A0

ne n, -1

Where 8, is the real part of the heterodyne filter

output at the ath point, for the nth

harmonic, as shown in equation (21) in the
text,

b, is the imaginary part of the heterodyne filter

output at the a'™ point, for the nt*

harmonic, as shown in equation {22) in the
text,

6, is the phase angle at the a'® point, for the n'"
harmonic, subject to the initial conditions

9[\0:@!
Poo, is the principal value of the phase angle, 0,.,
at the o't point, for the nth harmonic, and

A is (01,0, 4.1), the difference of the phase

angles of this point and the previous point,
as computed by the sine sum and difference
formulae.

This may look like a succession of tautalogies, but the result is a nice
continuous phase with few discontinuities. The only jumps occur where
the amplitude goes to near zero, where the phase is then just the phase of
the noise, which is, of course, random.

This method gives, in general, a much smoother phase than Schafer's
method.



APPENDIX A i86

A HETERODYNE FILTER PROGRAM

BDDLEAN PROCEBURE HET (INPUT, AMP, FREQ, CLOCK FUND, HARMONIC,
AVUIDTH,NSMOOTHS, N, N}

REFERENCE REAL ARRAY INPUT, ANP FREQ;

VALUE REAL CLOCK,FUND;

VALUE INTEGER HARMONIC, AVWiDTH,NSMOOTHS, N;

REFERENCE INfEGER Ms

BEGIN

COMMENT This program takes an array of sound samples in INPUT of
length N (INPUT[LI:N]), the fundamental frequency of the tone, FUND,
the sampling rate in samples per second, CLOCK, the number of the
harmonic under analysis, HARMONIC, the number of smoothings,
NSMOOTHS, the width of the window used to compute the slope of the
phase, AVWIDTH, and returns the amplitude of the harmonic as a
function of time, AMP, and the frequency of the harmonic as a function
of time, FREQ), and the number of valid points in AMP and FREQ, M.
M is set to the input data length, N, minus the length of the period of the
fundamental frequency in samples. A typical call might be
HET(I,A F,20000,155,3,25,3,10000,M). This would trke from array I, put
the amplitude in A, the frequency in F, sampling rate would be 20000
samples per second, the fundamental frequency would be 155 Hz., we

would analyse for the 3¢ harmonic (465 Hz), would average over 25
points for the frequency curve, would do 3 smoathings, would take 10000
points (.5 seconds) out of 1, and would place the number of output points
in M;

INTEGER PERIOD;

REAL DANGLE, ANGLE,CS,SN,LCS,LSN;

REAL SUMT, SUMTZ, SUMF, SUMFT, TIME;

REAL TIMINC, TSAMP, HFREO;

REAL CSUM,SSUM, TEMP,PI, TWOPT ¢

REAL ARRAY FSAVE,FTSAVE [1: AVWIDTHI ,SINTAB[8:5680] ;
INTEGER I,J,K,L, INDEX;

LABEL EXIT
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COMMENT At first, we merely set up some constants and then load the
sine table. This table could, of course, be set up once and for all
beforehand, rather than be set iilfeaa:h time. Further, the table could be
set up using the sine recursion formula at one multiply per point rather
than calling the sine routine (generally 7 multiplies);

PERI0DCLOCK/FUND;
BEGIN
REAL ARRAY SNSAVE,CSSAVE f1:PERICD+11;
FUND~CLOCK /PERIDD;
P1«3.14159265306;
TUOR ! b1y
ANGLe~2,
. DANGLE+~5888xHARHMONI CxFUND/CLOCK
FOR 1«8 STEP 1 UNTIL 5888 DO
SINTAB 1] «SIN(THOPI %I /56006) ;
COIMENT The sine table should be computed beforehand,
just once for all the harmonics;
CsM-a;
55UM-8;

IF PERIOD+AVWIDTH<N THEN
BEGIN

HETTRUE;

GO T0O EXIT:
END;
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we actually do the heterodyne filter. It consists of

multiplying the input signal by the sine and the cosine of the frequency of
analysis (HARMONIC:FUND) and averaging over one period of the
fundamental frequency. This is done by a sliding average. SN and CS
represent the SINE and COSINE at the expected frequency of the

harmonic (HARMONIC:FUND). We keep the sum of the input stream
SSUM, and the sum of the input stream times the

times the SINE in

COSINE in CSUM."SNSAVE and CSSAVE are just to avoid doing a
‘multiply to update SSUM and CSUM,;

Jely
FOR
BEGI

“END:

fel STEP 1 UNTIL N DO
N
INDEX<ANGLE;
SNeSINTAB [INDEX]
INDEX<]NDEX+1258; .
IF INDEX258088 THEN INDEX~INDEX-5808;
CS<SINTABIINDEX]
ANGLE ~ANGLE+DANGLE ;
IF ANGLE>5808.8 THEN ANGLE<ANGLE-5002. 8;
IF I>PERIOD THEN
BEGIN
CSUM-CSUM-CSSAVE (U]
SSUM-SSUM-SNSAVE [J] 4
COMMENT Subtract off the point past the
end of the window. This saves doing
the entire summation each time;
END;
CSSAVE [J] «INPUT[11%CS;
CSUM~CSUM+CSSAVE [JT 4
SNSAVE [J] «INPUT [13%SN;
SS5UM-SSUM+SNSAVE [J] 4
IF T-PERIOD THEN
BEGIN
AMP [1-PERIOD] «~CSLIM:
FREQ [1-PERIODI «SSUM;
END;
Jed+ls
IF J>PERIUD THEN Jel:
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COMMENT Now we smooth the curves by averaging over a window
around the period of the fundamental. This places a new zero of
transmission at each harmonic except the one under analysis. Generally,
three smoothings are recommended. Quite often, unacceptable ripple will
he present in the output without'these smoothings. These smoothings are
to be preferred over a standard low-pass filter because they place an
explicit zero of transmission at the other harmonics. The variable L
below denoctes the width of the average. It starts out at 0 and grows to
LENGTH. This means that it takes one period for the average to get
started, which means that you will not get zeros of transmission at the
other harmonics until the smoother has a chance to "warm up". If you
have N smoothings, you must wait N periods for good results. Each tone to
be analysed should have several periods of silence around it to get these
filters started;

MeN-PERIOD;
FOR Kel STEP 1 UNTIL NSMOOTHS DO
BEGIN

LENGTH-~PERIOO+ (K MOD 3)-1;

COMMENT We filter at the period, the period
plus one sample, and the period minus
one sample. This is a "shotgun" approach
to help uhen the frequency is slightly
different from what ue expect it to be;

Jels
LB
SSUM-8;
CSUM-8;
FOR 1«1 STEP 1 UNTIL M DO
BEGIN
IF 1>LENGTH THEN
BEGIN
SSUM-SSUM~SNSAVE [J] 4
CSUMCSUN-CSSAVE [J] s
END .

ELSE Lé—L+1

COMMENT L is the uidth of the averagmg
interval, 1sbLsLENGTH;

SSUWSSUWAMP 11

CSUMCSUM+FREQ 1] 3
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COMMENT - Smoothing algorithm, continued. We keep around two
history arrays, SNSAVE and CSSAVE, which represent the input streams
over one period so that they can be subtracted off at the end;

END;
END:

SNSAVE [J1«AMP 1]

CSSAVE [J] «FREQTI

COMMENT We must save capies of the
inputs to the smoothing routines
because we overurite these
quantities in the next steps;

AMP [1]35SUM/L

FREQ [11CSUM/Ls

Jed+ls :

IF J>LENGTH THEN Jel;



191 HETERODYNE FILTER

COMMENT Now we convert to magnitude and phase form. To assure
that the phase remains continuous, even during noisy parts, we compute
the change in the angle by the difference-of-sines formula, We keep
around the SINE and COSINE rom the previous step and produce the
angle increment by the arctangent of the difference in angle from the last
sample to this one. Here we assume a procedure of value REAL which
takes the arctangent of ‘a number which is a fraction. We assume, then,
that ATAN(NUM/DEN)=ATANZ2(NUM DEN), except that the case
DEN=0 is handled properly in ATAN2 (that is, it returns plus or minus
n/2, depending on the quadrant). We enter with AMP and FREQ
containing the quadrature components of the harmonic. When we exit this
section, AMP contains the amplitude of the harmonic and FREQ, contains
the phase of the harmonic;

L.SN«AMP (1]
LCS<FREQI1T,
AMP {17 «SORT (LSNT24LCS12) ¢
LSN«LSN/AMP {11
LCS-LCS/AMP 1]
COMMENT LCS and LSN will be the cosine and 5|ne
of the phase angle at the previous samples
FREO[I]«A?ANZ(LSN?LCS};
"FOR 1«2 STEP 1 UNTIL M DO
BEGIN
SN-AMP (113
CSFREQII]:
AMP [11«50RT (SN124£S12) 4
SHSN/AMP 113
CS«LS/AMP LI
COMMENT This makes SN and CS the sine and
cosine of the phase angle at this points
MNUM«SN%.CS-COxLSNs
DEN«CS%LCS+SN+LSN;
COMMENT NUM and DEN are the sine and cosine
- respectively of the dszerence betueen
the phase angle of the previous sample
and the phase angle.of this sample, as
computed by the angle sum and
Uifference formulae;
FREQIII«FREQLI-1]+ATANZ (NUM,BEN] ;
LCSLS;
L SN«SN;
END;
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COMMENT Now we compute the frequency from the phase by getting
the slope of the phase. We do this, adding some additional smoothing in
the process, by computing a least-squares fit of a straight line to the phase
and using the slope of this line at each point as the difference of the
actual frequency and the expected frequency of the harmonic. Again, the
sums are computed by sliding averages.;

SUMT 83
SUMT2+8;
SUMF«B1
SUMFT-8:
TIME-B;
TIMINC~AVWIDTH/CLOCK
15A11P«1 /CLOCK;
HFTEO«HAHMUNIE*FUND:
Jels
L«
FOR I~} STEP 1 UNTIL M DO
BEGIN
IF 1>AVRIOTH THEN
BEGIN
TEMP1«TIME-TIMINC:
SUMTSUNT+TENPL
SUMT2SUMT2+TEMP112;
SUMF«SUMF -FSAVE [J1 4
SUMFTSUMFT~FTSAVE [J1
END ELSE Lel+l;
SUMT<SUMT+TINME;
SUMT2-6UMT2+TIMEYZ;
SUMF~SUMF+FREQTT]
TEMPL<FREQ[I1%TINES
SUMFT«SUMFT+TEMPL
FSAVE [J1«FREQLI)
FTSAVE [J1«TIMEL;
TIME«TINE+TSANMP;
IF <2 THEN FREQ{I1+HFREQ
ELSE FREQI[1)«HFREC
{L*SUMF T-SUMT*SUMF } 7
! { {(LxSUMT2-SUMTH21 % TWOPI) 3
Jed+l:

IF JsAVUIDTH THEN Jel;
END;
END;
HET<FALSE;
EXIT:
END;
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APPENDIX B:
ON DESIGNING DIGITAL FILTERS

INTRODUCTION

During the course of this thesis, digital filters of many different varieties
were used. Since the basis of the low-level processing is the bandpass filter,
it was important to have a way of designing digital bandpass filters very
quickly. The only closed-form solutions for filter coefficients that are
currently known are tne classical analog designs, like the Chebychev,
Butterworth, Lagrange, Bessel, and others. In this method, we first design
a low-pass filter, and then transform it to get high-pass, bandpass, or
bandstop filters. We chose to do this transformation in the continuous
domain. The analog filter is then transformed to the digital domain by use
of the bilinear transform. Of course, the 3dB frequencies must have been
already ‘warped’ before transformation to digital.

PROCEDURE

We, of course, will not attempt to review all of analog ciicuit design theory
here. Two appropriate references are Guillemin [1957] or Karni [1966].
Neither wili we review the bilinear transform for the generation of discrete
filters from continuous. For this information, see Oppenheim and Schafer
[1975] or Rabiner and Gold [1975]. What we would like te discuss are the
details of what we feel to be a convenient, stable technique for numerically
evaluating the coefficients. All of the processing is done in factored form,
that is, all the roots are kept separately as complex numbers. For an N
‘order filter, we will have N such numbers. When we go to bandpass or
bandstop, there will then be ZN such numbers, for each root in the
original low-pass design will generate two roots in the bandpass or
bandstop case.
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Each of these filters accept the following as design information: the
frequency of the 2dB point (in the bandpass and bandstop cases, the
frequencies of both 2dB points are required), the order of the filter (in
bandpass and bandstop cases, this number will be doubled), and the type
of the filter. Currently, only Butterworth and Chebychev at .5 dB ripple, |
dB ripple, 2dB ripple and 3dB ripple are allowed. It is a simple matter to
add other kinds.

LOWPASS AND HIGHPASS

Theze are the simplest cases. For the lowpass, we just take the continuous
filter design directly. For the highpass, we merely invert the roots. This is
simply done by dividing the conjugate of the root by its magnitude
squared. Remembering that it is highpass, we go directly to the digital
conversion. Both filters are designed-with their 3dB point at 1. They must
be scaled to the proper frequency. This is done simply by multiplying all
the roots by that frequency.

BANDPASS AND BANDSTOP

These are the most interesting cases, for each original root must create two
roots in the transformed filter. This is done by means of the following

transformations:
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(52+w§)
Bl) p =

for the bandpass case and for the bandstop case:

S

(B2) p =
. +w§l

(52

Where |2 is the complex frequency variable of the
original low-pass design.

S is the complex frequency valable of the
transforied filter.

Wy is the geometric mean of the 3dB frequencies of

the desired bandpass or bandstop filter

We can see what this does to each pole of the original design by just
substituting the complex frequency of the original pole as P in the abave

equations and solving for S;

' Y T Ry T,
(]
B2) s = . ) :

(B4) s

Y SIPTOR I S PO
2 ' 2

Where A is the complex frequency of one of the
original low-pass poles.
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Again, (B3) is for the bandpass case and (B4) is for the bandstop case. To
compute these numbers, we may use arctangents and do it in magnitude-
angle formulation, but we have found that the Cartesian coordinates give
slightly more accuracy. To perform the complex square root, all we need to

do is compute the square root of the length of AZ-4w,? and compute the

SINE and COSINE of one-half the angle of A?~40,2 This can be done

as follows:

(B5) € e —=
a+3?
14C

(B8) C, « 5

1-C
(B7) S, « sgn () =



——
SO
b |
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B8) k « a’+f?

(B9) o /A4l = K(Cy+jS,)

Where a is the real part of A2=40),2,

f3 is the imaginary part of A2~4(.092,

C is then the cosine of the angle of Az—lw)oz,

Cy is then the cosine of half the angle of A?~4wy2,
S, is then the sine of half the angle of A2=4a)y2,

K is the magnitude of the square root of Az-—@wee,
sgn(8) is +1 if 520 and -1 if §<B

This is shown for the bandpass case, but may also be done for the
bandstop case similarly.

TRANSFORMATION TO DISCRETE

After the transformation to the proper kind of filter, we may inspect for
stabiiity just by examining the real parts of the filter. We have found the

filters desigred this way all have negative real parts as high as 20'" order.

We then group the conjugate poles together for lump-transformation to 2
digital second-order section. The remaining real pole, if any, will be
transformed into a first-order section. We can aisa order the poles
according to ) for wkat is hoped to produce minimum roundoff error,

After the transformation, we can normalize the response so that certain
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frequencies have a magnitude transfer function of 1.0, For the iow-pass
and bandstop cases, we wish 0 frequency to be passed with gain 1.0. For
the high-pass case, it is infinite frequency (T in discrete domain). For the
bandpass case, it is Wy, the geometric mean of the %dB frequencies. We
can get ks scaje factor by computing it as v go along, or by computing it
at the end of all the transformatiens. It is simple to compute at the end
and is guaranteed to give the correct results, so this is what was used in
our program. We merely predict the wansfer function at the critical
frequency and mulkiply the first filter section input terms by the inverse of

the predicted transfer function.

This completes the design of the filter. It is realized in cascade form as the
- con junction of many secorid-order sections and possibly a single first-order

section.
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