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ON THE SEGMENTATION AND ANALYSIS OF CONTINUOUS

MUSICAL SOUND BY DIGITAL COMPUTER

(ABSTRACT)

James Andel'son Moorer, Ph.D.

Stanford University. 1975

The problem addressed by this dissertation is that of the transcription of musical sound by
computer. A piece of polyphonic musical sound is digitized and stored in the computer. A
completely automatic procedure then takes the digitized waveform and produces a written
manuscript which dt:scribes ill classical musical notation what notes were played. We do not
attempt to identify the involved. The program does not need to know what
instruments were playing.

It would appear that it is quite difficult to achieve human performance in taking musical
dict<ltioll. To simplify the task, certain restrictions have been placed on the problem: (1) The
pieces must have no Ill0re than two independent voices. (2) Vibraw and glissando must not be

Notes must be no shorter than SO milliseconds. (4) The fundamental frequency of a
note must not coincide with a harmonic of a simultaneously sounding note of a different
freq Llency. The first three conditions are not inherent limitations in the procedures, but were
done simply for convenience. The last condition would seem to require more study to determine
the cues that human listeners use to distinguish, for example, notes at unison or octaves.
Numerous other lesser restrictions were also imposed on the music to be analysed.

The method used for this analysis is a directed bank of sharp-cutoff bandpass filters. First, a
pitch detector is used to determine the harmony of the piece at each point in time. Using the
harmony information, the frequencies of a. band of bandpass filters is determined so as to
assure that every harmonic of every instrument will pass through at ieast one of the filters.
The output of each filter is processed by a pitch detector and an energy detector. This gives
power and frequency information as functions of time. Each power and frequency function
pair is rated as to its quality. The rating takes into account the constancy of the frequency
function, the smoothness of the power function, and several other measurements on the
functions. Th is rating is lIsed to eliminate spuriOUS traces and null filter outputs.



Notes :::Ire then inferred from groups of power and freq uency function pairs that occur
with freq uencies that are harmonically related. Notes with higher overall ratings

are preferred over other note hypotheses. The melodies are then grouped by separating the
notes into the higher voice and the lower voice. Voice crossings are not tracked. For the final
manuscripting, Professor Leland Smith's MSS program was used. The analysis program
produces directly input for the manuscripting progTam, thus the entire procedure is automated.

In addition to the above described system, many other techniques were examined for their
utility in this task. Each technique that was explored is described and analysed, with a
description of why it was not found llseful for this task.

One interesting observation is that there is considerably more activity in a piece of music than
is perceived by the listner. This is especially common with stringed instruments, because the
strings that are not being manipulated invariably resonate and produce sounds independently
which art'; generallj not heard due to aural mask.ing. This indicates that perhaps we should use
more perceptually-based techniques to help determine what would actually be heard in a piece
of music, rather than determine exactly what is there, although detailed descriptions of the
contents of the piece may be llseful for other purposes, such as music education or musicology.

In e:enerill, the system works tolerably well on the restrict.:d class of musical sound. Examples
are shown which demonstrate the viability of the system for different instruments and musical
styles. Since the procedure is extremely costly in terms of computer time, only a limited number
of eX(lnlples could be processed. These examples are discussed with a descl'jption of how the
system could be improved and how the restrictions might be eliminated by better processing
techniques.
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PROBLEM STATEMENT

INTRODUCTION
STATEMENT OF THE PROBLEM

The problem addressed by this dissertation is the machine perception of
,Polyphonic music. We seek to playa piece of music into the computer via
an analog-to-digital converter and have the computer return an
abbreviated score of the piece. In order to simplify the task, certain
restrictions have been placed on the goals. First, we do not require the
col'nputer to identify the instruments involved. Second, we do not allow
glissandi, fast trills, 01' exseptionally fast notes (less than 100 milliseconds
duration). Third, the class of instruments that we will accept is limited to a
subset of the orchestral instruments which excludes drums, gongs, cymbals,
and othpr instruments with inharmonic overtones. Fourth, Vibrato must be
non-eXistent or very limited. Fifth, the program will only be expected to
track a small number of independent voices (two at most). Sixth and last,
we must disallow notes such that the fundamental of one note is at the
same frequency itS a harmonic of another note. This rules out notes at
octaves, at twelfths, and many other intervals. Some of these restrictions
represent in herent limitations in the methods used and some merely

for the sake of economy. A discussion of each
restriction will accompany its intoduction.

In performing this task, there are some things that we may reqUire of the
computer that we would not reqUire of a human. One is that the pitches
he identified with the actual note relative to the eq lIal tempered scale
based on A4 being 140 Hz. This would reqUire the skill of "absolute
pitch" which 'issornewhat rare even among trained musicians. Conversely,
there are some things which people do quite well that we cannot at this
time reasonably ask the computer to clo, such as identify the instruments
involved. The reasons why this is a difficult problem will be treated later.
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A computerized musical scribe probably has its greatest application in the
field of Ethnoll1l1sicology, where often hundreds of hours of recorded
ethnic music are commonly transcribed by hand. A more long term
application is in the field of computer music. where we might expect the
computer to be able to perceive music as well as play it, thus taking its
cues from the musicians (or other computers?) with whom (which?) it is
piaYll1g.



ON MUSIC ANALYSIS

3 ON MUSIC ANALYSIS

Music may be analysed for any number of purposes. There is analysis of a
s((Jr€ for form, motifs, harmony, style, etc. These may be termed higll-level

because they deal with concepts which are not rigorously defined,
nor are they generally amenable to direct mathematical analysis. These
analysis techniques are commonly taught to undergraduate music students
as regular curriculum subjeers. Some attempt been made to use the
computer to do high.level analysis from scores which have been typed in
by hand [Hiller 1966, 1967; Jackson 1967; Winograd 1968] with some
Sllccess. Perhaps the greatest contribution of the computer has been to the
ethnomusicologist who seeks to classify the intervals or frequencies-of.
occurrence of motifs.

Analysis of the acoustic waveform itself has been done for the purpose of
gaining insight into the physics of music-related hardware (instruments,
concert halls, musicians), for the purpose of simulation of musical tones (a
musical uvocoderU), for gaining insight into human perception of musical
sound, and finally. for the purpose of detecting and tracking the pitch of a
single-voiced piece. This analysis might be termed low to i1ltermediate-levd
analysis because it deals with musical sound on an acoustical level rather
than on lhe level represented by the score of the piece.

It is, of course. an impOSSible task to recreate exactly the score that
produced a given piece of music. When we listen to a piece of music, we
cannot tell that a given note duration represents a quarter note, a half
note. or whatever. The composer is free to introduce factors of two in the
notation at will. and the conventions in thiS respect have changed over the
years. Iso, the amount of voice doubling on a particular line is often
quite difficult for people to determine. Sometimes, a precisely played octave
will not be recognized as such.
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It is our intention to finesse these difficulties by restricting the range of
pieces that will be accepted. With some restrictions in effect, the problem is
manageable.
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WHAT IS MUSICAL SOUND?

INSTRUMENTS, OVERTONES, AND A
MODEL OF INSTRUMENT WAVEFORMS

ON MUSIC ANALYSIS

Our model of music will consist of the sound pressure wave created by a
finite number of instruments that play notes which begin at some time,
have a finite duration, 2nd are nearly periodic in that interval. For our
purposes, an instrument will be defined as something which produces
nearly periodic sound pressure waves. A note will be defined entirely its
pitch, starting time, duration, and loudness. Before we proceed any further,
some definitions are in order:

I>itch . Pitch is a subjective quality of sound that is not necessarily
dependent upon the existence of a sinusoid at Iii.; frequency. A
discussion of pitch perception is offered in later sections (see section
entitled Mu.sic Paul>tion), so please accept for now that "pitch"
means what we commonly take it to mean, but "frequency" refers to
the repetition rate of a perfectly periodic signal. "Frequency" is a
physical quantity which can be measured objectively. "Pitch" is a
perceptual phenomenon.

harlllonic· A perfectly periodic waveform can be decomposed by Fourier's
sine and cosine series into a sum of sinllsoids whose frequencief. are
integral multiples of some base frequency, which is called the
"fundamental" frequency of the sound. These sinusoids are
descnbed as "harmonically related" sinusoids, or more simply as
"harmonics,"

inhanuonic· An adjective meaning' "not harmonically related."

partial . Many waveforms are not periodic, but may nonetheless be
represenred by a sum of sinusoids that are not harmonics. The
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general term for the sinllsoids which make lip a waveform, be they
harmonic or otherwise, is a "partial tone," or more simply, a
"partial."

qua.si-periodic - This term along with "nearly harmonic" applies to
waveforms which are not perfectly periodic. but are very close.
String'ed illstruments show some inharlTIonicity due to effective
shortening of the string at higher frequenCies, but since the
deviation is just a few percent. they are called "quasi-periodic."

half-step - This is the square root of a step. or the twelfth root of 2. which
is The half.step is the relation between the frequencies
of notes which arf? played on adjacent keys on a piano keyboard.
The half.step forms the basis of most Western music. This is also
the bilSis of the tqll.al.tcmpeud scale. which is llsed throughollt this
thesIs.

step - A "step" is a ratio of two frequencies which is defined as the sixth
root of 2. or 1.12216205.

interval - The relation between the of two simultaneously
sounding notes is called an "interval". We measure intervals in
terms of steps. or half steps. The intervals consisting of integral
numbers of half-steps have Ilames and speCial meanings in most
western music. If the frequency of olle note is f I and the

frequency of the other note is f 2' then the "distance" between those
two notes in half.steps is simply 12* I a92 ( f l f I)' This is the
interval those two notes represent.

scale - A manner of subdividing a large illterval, such as an octave, at
definite points in order to prOVide a series of tones suitable far
melodic or harmonic use. Two common diVisions of the octave in
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Wes<tern mmie are the major and the minor scates, each of which
divide the octave into eight notes (including the endpoints). If we
number the notes of these scales from the lowest to the highest, the

ma jar sea Ie has a half-step between the grd and 1111 notes, and

between the ?ih and 81h notes, and whole steps between the other
notes of the scale. The minor scale has half-steps between

the 2nd and 3rd notes and between the 5th and Gih notes.

chord - Three or more notes sounding simultaneously. In more COlllmon
llsage, the intervals between adjacent notes is 3 or '1 half-steps
(these intervals are called minor and major thirds, respectively). A
more gcnerClI term for the simultaneous sounding of three or more
notes without regard for the intervals among them is a "cluster".

harmony - This is easi' to confuse with but it refers to a
sub jective musical quality. When two or more instruments play
different notes at the same time, we refer to the relation of the
notes as the "harmony" of the music. To be more specific, this is
actually the z

'
erticall1armony of the music. We may also define the

/!ol'i7..ontal harmony to be the relations among the chords as a
progression in time. In thiS dissertation, we shall only be concerned
with vertical harmony, although horizontal harmony is much more
important musically.

f\f mic instruments can be diVided into many categories, but we shan only
distinguish two: those that have nearly harmonic partials and those that
do 1I0t. We shaH :Je concerned here with only those instruments which
ha VP. ncarly harmonic pal'tials. These instruments can be modeled as a
sum of sinusaids with slowly-varying amplitudes and frequencies. The
f;<equcncies of these sinusoids are very close to integral multiples of the
fundamental frequency of the note.
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With the aid of the Heterodyne filter (see section H tt'erodyne Filter in
Low-Levd Tec!lniqlus), we can examine the behavior of the amplitudes
',and frequencies of notes played in isolation.

With these data available, we are in a position to test the validity of the
model for describing the perceptually relevant attributes of music
instrument tones. We can do this by resynthesizing the tones and
comparing them with the original tones. We have done this for the
folloWing instruments:

violin, viola, cello, double bass, trumpet, trombone, French
horn, baritone horn, oboe, English horn, bassoon, Bb clarinet,
alto clarinet, bass clarinet, flute, alto flute, alto sax, soprano
sax

The synthetic tones are very similar to the originals, When some white
noise is added into the synthetic tones to simulate the effect of tape
recorder hiss, most of the synthetic tones are extremely similar to the
onginal. This affirms the validity of the ,:lodel and of the Heterodyne
fUter for representing this class of instl'llments. Although we have not
done this test on every music instrument with nearly harmonic partials, we
have no reason to believe that thiS model should not be adequate for
representing all such instruments, including the human voice (possibly
excepting frication).

That these instruments can be represented in this manner is somewhat
curialIS, because some of the instruments ex hibit inharmonicity, The
heterodyne filter is not capable of detecting inharmonicity directly. It
would appe::tr that these effects show up as amplitude and frequency
modulatIon 011 some harmonics, Since the Slim of two sinusoids is identical
to a single amplitude-modulated sinusoid, much of the effect of
inharmonic partials seems to be captured ill the detail of the amplitUde
and frequency contolll's for each harmonic.
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A great body of work on music instnllYlent tones in isolation is presented
in a companion dissertation An ExplDration of Musical Timbre by John M.
Grey [19751 The heterodyne filter was used to analyze a number of
different instruments as a method of generating psychoacoustic stimuli for
studying human perception of timbre. Figures 26 and 27 were taken from
his work.
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ON :MUSICAL HARMONY

There is a well developed body of harmonic practice which is taught as an
undergraduate music course [Piston 1941; Fort,e 1962]. This is generally
referred to as "classical" or "traditional" harmony. Again, there is a
difference between "vertical" and "horizontal" harmony, We shall only
deal with "vertical" harmony, which does not take contextual information
into account.

We shall discuss the mathematical implications of some aspects of
harmony. notably the chord. The simplest chord is the triad. The triad
consists of three notes sounding simultaneously. The most common triads
::In: the ma jor triad. and the minor triad. These are defined by the ratios
of the frequencies of the notes in the triad. One simple form of the major
triad in "root" position has the next higher note (which is called the
"third" of the chord) located four half.steps higher than the lowest note,
which is called the "root" of the chord. The third of the chord is so-called-
became it is the third note of a major scale which begins at the root. The
highest note of the major triad is called the "fifth" of the chord and is
located 3 half-steps higher than the third which makes a total of seven
half-steps higher than the mot. The'''harmony'' of a piece of music can be
thought of (in an oversimplified manner) as the progression of chords in a
piece of music.

One of the things that makes mllSic interesting is the fact that we may
shuffle the notes of a chord lip 01' down by SOllle number of octaves and
still have the same (111 a certain sense) chord. There are names for many
of the Clrrangements of notes that define a given chord. For instance, if the
third is the lowest note in a chord. the fifth the next higher. and the root
the highest, the chord is said to be in the "first inversion". Likewise, if the
fifth is the lowest, the chord is in the "second inversion". This discussion
is a bit oversimplified, in that the inversion of a chord depends only on
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the lowest sounding note. For instance, a chord can still be in r09t position
if the third of the chord is raised an octave.

One might ask why a chord such as a major triad is so important in
western music. Why wouldn't any combination of frequencies do? This
question has as yet not been answered. It is not clear, for instance, whether
the special n<lture of the major triad is "universal" 01' is a manifestation of
cliltmal Despite the complexity of the problem, several interesting
ob5'-ervatiom have been made. One may observe that in the harmonic

series for a particular frequency. the 41h• 51h• and 61h harmonics of a note

form a major triad. The 6th•.7Ih, and 9th harmonics form a minor triad.
(We should note here that this definition of the minor triad is not quite

SUitable for mUSical use. because the 7th harmonic is actually somewhat

lower in frequency than the usual definition. The interval between the 6th

and 7th harmonics is about 2.67 half-steps, rather than the usual 3 half-
steps). It nllght be more relevant to describe the minor triad in terms of

the ·i lh• 5"" and 151h harmonics. AII unambiguous chords fall in the
harmonic series somewhere. While we may speculate 011 mechanisms in the
ear that makes listening to chords both natural and pleasant, it is more
important to note that each chord can be thought of as a manifestation of
(h<lrmonics of) a fundamental frequency which may well not be present.
For each (ullCllnbiglious) chord, we can find a fh"quency whose harmonics
will contain all the notes of the chord. The existence of this "fictitious
fundamenlill" makes it possible to detern)'ine the harmony of a piece of
mmic<ll wund without determining the notes that are being played. This
can only be done when the harmony is unambiguous. Often composers lise
ambiguous chords to great advantage. It is also important to note that any
interval consisting of an integral number of half-steps will imply one or
more fictitious fundamentals. One does not need a full chord.

Methods for determining the harmony of. a piece will be discussed in the
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..

section on low·level techniques. specifically. the autocorrelation and the
optimum-comb.
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OVERVIEW OF THE ANALYSIS SYSTEM

The musical scribe has been realized for f'l limited class of musical inputs.
The system begins with the digitization of the waveform itself by an
''lI1Cllog-to.digitCll converter, operating at 25,600 samples per second to a
precision of 14 bina; y bits. The first processing step uses the optimum-
comb nwthod .to determine the harmony of the piece. This step is not
really necessary, but it greatly reduces the amount of computer time used
by subsequent steps by reducing the number of possible notes that could
be present at any giv':l1 time. For music which contains notes which do not
lie in perfect unambiguous harmonic relationship, more than one possible
harmony will be generated by the programs.

The next phase of the analysis involves ·bandpass filtering the waveform
at freq uencies which represent the freq uencies of all the harmonics of all
the Ilotes that might be present in the piece, given the results of the
analysis of harmony from the above step. These filtered waveforms are
processed to see if a sinusoid is present at or near the expected frequency.
!f aile is found, its amplitude as a function of time is smoothed and
(t pprox imated by a polynomial and recorded.

The last phase consists of looking at the results of detecting individual
sinusoids (lnd inf('rring what notes must have been present to produce
those sinusoids. This last step is the least rigorous, the most heuristic, and
the most sensitive link in the chain.

Except for the original digltization and the "beautification" of the final
graphical output, the entire system is automatic and runs without human
aid or intervention. This was a design criterion. Since the task of taking
musical dictation is commonly taught at the freshman .and sophomore
levels in college, it seemed pointless to insert a human in the processing
path when a person could do the entire task much more qUickly. The only
vallie the system might have is its ability to do the process all by itself.
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In fact, the system computes the pitches of the notes much more accurately
thelll a human could. This is as much a hindrance as it is a blessing when
the final score is produced. The human being perceives the pitches to be
members of the notes of the scale, even if some of the notes are mistuned.
Humans will tolerate, even admire, large deviations from mathematically
precise rhythm, yet can write down the original score despite the
deviations. Cornputer syntheSized music that does not have this built-in
fleXibility is often recogniz.able by the "inhuman" treatment of rhythm
given by the mathematically precise rendering of a piece. It is quite
difficult for the machine to infer what the original scoring was, based on a
totally human performance. For this reason, output scores can not be
ex pected to be identica I to the input score, but witl reflect the modifications
made by the performer.

For a piece of mm.ic that is only a single voice, the detection of pitch is a
task which has been treated extensively by the speech understanding and
recognition researchers. The topic treated in this thesis goes one step
further in attempting to deal with more than one simultaneous voice. The
only reason the presellt implementation is restricted to two voices is
beC:-111se the noteS-Cit-octaves problem does not appear to have a sirnple
solutIOn. It is not clear how people can distinguish notes whose harmonics
overlap entirely.
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OVERVIEW OF THIS THESIS

THESIS OVERVIEW

In organizing the thesis, many decisions had to be made concerning how
much to include and where ro include it. Rather than present just the
program itself, a more complete description of the history of music analysis
and a discussion of the relation of many common signal-processing
techl1lques to musical sound IS Included, at the cost of includlllg a large
amount of detail on methods that were not included in the final
realization. Since the failures can be as revealing as the successes, it is
hoped that this additional information will be of use to future researchers
who may avoid some duplication of effort.

Since there' has been little effort to produce an automated musical scribe,
no literature appears on the sub jecL The only effort known to the author
is the M a special-purpose hardware device built by Inter-Ocean
Systems of Santa Barbara. This device makes a graph of the pitch of the
inplH waveform with time. This graph is in fact not a score, but is enough
to get an idea of what was being played.

The historical review thus does not (can not) deal extensively with the
ex act problell1 at hand. There are, however, many analyses of music,
musical instruments. and even musical sound, some of which have been
done on the computer. If we temporarily widen our scope to include
analysis for purpose of insight and analysis for the purpose of synthesis,
then we have an abundance of material for discussion. This is, in fact,
what was clone. The historical review includes all analyses of musical
sound by computer that we found, as well as a review of speech processing
Iiteriltllrf?, a related subject.

While doing the research for this thesis, many techniques were discovered
which were not directly useful for the musical scribe, but which had
application in other areas of musical sound analysis. These techniques (the
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Heterodyne filter especially) wili be described. as well as a discussion of
many of the that were not found useful for any aspect of music
processing for one reason or another. The latter were included so that
future researchers will not spend too much time on known dead ends. To
some extent. these are diversions from the subject at hand, but since they
were part of the research done in the course of this thesis, it seems
reasonable to expose them here.

The thesis is divided into four parts. The introduction (this section), a
section on low-level techniques, a section on high.level techniques, and a
critical review section.

In the introduction, we give background information as well as a detailed
historical review. Readers not familiar with the characteristics of musical
sounds may be interested in the section entitled What is Musical Sound?
Re(lders not interested in the historical review may easily Skip that section,
.because little in the thesis is derived from these review topics. The
historica I review section is followed by a qUick summary of pitch
perception theory, which comes from the field of psychoacollStics.

The next section is on low.level techniques. These are the algorithms that
operate directly on the digitized waveform. They are largely signal.
processing techniques, adapted for this special application. Tn order, we
review the autocorrelation function and the optimum.comb techniq ue.
These are lIseful for periodicity detection and tracking. Theil' application
to the detectIon of musical harmony is discussed. The heterodyne filter
follows with a method for determining the amplitudes and frequencies of
the harmonics of a single musical :lOte. This technique has turned out to
be very lIseful for music synthesis, for it can capture al! the time·variant
information in a musical tone. Next, we review the bandpass filter.
AIthough it is a very old device, its application to musical sound has been
little explored in the past. We show several graphs of applications of
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bandpass fiitering to the extraction of a single harmonic from a
polyphonic piece of musical sound. The bandpass filter forms the core of
the tnusica I tnmscription system.

In this section we also discuss several signal-processing techniques that
were tried but were not found to be entirely useful for the current
problem. These include the cepstrulll, the discrete Fourier transform, and
the linear predictor. The cepstrum and the, linear predictor seem to be
useful only in the monophonic case. The discrete Fourier transform
assumes that the autocorrelation of the input signal is stationary. If the
signal is changing either in amplitude or frequency, the transform is
distorted. This means that any system based upon the discrete Fourier
transform could never be extended to encompass vibrato or highly
reverberant enVironments,

we discuss the way we combine the various signal.processing
routines to form a complete low·level package fvr musical transcription.
I-{('re we discuss the utilit}' of determming the vertical harmony of· the
piece as a planning phase for setting up the frequencies of a band of
bandpass filters. The filter output is processed with a pitch detectol' and
an energy detector to producf' pow",,, and rrequency functions for the
output of each filter. In the planning phase, we assure that every harmonic
of every /lote will be passed by some filter.

The next section deals with intermediate-level techniques. Here we pass
from the world of digital signal processing i11tO the world of artificial
intelligence. These techniques deal with making sense from the outputs of
the bandpass filters, figuring out what notes were present in the input
signal, and how best to print these for readability. To allow easy
comparison of the filter outputs, we produce a rating of the quality of a
given power-fretlu€l1cy function pair. If this rating is properly prepared,
we can easily sep:'lI'ate the spuriOUS traces from the meaningful ones. We
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can then hypothesiz.e the existence of notes from their harmonics. We then
discuss some of the aspects of manuscripting.

The lClst se.ction is a critical review of the system. We begin with some
examples which show the viability of the system. We then d.iscliss the weak
points of' the system with suggestions as to how they may be improved.
This involves the development of adaptive pitch tracking filters as well as
further research in other areas.
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EARLY ANALYSES
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There have been many analyses done of music instrument tones, usually in
',order to gain insight into the physics of a specific instrument. Ie was not
until the advent of electronics that music analysis on a quantitative basis
became practical. One of the first examples we have is that of Backhaus
[1927, 1932]. His system consisted of a narrow band-pass filter, using a
carbon microphone and a 5 vacuum-tube amplifier, connected to a pen
and drum recorder. The filter was tuned to the frequency of the harmonic
of interest and the bandWidth was set to suppress adjacent harmonics. The
drum assembly was brought up .to speed by hand (turning a crank). Then
all at Ollce, rhi' pP.1l was lowered onto the papel', the threaded shaft that the
drum turned on \Vas stopped, leaving the drum to turn and screw itself
down (by momentum) and thus cause the pen to leave a helical trace on
the pZlper', and the musician played a single note on his instrument. The
drum was apparentlY massive enough to keep its speed for quite a while.
The resulting trace was taken to apprOXimate the behaVior of a single
harmonic from the instrument. The process was repeated for many
hZlrtnonics of many different notes. Needless to say, the process was

enough to prevent great volumes of data from being
accumulated. The amplitude of the harmonic with time was then traced
and plotted by hancl. Since wire recording techniques were not yet
perfected. the note had to be played again and again to get all the
harmonics. We know now that no two notes are alike in fine structure,
thus casting on the details of the results, but the technique did work
adequately 011 the steady-state portion of notes. His principal result was an
<lila lysis of Violin resonances in an attempt to find out why the
Stradivuius was so revered in the music world. This same theme recurs
constantly throughout the literature.
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The advance of the oscilliscope in the 1:0's brought about a new wave of
research. The steady-state portion of a waveform could be photographeclor
drawn from the face of the cathode-ray, tube, and then analyzed by
calculating the Fourier sine and cosine series. The Fourier integrals were
often computed by hand. until a mechanical device (the Henrici analyzer)
was built to do just that. The operator would trace the curve with the
stylus of the clevice and then just read off the amplitudes of the harmonics
on the dials. Analyses of this sort are very common in the literature
[Lehman 1964. Parker 1947, Saunders 1946. Fletcher et al 19621 Saunders
analysed wind instrument tones to try to determine if the wind instruments
ex hibitrc! )esommces like the string instruments do. He found no evidence
of the eXistence of formants in the instruments he analysed (Clarinet.
Oboe. English hortl, French horn. and Flute). Parker ClIlCllysed the tones of
wooden and metal clarinets using a mechanical embollchure. finding that
therr was \inle difference between wood and metal clarinet tones. Lehman
analysed the bassoon in great detail. using the Kay sonagraph. a device
comisring of a number of narrow banel-pass filters and a recording system
that produced bars on a roll of paper that became thicker in proportion to
the energy output of each bandpass filter. He concluded that there is a
strong formant between 440 and 500 Hz in the bassoon, accompanied by a
weaker formant around 1220 and 1280 Hz.

',COMPUTER ANALYSES

Let us jump immediately into the computer analysis of music instrument
tonf:'s. leaVing behind the large number of articles which were done
without computers. One of the first computer-based analyses of n1usic
instrument tones was done I)y David Luce [I96?]. Using the 709 at M1T,
he digitized and analyzed tones from a large number of music instruments.
Again. this was done for gaining insight into the behavior of the
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instrument and irs possible perceptual implications. Since his analysis
technique was the basis for several following works, including our own •
heterodyne filter, we will describe and analyze it in some detail.

LlJCE

The object of Luce's method was to determine the amplitudes and
frequencies of each of the harmonics of a tone as functions of time. These
were plotted for further study. The method used was to approximate the
integrals for the Fourier sine and cosine series by discrete summations.
First. the fundamenta I freq uency was determined by filtering the note itself
to remove all harmonics except the fundamental. The fundamental was
then digitized (lnd the zero crossings were used to compute the frequency.
This works in most cases, but sometimes gives errors·of·octave when the
energy in the fundamental is very weak. In these cases, the pitch of the
note was matched by hand with an oscillator and the wavefol'm from the
oscillator was usee!. This estimate of the fundamental frequency was used
to divide up the waveform from the instrument roughly into separate
periods. For each period, 24 equally spaced points were selected. Since the
period of the signal was not necessarily a multiple of 24 points, linear
interpolation was lIsed to generate the values between the sample points.
From these 24 points, the Fourier sine and cosine coefficients were
generated. This is represented by the follOWing formulae:
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2'+ LTn(1) an (01) sin (2nn )8 ( (m -1 )T0+ 24
L=1

LTo(2) b n (01) L; cos (21m )'" s[(m-llTo+ 24
L=1

Where S ( t) is the input waveform.

T() is the period of the input waveform.

mis the number of the period under analysis,

and n is the htlrmonic 11umber.

The result W:lS cne pair of coefficients every period throughout the

dunltion of the waveform. The pail' of coefficients were converted to
radial form and the magnitudes and angles were then plotted. To test the
validity of the analysis procedure. the magnitudes and angles were used to
synthesize a tone. This tone was played through a digital-to-analog
converter (DAC) and compared to the original tone. The first problem
encou!1tf:>red was the fact that the magnitudes and phases that were
sampled once per period lead to a discontinuQus waveform. This is
bf.'cause fit the beginning 'of each period. the phases and magnitudes were
suddenly changed to the values for that period. If the parameters for this
pf.'riod were signifiCfll1tly different for the previous period. a discontinuity
results. This is often the case during the attack and decay portions of a
note. This was reilledied in part by filtering (digitally) the waveform at a
frequency higher than the frequency of the highest harmonic to remove
spurious harmonic distortion. The results of listening tests were that the
string family was well reproduced. but the brasses suffered a bit. The
lowest octaves trumpet. trombone. tuba. and French horn were all



23 HISTORICAL REVIEW

noticeilbly different than the original notes. The notes sounded very rough.
This was explained by the insufficiency of using 24 points per period.
Since the brass tones have a pulse-like waveform, sometimes the pulse
itself occurred between two selected points, thus reducing the magnitudes
of the ForieI' components for that period. This hit-or-miss behavior
created great jitter in the magnitudes as functions of time, thus
contributing to a rough sound. Similar difficulties were encountered with
the clarinet tone.

What we me<tn by "pulse_like" is that the waveform. in each period, has an
initial strong maximum followed by activity of lesser amplitudes
throughout the remainder of the period. This can occur if the harmonics
·of the waveform are all cosines, such that their maxima coincide and
reinforce, producing one strong maximum per period.

FREEDMAN

The next set of analysis programs were written by Morris David
Freedman at the University of lIUnois [1965, 1967, 1968). In his system,
music instrument tones are modeled by the follOWing equation:
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hi
(3} hk(t} ArkUlt-Trk ) fl_s-ark(t-Trk}r=l

hi
(4} glt} l; hklt) sin [Wk lt-T1k}+7fkJk=l ,

Where U ( t) is the unit step function,

k is the harmonic nun1ber,

Wk is the radian frequency of the kill harmonic,

1fk is the phase of the kill harmonic,

T Ik is the beginning time of the kill harmonic,

hk ( t) is the amplitude envelope of the kIll
harmonic.

Ark j:; the amplitude of the rIll component of the
amplitude envelope of the k Ih harmonic,

T rk is the beginning time of the r In component of
the amplitude envelope of the kill ha.-monic,

ark is the time COt1stant of the rIll componr:mt of
the amplitude envelope of the kIn harmonic,

9 ( t) 15 the signal thai is to model the music
instrument tone.

This is a sum of sinus.oids, not necessarily harmonically related, with
piecewise-comtant frequencies. The amplitudes of the sinusoids are
pllxewise sums of exponentials and constants. For synthesis, linear
interpolation was used to smoothly change from one frequency vaiue to the.
next, thus eliminating Luce's problem of discontinuities. To get the
parameters of the model from an actual music instrument tone, a three step
'process was used. The first step gets the ilhase differences of the
harmonics and the average frequency of each harmonic. The second step
deterrnins the amplitudes and phases of each of the harmonics as functions
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of time, gUided by the frequencies of the harmonics as computed in the
first step, The second step can then be repeated with the new frequency
data for a better approximation. This completed the analysis, The
amplitude functions of the harmonics were examined for places of great
change of slope ,md these places were taken to be the "breakpoints" for the
piecewise-exponential amplitudes as shown above.

The first st::>p ')f the analysis used what he called the "D-transform." It is
defined as follows:

(5) OH,w} = i t -'WTJ f (T) e J ciT
o

Where f (T) is Ihe input waveform

ThIs is (l Fourier integral of a function that is limited in time to positive
values less than t. The second ,and third steps of the analysis used what he
called the "G-transform" which is defined as follows:

(6) G{t.Wl =
t+T 'WT5 f (T l e -J ciT

t-T

Where T is the period of the input

This IS a Fourier integral over one period of the input waveform. This
returns the quadrature components which can be used to derive the
magnitudes and phases of the harmonics as functions of time. Freedman
does not say how often the integral is evaluated, but we assume it is
evaluated once per period of the input signal, as Luce did.

Aga in, the tones were synthesized using the data from the analysis. The
trumpet and saxophone tones were judged to be nearly indistinguishable
from the originals. The violin was judged the poorest, although it was
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judged as quite good. In each case, the synthetic tone showed the
'{haracteristic quality of the instrument. The violin sounded bowed and
the flute sounded "breathy."

DE" UCIIAMP, KEELER

Be:lUchamp, also (It University of Illinois, built upon the work of
Freedman by using only the O-transform, adding a filtering' operation, and
using pIecewise linear functions to represent the amplitude functions
[Beauchamp The amplitude functions were filtered with a low-pass
f liter to remove a characteristic ripple in the functions that was at the
frequ('ncy of the fundamental. He evaluated the functions "a few" times
per period. The amplitude functions were then apprOXimated with
piecewise-lineal' functions. For syntheSiS, the frequencies (phases) of the
harmonics were not varipd with time, Just the initial phase angles were
preserved. The frequency of the entire tone was allowed to vary in a
piecewisc-linear fashion, with the ratios between the frequencies of
harmonics held constant, as with Luce and Freedman, but explicit and
separ::lte control over the frequencies of each of the harmonics was not
lIsed,

Since thl? publication of the above described paper, Beauchamp [personal
communication, 1974] has applied the Fast Fourier Transform algorithm
(FFT) to the eVilluatlon of the O-transform. This is done by first redUcing
each period of the input signal to 64 points by linear interpolation, much
like Lucc, multiplying the signal by a Hamming "Window" function
[Blackman and TUkey 1959], and then taking the discrete Fourier
transf01'111 of (>(tch period using the FFT algorithm for efficiency.

Keeler [1972] analyzed tones from organ pipes using techniques similar to
Beauchamp's published method. He evaluated the Fourier integral
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numerically using quadratic approximation by Simpson's rule and
Lilgrangi<ln interpol<ltion to improve the accuracy. In his method, the
worst·case error in the amplitude estimate for a gi ven harmonic was less
than 1.25 percent. He was not concerned about the phase as a function of
time and thus did not carry along that information. He did not attempt a
synthesis of the tones from the analysis data.

THE MELOGRAPH

The computer analysis techniques described above were for the purpose of
gainlllg insight into thp. properties of instruments or musical waveforms,
and simulation of music instrument tones. We have still not described any
method of transcribing a piece of music. This is because, to our knowledge,
no wch analysis has ever been done. The closest we have found is work
in speech understanding and recognition, and a peculiar device called the
Melograph

The Melop':raph is a special-purpose piece of mostly analog hardware and
a chilrt recording scheme which lUiS two plll'poses. One function it can
'perform is that of a high-resolution spectrograph. It can simulate 100
bandpass filters (lnd record the energy output of each on the graph. The
second function is that of detecting, tracking, and graphing the
fundamental frequency of an input waveform with time. It C:in only
operate on a monophonic {one-voice} input Signal in a relatively noise·free
environment. It accomplishes this by realiZing a band of J/3 octave band·
pnss filters. The outputs of the filters are scanned every 4 milliseconds
from lowest frequency to hig'hesr, searching for a maximum in the energy
output of iI particular filter relative to its neighbors. When the first
maximum is found, the output of that filter is assumed to contain
fUI1dan1ental of the tone. The zero crossings of the output of that filter are
counted and that number is llsed to compute the pitch. This pitch is then
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plotted on the chart. Since there is no documentation on the operation of
the device, tillS information was obtained by verbal contact. The device
belollgs to the Elhnomusicology department 9f the University of Los
1\ ngeles (Inc! is Ilsed for transcribing single-voiced ethnic music, usually
hurnan voice. The device was built by Inter-Ocean systems of Santa
Barbara.

To comment 011 the operation of the Melograph. let us quote from an
article by M.R. Schroeder [1970];

The oldest approach [to pitch detection] simply isolates the
fundamental frequency of the signal by means of a low-pass
or band-pass filter and then determines the frequency or
period of the fundamental by means of measuring the rate of
or the distance between axis crossings. Unfortunately, in
many speech signals the fundamental is or even absent
(as in most telephone signals).

In general. we cannot rely on the presence of the fundamental, or on the
hope that the fund(lmental will be stronger than the second harmonic.

SPEECH TECHNIQUES

The research in speech understanding has contributed a gnat deal of
work in pitch detection and system estimation. Since any musical scribe
must detect the pitch of the incoming waveform, much of this may be
useful. Let us describe some of these techniques in detail:

FOURIER METHODS

Our olel Handards, the Fourier transform and autocorrelation, were among
the first to be tried (Harris and Weiss 1963J. These techniques were
useful but had certain problems. In either the spectrum or the
autocorrelatIon, there is a peak in the output at every multiple of the
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fund(lmcntal frequency (for autocorrelation, there is a peak at each
multiple of the fundamental period). One could not just take the lowest
peak because it is sometimes not there. Harris and Weiss developed a
method of looking at several peaks in a row and forming an estimate of
the fundamental frequency by averaging the contributions from the two '
strongest adjacent peaks. Rife and Vincent [J 970], although not working
directly with the pitch detection problem, developed a method of
interpolating to get the position of the peak quite accurately by using
weighting functions which had known effects on the transforms.

THE CEPSTRllM

With the advent of the cepstrum. probably first used by Bogert working
on a suggestion by Tlikey [Bogert, Healy, and Tukey. 1963], a new tool for
speech resp.<lrch was opened up. Noll's classic article [1967] gave detailed
instructions on the use of the cepstrum for the detection of fundamental
frequcncy. This system had the advantage that the maXimum of the
cepstrunl was often unique. When there was another peak, it was generally
at twicr. the penod of the fundamental, and rarely did it exceed the
strength of the peak representing the fundamental. The cepstrum consists
of the inverse Fourier transform of the log-magnitude Fourier transform
of the input waveform. Since the autocorrelation is the inverse Fourier
transform of the magnitude Fourier transform of the input waveform. the
two processes are related. They both have time as the independent
vllriablc; they plot period rather than freqw:ncy. The theoretical basis of
the method was developed in great detail by Oppenheim [1968. and
Schllfer [1969]. Roughly, the way it works in speech analysis is as follows:
the speech waveform is taken to be the result of an excitation function (the
glourtl pulse) and a realizable filter (the vocal tract). It then follows that
the log-magnitude Fourier transform of a segment of a speech waveform is
the sum of the log-magnitude Fourier transforms of the glottal pulse
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wavefonTI and the vocal tract impulse response. This being true, one can
compute what the FOlmer transform of this log-magnitude spectrum wjJJ
be by superposillon, since the signals add in the log-magnitude domain.
Since lhe vocal tract is a filter. its frequency response is usually a broad,
smooth curve with a small number of peaks (fQrI11ants). The glottal pulse.
however. is a nearly-periodic waveform which consequently has many
harmonics. Its transform has a peak at til: frepency of every harmonic.
The transform is roughly periodic with a period equal to the fundamental
'frellu('ncy of the signal. If we take the transform of this quasi-periodic log-
magnitude spectrum, we would then expect to get a strong peak at the
period rf.'presenting the repetition rate in the frequency (or time) domain.
When we take the transform of the log-magnitude frequency response of
the vocal tract, however, we would expect to get something concentrated

the short periods, since the frequency response of the vocal tract is
broad and slowly varying, This is, in fact, generally the case, The peak
due to the perioc1icHy of the glottal pulse tends to stand out from the
;1eti vity due to the vocal tract. In. fact, this separation of repetition from
system response (excitation from filtering') was the basis of several
ingenious techniques for removing echos [Schafer 1969] and for estimating
the impulse response of the vocal tract. This estimation led to the
development of the homomorphic vocoder [Oppenheim 1969, Miller 1973),
where the cepstrum was l!sed to determine the pitch of the speech signal as
well as the impulse response. The signal could then be synthesized by
convolVing the derived impulse response with an impUlse train at the
original pitch. The impulse response was determined by eliminating the
peak from the cepstrum and then inverting the process to yield a time
sl?ries which was, in fact, an estimate of the impulse response of the filter.
The peak was eliminated by simply setting the cepstrum to zero from the
peak on, leaVing only the short-time values of the cepstrum. Miller [1973]
mad/? pxtensive lISe of this technillue to extr<let singing voice from
orchestral b(lckgrollnd. Since the cepstrum just picked up whatever was
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loudest, there was quite a bit of error in the analysis which was
5,ubsl?C/uently corrected by hand. The cepstrum \IIould just as happily track
an orchl"5tral instrument as the voice. if it happened to be dominant at the
timf:'. The result was synthesized with good results. The singing was highly
intelligible and preserved well the character of the singer. One innovation
in the synthesis is worth noting. Since the analysis is somewhat noisy, the
impulse response estimate tended to vary from one estimate to the next.
This produced some undesirable variation in the synthesis which sounded
like roughness in the tone. This was eliminated by repeating each impulse
respollsl; not just once. but five times with amplitudes which built lip to a
maximum and then L This had the result of interpolating smoothly
,between one impUlse response and the next and thus eliminated any
roughness in the sound. Schafer's thesis gives an excellent review of
homc1morphic filter techniques.

THE PIUDICTOR

Another techniq lie of system estimation which has been shown useful in
pitch detection is the linear predictor [Itakura and Saito 1968, 1970, 1971;
Markel Makhoul and Wolf 1972; Makhoul 1975; Boll 1973]. The
Idea here is to again model the signal as an excitation function, and a
filter. We use the discrete analog of the Wiener.Hopf integral [Wiener

Levinson 1947; Robinson 1967; Lee 1960] to estimate a non-recursive
digital filter that approximates a filter which correspollds to the inverse of
the filter that produced the sound. In other words, the filter we calculate
,has an anti·resonance everywhere the vocal tract has a resonance. If we
filter the speech waveform with this filter that we have computed, the
output will approach an Impulse train. The better the estimation of the
filter, the closer to an impUlse train the output will be. This is because this
filter. called i'l/1 "inverse filter," tends to make the amplitUdes of the



INTRODUCTION 32

harmonics equal. Since the periodic signal with harmonics that all have
the same amplitude is a pulse train, the output of the filter approaches the
ideal pulse train, Pitch is then detected by calcul<tting the distance between
slIw:"sive peaks of the inverse filtered speech waveforrn, Pitch can also be
computed by taking the autocorrelatfon of the inverse filtered speech
waveform, The largest peak in the autocorrelation is taken to represent the
fundamental period, The theory behind thiS is that the reason the
autocorrelation is not useful when directly applied to the speech waveform
is Widening of the autocol'I'elatiol1 peaks by the effect of the vocal tract. If
the effect of the vocal tract is suppressed by fi.ltering the waveform with
the inverse filter, the peaks in the autocorrelation will be sharpened
considerably. Since the speeCh waveform is constantly Changing, the filter
must be recomputed periodically. It is often done every 5 or 10
rnilliseconds.

The linear predictor can also be used, like the cepstrum, as a vocoder.
Since the filter calculated by the predictol' is an approximation to a filter
whose inverse behaves like the vocal tl'act, the speech waveform can be
synthesized by simply filtering a pulse train by the inverse of the filter
produced by the predictor, Inverting' the spectrum of a digital filter is a
simple operation, Atal and Hanauer [1971] and later Markel and Gray
(1974) programmed vocodel's based on this principle and found them
quite successful. A marvelous synthesis of the cepstl'um and the linear
predictol' was done by Tribolet [1974], who joined the two methods to get
an estimate of both the poles and the zeros of the filter. The linear
predictor by itself is an all-pole model and is sometimes inadequate in the
presence of a strong nasal zero. These topics are part of the larger field of
systt'm estimation, In this discipline. the object is to estimate the filter that
could havr. produc t:c1 the input signal in as much detail as pOSSible with as
little error and complitation time as pOSSible, Tribolet's thesis gives an
excellent revIew of system estimation techni.:]ues. An excellent review and
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detailed analysis of the linear predictor is given by Makhoul and Wolf
[1972]. noll has aIso made sigriificCint contributions to the reduction of the
compute time for the linear predictor [I by assuming that the filter
which represents the vocal tract changes slowly with time. The estimate at
this point in time can then be used to aid the computation of the estimate
at the next point in time.

MISCELLANEOUS METHODS

method of pitch extraction that is aisa based on spectral
flattening (imking all the harmonics more alike in amplitude) was given
by Sandhi [19681 In his system, a band of bandpass filters are used to
determine the spectral envelope. The speech waveform is then accentuated
in frcquf.'ncirs where it is weakest The resulting waveform has much more
prominent peaks which can then be used to determine the fundamental
frcg uency, either directly by measuring the distance between peaks, or by
taking the larg;est peak in the' autocorrelation. Sondhi also noted that the
peaks in the autocorrelation can be enhancf:'d by center clipping. This
process uses a'n adaptive threshold to gate the signal through only when its
magnitude exceeds the threshold. When the signal is passed, the threshold
is subtracted (added if the signal is negative) to prevent discontinuities in
the waveform. The threshold is set to a fraction (such as .7) of the
maximum amplitude in a given window. The center clipped waveform is
then 3utocorrelated, and the strongest peak in the autocorrelation is taken
to be the pitch period.

DIRECT WAVEFORM ANALYSIS

A series of pitch detectors have been deVised Which base their estimates
directly on the speech waveform itself [Reddy 1966; Vicens 1969; Gold
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1962; Gold and Rabiner 1969; Miller 19751 Reddy used a three-step
process based on measuring the significant maxima and minima of the
,-pep-eh waveform, The first step just detected the times when the speech
waveform exceeded a certain fraction of the maximum of the waveform in
a certain region. The second step determined the significant maxima and
minima of the '>vaveform, looking for places where a maximum 2nd a
minimum occur together, These two methods were related by three
heuristic algorithms which matched the two pitch estimates, eliminated
irregularities and filled "holes" in the pitch estimates. Gold and Rabiner

six measurements on the speech waveform, prodUcing six different
pitch [K'i'iod A final stilge of processing coordinated these six
estimates to produce the final estimate. Two refinements were offered to
improve the performance. Miller developed a technique which detects the
"principal excursion" of the speech waveform for each period. This
excursion is the large positive pulse which occurs after the glottal pulse. It
··is essentIally the impulse response of the vocal tract. In most phonemes
except nasals. this pulse is quite prominent. His method consists of
integrating the waveform to locate the position of maximum positive area.
The zero crossing preceeding this position is taken to be the beginning of
the principal excursion. A series of heuristics is llsed to prune spuriOUS
and irregular zero crossings f"om the estimate.

AII of the previous methods are based on the fact that the speech
w(lVefOnl1 is unique in many respects. It is this special behaVior of the
speech waveform that makes measurements on the waveform itself llseful.
ThE'S€' mr:thocls are somewhat sensitive to phase distortion. l'...fil1er's method,
for instance. can IJe fooled by passing the speech waveform through an all-
P(lSS filter, which causes phase distortion that can eliminate the prominent
peak in the sig-nl1l. ExceSSive room reverberation, such as found in large
concert ha lls, can aIso spoil the method, since reverberation causes great
phase distortion. The method of Gold and Rabiner used a Lerner filter
for filtering to preserve the phase relations as mllch as possible.
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:MUSIC PERCEPTION
or: A Child's Garden of Psychoacoustics

PITCH PERCEPTION

HISTORICAL REVIEW

In trying to determine a method for analyzing musical sound, it would
seem reasonable to look at what is known about how the ear does it, since
we :He trying to rival the ear's performance. As it turns out, many
il1tp.resting observations have been made. but they raise many more
qllp.stiom than they answer. Let us review the existing literature in one
particular area, the perception of the pitch of one voice. It seems
impossible to covp.r all the interesting work in this area. We shall not
attempt to do so here.

Our ear is presented with a musica I tone. We perceive it as being at some
pitch. What features of the waveform determine that pitch? What starts
out sounding like such a simple problem turns out to be very complex.

In our naivite, WP. might first postulate something like Ohm's acoustical
law [Ohm IS431 Ohm suggested applying Founer's theorem, such that
e<lch tone of <l different pitch in a complex sound originates from the
objective existence of a peak at that particular frequency in the Fourier
anCllysis of the acoustic wClveform. This would imply that the impression of
pitch depends not only on the existence of a sinusoid at the fundamental
Ireqlwncy. but also that that sinusoid is of a stronger amplitude than any
harmonics the tone may exhibit. Seebeck [l843J countered the theory of
Ohm by determining the FOllrier spectra of several of his previous
observations [184 lJ and shOWing that in several cases, the sinusoid at the
iundarncntal frequency was quite weak or even missing. A pitch at the
hypotheticClI fundamental frequency was stilI perceived. Ohm [1844] and
later Helmholtz [J 8Sg] declared Seebeck's observations to be invalid and
the result of either illusion or faulty experimental technique.
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We skip a half a century and pick up again with the work of Von Bekesy
[1928J. who produced proof that the ear does a spectral analysis of some
sort. where 'different frequencies excite responses frol11 neurons originating
in different places along the basilar membrane. As we progress along the
membrane, the excitory frequency changes smoothly in a vaguely
logal'ithmic manner.

With the coll.ling of electronics, increasing evidence was gathered for the
(au (lj tilt' missing jundammtlll, that indeed, a pitch could be perceived
wllhout the existence of any fundamental frequency at all. In fact, a group
of higher h,ll'l110nics can be heard collectively as a single. unified, percept.
This percept is called the residue.

In an attempt to explain the phenomenon of the residue, one might
observe that several adjacent harmonics added together produce a
waveform which has a periodic modulation at the frequency
corresponding to the difference of the harmonics. One might then
hypothesize that eithr.r the ear detects the en velope of the incoming
waveform. thus demodulating the signal and extracting the frequency of
the undulation, or perhaps the ear perceives the differences between the
harmonics directly and infers the pitch from that. Figure I shows the
wavrform of a signal that has no fundamental frequency. It was produced
by bandpass filtel'll1g a signal which has many harmnnks. Notice the
regular undul:'ltion Ihat might imply some fundamentill periodicity. Figure
Z the discrete Fourier transform of the waveform in figure 1,
shOWing that it, indeed, has no fundamental. it aiso shows that the
frequency of the undulation is roughly equal to the spaCing of the
harmonics in the Fourier transform. This undulation is a characteristic of
a cluster of isolated harmonics.
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FIGURE 1. This waveform was produced by filtering the waveform of a guitar tone so as to
select only il few of the upper harmonics. The note lhat was being played was roughly an E4 (332
Hz). The sixth and seventh harmonics were most prominant in this waveform, although many others
arc pi'esent to a lesser exlent. It is clear that the waveform is periodic with a period of roughly 3
milliseconds, which corresponds to the frequency of the note.
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FIGURE 2. This is the discrete Fourier transform of the waveform in figure 1. .As we can
see, the ,mel second harmonics are entirely absent. Despite their absence, the waveform in
figure 1 is quite periodic..
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Schollten [l940J in one experiment showed that neither of these could be
the case. This was done by shifting the set of harmonics collectively by
some amount. This makes the sinusoids no longer harmonically related,
but it preserves the constant differences among them. In fact, one does
perceive a chang l? ill the pitch of the residue even though the envelope of
the wavdarm has not changed, nor has the differences of the frequencies
of the sinusoicls.

So. It is not the envelope, nor is it the differences among the harmonics.
Well. what is it? De Boer [1956J did some revealing experiments which
bcg;m the current trend in thinking on this question. If one takes a
sinusoid of some frequency f, say 2000 Hz, and amplitude modulates it
with some other frequency g, say 200 Hz, one gets three sinusoids of
frequE'll'::ies f-g. f, and f+g. As usual, these are heard as one percept of
pitch g. A change in the carrier frequency, f, results in a proportional
shift in perceived pitch. A more remarkable observation was that the pitch
shifted downward when the modulating frequency, g, was raised! This
eilect was met with doubt lip to incredulity. De Boer made the observation
that these phenomena could be explained by hypothesizing that the ear
detec.tcd the time difference between peaks of comparable amplitude. This
is calh?cl the fine structure hypothesis, that the ear detects the details of the
fine structure of the waveform and uses that data as the basis for pitch.
'-figure:' shows the essence of thiS theory. We see it waveform which has a
l'egulilr undulation. We have chosen an ambiguous case, where there are
two separate maxima of equal amplitllde, such that the time between the
maximum of the previous undulation and this undulation can have one of
two values. This theory predicts that the pitch will be ambiguous in thiS
case.



39

l:
Ilf

11l/g

;".!, -

fl
J.-

CL

'\ \rt: l' -
IT

\I

?!, -

z
CYCLES

FIGURE 3. This illustrates one theory of pilch detection which is sometimes called the
hypothesis". This theory states that the pitch is determined by measuring the time

between the peaks in successive wave groups. In the case pictured above, the theory predicts a
perceptuClI ambieuity in pitch, that some subjects would report f Hz. and some subjects would
rE"port g Hz as the pitch of this tone. This tone is inharmonic. As was pointed out by Wightman
[1973], this theory is highly suspect because it depends on the phasing of the component
sinusoids, whereas pitch perception does not seem to. The effect of phase change can be
demonstrated simply by inverting the waveform. If we measure the distance between the negative
peaks rather than the positive peaks, there is no longer any ambiguity in the pitch measurement.
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Ritsma [1970] extended this theory a bit by showing that if pitch
information is available along a large part of the basilar membrane at
once (that is, if a tone has many harmonics), then the ear uses only the
information from a Ilarrow band. This band is positioned at about 3 to 5
times the pitch value. This is called the concept of dominance. Ritsma
sums up the theory ;,s follows:

The sound is subjected 10 a spectral analysis on the basilar
membrane. Because of the limited resolving power of the
membrane, Or1 each place of Ihe membrane, a waveform is

According to the concept of dominance, only one
region on the basilar membrane is dominant with respect to
the perception of pilch. This region is roughly 4 times the
pilch value. On the waveform generated in this dominant
region, the ear performs an process
determining ihe time· interval between two pronounced
positive peaks in the fine structure.

Th is is what is called the place versus period controversy. The place
ad vocates, of which Helmholtz and Ohm were members, attribute the
pr:rccption of pitch to the position of max imum stimulation on the basilar

membnme. The basilar membrane is known [Be'kesy 1934] LO be frequency
sensitivr., with the frequency distributed motonically along the length of
the membrane. The J,aiod advocates lise the existence of the residue to
show tha! there doesn't have to be any maximum at the place where pitch
is perceived.

There is, again, evidence that the fine structme process is not the whole
$(Ory. Smoorenbl1l'g did experiments with the perceived pitch of
complexes consisting of two pure sinusoids. The problem is that given two
tones at frequencies f I and f 2 (f I<f 2), one not only hears the difference

tone f 2-f /. but one hears the combination tone 2f 1- f 2' and it is louder
than tne difference tone. This effect can not be explained by any of the
lllethods d iSCU5sccI so far. Hmmm! One explanation might be that there
are nonlinearities in the ear that produce crOSS-frequencies. The problem is
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that ctlthough one can hear tOiles at frequencies (n+l) f l -nf 2, one does
not hear the corresponding higher tones at (n+ll f 2-nf 1. One can only
wriggle out of this one by declaring that the nonlinearity must be
frequency-selective, that it suppresses the higher sideband itself. Further
work places more and more restrictions on the nonlinearity, such that it
can only be considered as tentative, and the existence of the combination
tones has yet to be explained satisfactorily.

Terhardt [1£170] advanced De Boer's (and others') work and fOllnd small
deviations in the pitch of the residue from what would be predicted by the
fine-structure hypothesis. His conclusions imply that the ear itself
'transduces primary sensory data on the level of frequencies and
ilmplitudes of the partials of a tone, and some higher level of processing is
responsible for many of the fUllny effects, like the residue.

This was all fine alld good until Wightman [1£173, 1974] came along and
showed that a change in the relative of the harmonics of a tone
ch(lnges the fine muctllre drastically. but does not <lIter the perceived
pitch. ThIS essentially eliminates the fine-structure hypothesis. This can be
seen in figure 3 by merely inverting the picture. This chang"es the fine
structure entirely. For instance. there is no longer an ambigUity in the
distance betweell maxima.

There are any llumber of other effects which should be mentioned just to
give one an--jdeaof the complexity of the issue. One marvelous effect is
that of repetition pitch. If one takes a signal (like white noise) and delays it
by some amount (say, 10 ins) and adds it back into itself, a Iistner generally
perceives a pitch at the frequency represented by the delay. If the original
signal is passed through a bandpass filter, and its delayed repetition
passed through another bandpass filter whose passband does not overlap
that of the first filter, the slim of the two filtered waveforms does not
produce any pitch effect [Bilsen 1970]. The point here is that this effect
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could not be rille to comparing successive peaks in the waveform for
rep'?tition bl?cause there are not necessarily meaningful repeating peaks.
This argues for a more gross, averaging sort of process, like
autocorrelation. There is a dichotic repetition pitch also. The original can
be played into one ear and the delayed sound can be played into the other,
thus producing: a pitch. This could only be produced at the first place
where the signals. from different ears meet at the same place, where they
can be compared. The first place this is dOlle is in the cortex itself.

Another effect reported in the literature is that of the binaural residue
(HoU(sma ,md Goldstein 19721 In this experiment, two higher harmonics
are used to produce a perceived pitch at the frequency of the missing
fundamental. The difference is that one harmonic is played into one ear
and the other !l:Hlllonic is played in the other ear. At low levels. one
incked cloes gr:'t a residue phenomenon. Like the dichotic repetition pitch.
thiS implies that some aspects of pitch formation are done at a high level
of processillg, Our informal listening' tests have failed to confirm this
eft'eet.

Sirbel't [1970] calculated entirely from statistical arguments that human
perception of pure sine tones was based on place rather than periodicity.
His calculations show that not only would the frequency resolution be
mllch more <lcute, but the form of the behavior as a function of the
freqwmcy of the tone would be different if time cues were lIsed. It would,
for one thing. be dependent upon the amplitude of the tone. Except in the
limit (very loud or very soft), the resolution is independent of amplitUde.
Three more recent theories (Wightman. Goldstein [1973J. Terhardt) go on
'to propose modified J1lace theories. In these theses. the 11lact of stimUlation
is transmitted to the brClin. where some higher-level process pieces together
.the evidence and registers a pitch. Terhardt even shows a leaming model
which must !lndergo a training sequf'nce to acqUire effects like the residue.
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In none of theories is the fUlldamentalnecessary for pitch perception.
It IS inferred from a sequence of harmonics. Both Goldstein and Terhardt
present models that are essentially statistical in nature, leaning heavily
tawilI'd c1ecisioll-theoretic methodology. Wightman is still using a modified
C1utocorrelation Clpproach with reClsonable results so far. None of the
models is comprehensive enough to explain all the effects of pitch
perception that have been noted, but they all show promise of being
extendable. If irnplp.mented on the computer, Terhardt's model would

reqUire more than 106 words of memory just for the decision table.

In any case, it would appear that the current concenslis is that the ear
resolves separately each of the harmonics of a complex tone. The existence
of and pitch of these harmonics is sent to brain. The brain then
t:':';::lmines them (and the immediate past, presumClbly) and decides what
pitchp.s are present. The theory to date is not detailed enough to directly
code for the computer, but it is somewhat suggeslive of promising
directions for research.

It is not clear what the residue and combination tones have to do with
music perception. Most music is polyphonic, which already implies that
weak effects like residue and combination tones are of secondarv
importancE'.

There is a great deal more literature in psychoacoustics that deal with
topiCS that (Ire related to music to one or another that will not be
reviewed here. These include works on consonance and dissonance, timbre,
cognitive (high-level) processing, and many others.
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LOW-LEVEL TECHNIQUES
INTRODUCTION

The low-level techniques are those which operate directly on the digitized
waveform. They belong largely to the realm of digital signal processing.
The plll'pose of these techniques, in our application, is to determine what
frequencies (Ire present in the input waveform, how strong they are, and
over whflt intervals in time they exist. This is, of course, a statement of
the variables in our model of musical sound. We wish to determine how
rn::IllY sjl1usoids are present (It ;:my given time as well as what the slowly-
varying amplltudc :'lnd frequency functions are, as fUllctions of time. Since
we are not interested, for the moment. in identification of the instruments,
1'101' ar€we interested here in synthesis of music instrument tones (synthesis
will. however, be disClIss€ci briefly in the follOWing sections), we do not
need to c!l:termine these functions to great accuracy.

The routinf?s group themselves into two broad categories: pitch detectors
and harmonic extractors. The pitch detectors (more precisely, periodicity
detectors) take a signal in and produce as output a list of what frequencies
are present in the signal as. a function of time. Pitch detectors work best
when the signal is a single periodic waveform, but have some application
ill polyphonic sOllnd. Although any Ilumber of techniques have been used
as pitch detectors in the past [Gold 1962; Gold and Rabiner 1969; Moorer
197·t; l'vfiller 1975; Harris and Weiss 196?,; Markel 1972; Noll 1967; Sondhi
HH3S; Reddy 1%6], \IIf.' Will only deal with two autocorrelation-like methods:
the (lptimllln-comb method and the autocorrelation function. The reason is
that thesl2 methods (Ire more useful in the polYphonic case than any other
,common methods. The methods that use direct waveform measurernent
[Reddy 1966; Gold 1962; Mi11er 1975) are biased toward monophonic
human speech. The spectral flattening methods [Markel 1972; Sondhi
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1968] are based entirely on the rlSSumption of monophony and have no
application in polyphony. The spectral methods [Harris and Weiss 1963;
Noll 1967] have various problems and will be discussed indiVidually later.

The purpose· of a harmonic extractor is to produce the waveform, or at
least a model of the waveform, as a function of time, with all other
simultaneous activity eliminated. We will discuss two such extractors: the
heterodyne filter and bandpass filtering. The heterodyne filter is a
/H1Imonj(·bastd technique, in that it reqUires that the input waveform be

periodic. It then returns the amplitudes and pha!es of each of the
hannnllics 'lS funr.liollS of time. Bandpass filtering has no such restriction.
but has a problem with resolution of time·detail. There is :3 direct tradeoff
bf':tween frequency resolution and time resolution with the bandpass filter.
ThIS is sort of the signal processing enthusiast's ."Heisenberg principle". (or
perhaps the Signal processor's own personal albatross!).

A nel then there are all the methods that didn't work. These are, of course,
far wo numerous to detail in one lifetime, but three of the more important
failures are discussed.

The techniques that were found useful are interesting in their own right,
bUl Ihey must be merged into a unified whole to accomplish anything. The
last section of this chapter deals with the algorithms used to weave
meaningful threads through the data.
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METHODS FOUND TO BE USEFUL (AND WHY)

THE AUTOCORRELATION FUNCTION

INTRODUCTION

The autocorrelation function is one of the oldest and best understood
signal.processing techniques. It is defined as follows:

'0

(7) A (T ) '" 5 F (t) F (t+1") d t

Where F( t) is the input waveform time t;

In the world of sampled.data, we do not. have the function from the
beginning of time to the end, nor do we have the function at all points.
For sampled.data systems, there are several analogous functions we may
1I.se:

(t)

(8) Am '" 2: FnFn<m
n=-,o

N-m-l
(9) Am 2; FnFn•m

n=0

N-l
(0) Am =}: FnF(n+m) mod N

n=0

N-l
(11 ) Am FnFn.m

n=0

(discrete analog of (7) )

("windowed" to N points)

("cyclic" atttocorrdation)

(covariance)

Where Fn is the input waveform. at the nth sample,
that is, at time. nh where h is the time
between samples
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We shall use the definition of equation (It). To see what this does to a
signal. let LIS calculate and observe its behavior on a pure sinusoid.

N-l
(2) Am == B sirdnWh+l/J) B sin[(nfll1}Wh+tP]

n=0

Where B is the amplitude of the sinusoid

W is the radian frequency of lhe sinusoid

q. is Hie phase of the sinusoid

J\ nd by the magic of the summation ca lculus we get:

TIllS is plotted in figure 4 for certain vailies of the parameters. By
equation Ig, we can see that Am is periodic with period = 27f/wh. It
has maxima and minima·that recur with that period. As a function of m,
..it is, in fact, a perfect sinusoid. This can be seen because it is the sum of
two sillusoids of the same period (27f/ wh) with differing but constam
ph<lses and amplitudes. The result is another sinusoid.

Since the autocorrelation is not lineal', superposition does not apply. We
cannot gelH?ralize by inspection. We can, however, compute the
autocorrelation of a perfectly periodic waveform of arbitrary spectral
content.
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N-l L L
(14) Am [L Bj sinfnjWh+rPj) ] [ L 13k sinfnkWh+rPll) ]

n=0 j=l k=l

Where n is the harmonic number,

So is the amplitude of the nth harmonic,

W is the radial) fundarnental frequency of the
waveform,

rflo is the phase of the nth harmonic.

Which comes out to the following:

. {(k-j)WhsIn 2

- cos {mkWh+rP"+rf>.+N-l ]
J 2 sine (k+!lWh J

2

This expreSSion is plotted in figl.!!'e 5 for values of the variables
involved. Again. it is periodic in m with period Llm = 2T1'/wh. Again,
the maxima and minima recur with that period. While this result is no
.long€r a pm/? it is a harmonic series, and is thus periodic.

It is interesting also to observe the results when a waveform with missing
harmonics is applied. Figure G shows the autocorrelation of a waveform
with only three harmonics, numbers 5, 6, and 7. The autocorrelation is still
periodic with a period equal to the period of the missing fundamental
frequency. Figure 7 shows the autocorrelation of a waveform with
harmonics 2, 3,4,6, 8, 9, and 10 present. This is what you might get if two
notes were present at 300 Hz and 450 Hz, an interval of a perfect fifth.
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FIGURE Lt. This is the autocorrelation of a pure sinusoid. The result is, as we would
e\lpecl, a pure sinusoid with a maximum at integral multiples of the period.
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FIGURE 5. This is the autocorrelation of a periodic signal with.5 harmonics. As we see, the
result also periodic, although the harmonic amplitudes are entirely different from those of the
input waveform.
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FIGURE 6, The autocorrelation of a periodic signal with only three harmonics: the 5th, 6th,
and 7th, The autocorrelation is periodic with a period equal to the missing fundamental of t!ie
waveform,
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FIGURE 7. The autocorrelation of a periodic signal with only harmonics 2, 3, 4, 6, 8, 9, and
10 prc:;enL This is what would occur, for instance, if two tones at 300 Hz and 450 Hz were

r,iloultaneously. This represents the musical interval of the perfect fifth. Any two tones at
this interval will procluce a periodii:.ily in the <lutocorrelation equal to an implied fundamental period
of the composit waveform.
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Two instruments playing at perfect fifths will produce an autocorrelation
with a period equal to that of a fictitious "fundamental" period.

With this theoretical base, let liS see what this function does with actual
music waveforms.

USAGE

We see in figure 8 the waveform of a trumpet playing an Gi, roughly 392
Hz. ThiS waveform and the next were taken from a recording of Ravel's
orchestration of Mllssorgsky's Tableaux D'wu Ex/losition. This is the first
note of the piece. We can easily see that the period is neal' 2.5 milliseconds.
What small deviation ex ists is due to inaccuracies in the rotational speed
of the turntable. In figure 9 we see equation (II) evaluated for 3.5 periods
of the input waveform. We see that the output is periodic also with period
of about 2.5 milliseconds.

In figure 10 the wa veform of the first brass chord of the piece. ThiS is a
G-minor triad. The note, G, corresponds to a frequency of abollt 98 Hertz,
which is slightly over 10 milliseconds in period. The evaluation of
equation (I I) for this waveform is shown in figure II. The greatest
maximum is clearly at about 10 milliseconds. This demonstrates the
principle of determining the harmony of a piece of music without
determining what notes are being played at any given time.
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Cl. t (,,? I

FIGURE 8. A segment of the waveform of a 5010 trumpet in a highly reverberant
environment. This was taken from a recording of Tableau D'une Exposition.
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FIGURE 9. The autocorrelation of the waveform shown in figure 8. As we would expect, it
is periodic with the same period <IS the input waveform.
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Figure 10. A segment from a recording of a brass choir. This is a root-position G-minor
chord tav,en from a recording of Tableau D'une Exposition.
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Figure 11. The autocorrelation of the .waveform shown in figure 10. It has maxima at
multiples of 98 Hz, representing the low G2 root note.
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THE COMB FILTER

DEFINITION AND ANALYSIS

Another function that is closely related to the autocorrelation fU:lction is
the mag;nimde of the output of a comb filter whose delay is swept over
some range of interE'st. This was discussed by Moorer [1974] and by [Ross
t't al 197H

A comb filter is defined by the folloWing difference equation:

Where Xn is the nIh sample of the input waveform,

and Yn is the nIh sample of the output waveform

"There are, in fact other things that lire called comb filters. The first
is produced by changing the subtraction to an addition. The other two are
formed by delaying and differencing the output rather than the input. We
will only discuss the forlll shown in equation (16).

It is easy to show that the magnitude-frequency response of the comb filter
as defined above is

This comb filter has a zero of transmission at frequencies which are
integral mUltiples of l/mh Hertz. Thus, if the input waveform is a
stationary sig'nal consist,ing of nothing but frequencies which are mUltiples
of 1/mh Hertz. the steady-state output of the filter will be identically zero.

What we do is to sum the magnitude of the output of the filter for some
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number of points, say k points. The minima in this sum represents
periodicities present in the input waveform. This sum may be written in
the following manner:

k-l
(18) IX I -X I I
. j =0 n+ n+ -111

This is related to the autocorrelation function as defined in equation (J I).
In fact, it is approx imated by the fallowing function [Ross et al J974]:

Where Am is defined by equation (I I). This shows that where Am has a
maximum, equation (18) will show a minimum. Computath:mally, equation
(18) is easier to compute than equation (II) because it involves only
additions, no multiplication or division.

tlSE FOR DETERMINATION OF HARMONY

A program was written lIsing the comb filter as the fundamental technique
for the purpose of determining the harmony of a ,piece of music. Figure
12 shows a display of the results of this program when applied to the first
brass choir in Tableau. D'u.ne Ex/xlSition. The graph shows time in
milliseconds on the horizontal axis and frequency (actually, inverse period)
on the vertic(li axis. The vertical axis is period in seconds, but it is
labeled in frequency. This places the highest frequency (smallest period)
nearest thl? origin and the lowest frequency (largest period) is at the top.
Thp. heavy sqUiggly roughly horizontal lines represent minima in the
evalu<ltion of equation (II). The equ<ltion was evaluated every 10
milliseconds throughollt the excerpt. The minima in adjacent time slices
which were extremely close in frequcncy were linked into lists. The
bf?ginning of each list is denoted on the figure by a vertical stroke. The
long, light hOl'lZontal and vertical lines were placed there by hand as a
gUide to interpretation of the figure. The vertical lines denote the places
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where the chords change, as determined by hand (by ear?) by the author.
horizontal lines point out some selected frequencies. The names of the

chords have been placed above the graph as a gUide to interpreting the
dat,l. One attribute which is used by subsequent programs but is not
shown here is the depth of the minimum. Many of the traces are weak and
will be subseq uently ignored. '

One of the il.lteresting features is that the first G minor triad produces a
stmng trace on the low G natural, but the second G minor triad produces
a strong trace on the low Bb. This is because on the second G minor triad,
the Bb is doublp.d in the trumpets, giving it much more strength. The
SCOle of the first few bars of the piece is shown in figure 13 for reference.

One thing to notice is how the traces often continue to run on after the
chord has changed. This is because the recording was made in an
extrp.lllely reverberant environment. The tones continued to ring long after
the (hord changed.

There are many other traces for each chord than just the root of the
chord. These other traces are subharmonics of the notes in the chord.
They are clear to see in figure 14 as all the other minima. One must
remf:'lllber that any periodic componellt of the waveform will produce some
kind of minimum in equation (11). The minima get deep when periods
are rational multiples of one another. Then their subharmonics will
coincide to produce a deep minimum.

To demonstrate both the power and the limitations of thiS method for
detf:'l'lllining harmon}', 9 test chords were synthesized and processed. The
(irst was a C:'Ill<tjor triad in root position. The results are shown in figure
15. We see a strong' minimum at slightly over 15 milliseconds, which is
sOlllewhat over 6'1 Hem, which is abollt C2. This is as if the notes of the

chord were the 'IIh, 5th, and 61h harmonics of C2.
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FIGURE 12. This shows the output of the optimum-comb pitch detector when applied to the
fir'r.t brass (hoir in Tableaux D'une Exposition. The minima in adjacent time slots have been linked
together into lists. There is a vertical stroke at the beginning of each list. The horizontal axis is
time in milliseconds. The vertical axis is period, but is labeled in frequency. This means that the
labelings in frequency are not equally spaced and the highest frequel1cy (smallest period) is 'at the
. origin. Naturally, the scale goes asymptotic at zero period (infinite frequency). To help in
evaluating the results, light vertical bars have been placed at the places where the chords change.
The chord names have been printed at the top of the figure. The light horizontal bars denote
sOlne important frequencies for comparison. The strongest traces seem to occur when notes are
doubled in the orchestration. Comp'are this plot to figure 13 whit!"> shoV{s the score of the first
part of the piece.
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TABLEAUX D'UNE EXPOSITION
PROMENADE

,/'- - _. - - - ... --
Allegro giusto, nel modo russlco; senza allegrezz:l; rna poco SostenUto

M. P. MUSSORGSKY
Orchematlon by
Maurice Ravel

Allegro giusto, net modo russlco; senza allegre%2!. ma poco sostenuto

Viol.

301>01

Vlolino I

II10lino ]I

IF.
Planof""'.) f

Copy'lgh. 1929 by Edition Rune d. Mu.loue
Printed by a,rongemen, Boo'ey 8< Hawke. Inc•• New

Vloloncelio

ConulbulC

:1 Flautl
" Flauto Pltcolo

FIGURE 13. This is the first page of Ravel's orchestration of Mussorgsr,y's Tableaux D'une
E>'podtioll. The original piano score is shown at the bottom. This is from the Boosey & Hawkes
pod.... I edition, J929.
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FIGURE 1Ll. This is the results of applying the oplimum-comb to the first chord of the
brass choir in Tableaux D'une Exposition. The chord is a G-minor. The principal minima are
subharmonics of G2 (aboul 98 Hz.).
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When we add an A'1 to the chord. the chord becomes ambiguous. It b iiiE

superposition of a C triad and an A-minor triad. This chord is usually
referred to as an A-minor seventll chord. A major seventh. chord produces
unambiguous deep minimum, because the major seventh chord represents

the 4':" stn, 6th, and 71n harmonics of the root (even though the 7th

h,umonic is lower in frequency than is commonly used in the major
seventh chord). The minor seventh chord does not have such a clean
COlTf?sponclence to the harmonic series. The minima in the comb filter
output for ambiguous chords are subharmonics of the notes of the chord.
This is shown in figure 16. When we apply the formula to a C-minor
triad. we get two strong minima. One is at FI, which makes the notes of

the chord the s'h, 71h, and 9th harmonics. The other is at AbO, which
makes the notes of the chord' the 10th, 121h, and 151n harmonics. This is
shown in figurE' 17. In figure 18 we see the results from a C-diminished

chord. The strong minimum is at Ab I, which makes the notes the 5th, 6th,

and 7th harmonics. In figure 19 we se€ the results from the famous
diminished-seventh chord. This is one of the most ambiguous chords in
cornman usage. As we might expect. there is no strong minimum. Figure 20
reports the results for a C-augmented chord. There is a minimum at FO,

which makes the notes the 121h, the 151h, and the 191h harmonics. Now we
have 3 simpler examples. Figure 21 shows the results from a C.major.
nineth chord. figure 22 is for a C-major triad in first inversion, and figure
2?o if for a C-m:iljor triad in second inversion. three all show strong
mini!'na <It C2.

Thus we see that the comb filter can be lIsed to detect and identify any
unambiguous chord With reasona.ble accuracy.
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FIGURE 15. Equation (18) applied to chord in root position. The notes in the
(hard arE' C!.l, E4, and C4. We see a distinct minimum at 15.5 milliseconds, which is C2.
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FIGURE 16. Equation OS) applied to a C-rnajor-sixth chord in root position. The notes in
the chord are C4, E4, G4, and A4. Since this chord is ambiguous, no strong minimum occurs This
chord Llsually called an A-minor-sevenlh, in which case this chord is in the first inversion.
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II
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FIGURE 17. Equation (18) applied to C-minor chord in root position. The notes in the chord
Clre GlI, Ebll, and Gil. There are two strong minima. One at slightly over 23 milliseconds, or 43
Hertz. 43 Herlz is F1. There is another minimum at 39 milliseconds, which is AbO
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FIGURE 18. Equation (I8) applied to a C-diminished chord in root position. The notes in
Ihe chord are C4, Eb4, and Gb4. The strong minimum is slightly over 19 milliseconds, or about 52
Hz, which is Abl.
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FIGURE 19. Equation (18) applied to C-dimished-seventh chord. The notes in the chord are
C4, Eb4, Gb4, and A£I. There are no strong minima because this chord is highly ambiguous.
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FIGURE 20. Equation (18) applied 10 a C-augmenled chord in roc.t position. The notes in
thc chord tlrC C4, E£I, and G#4. The strong minimum is slightly over 46 miiliseconds, or about 22
Hz, which is FO.
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FIGURE 21. Equation (8) applied to C-major-nineth chord in root position. The notes in
the chord <Ire C4, E4, G4, and D5. This chord, like the C-major chord, has a strong minimum at 15.5
milliseconds, or 64.5 Hertz, which is C2. The traditional definition of the nineth chord includes the
seventh degree, whic.h in this case would be BbL!. It is ommitted here to help separate the effects
of the 05, .although its inclusion would not greatly perturb the plot nor disturb the location of the
minimum.
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FIGURE 22. Equation (8) applied to a C-major chord ii1 the first inversion. The notes in
the chord are E4, G4, and C5. The strong minimum is again at 15.5 milliseconds
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FIGURE: 23. Equation (18) applied to C-major chord in second inversion. The notes in the
chord are G3, C4, and E4. This chord, like the C-major chord, has a strong minimum at 15.5
mill isewnds
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THE HETERODYNE FILTER

INTRODUCTION

This tool is an adaptation of the discrete Fourier transform, hereafter
abbreviated DFT. The heterodyne filter is used as a filter or operator. It
ta kes a function of time as input and gives many fUllctions of time as
output. It is used to determine the amplitude and frequency functions
which make up nearly-periodic waveforms.· More directly, we represent
such waveforms as follows:

M
{Z8J Fill = i.: An t1. sin(nWah+6nuJn=1

Where F<y. is the signal at time ah,
h is Ihe lime belween consecutive samples,

W is the radian fundamental frequency of the note,

11 is the harmonic nllmber,

Aool. is the amplitude of harmonic n at time ah,
enol is Ihe phase of harmonic n at time ah.

This models the waveform as a sum of sinusoids with time-varying
amplitudes and phases. We must insist that the amplitudes and phases
vary slowly with time, or the analysis procedure does not give correct
results.

This is not a Fourier series representation, although it looks s1milnr. The
Fourier series demands that tht sinusoids be perfectly harmonic and of
constant amplitude. If we allow the amplitudes or phases to vary, the
sinusoids are no longer orthogonal by summation over one period, thus the
sinusoids do not constitute aFourier series. We mention this fact because
this meill1S that the tone can not be resynthesized by lise of the fast
Fourier transform algorithm. To resynthesize the tone from Anw 0nc<.' and

(,I), we must en!uate Msinuscids for every point in time.



67 HETERODYNE FILTER

The heterodyne filter has its main use in analysis for the purpose of
imight into music instrul))p.nt physics and for resynthesis of the instrument
tone. It could be used for analysis of music that formed unambiguous
chords <It every point, that had no notes olltside of the chord. This is the
case with very lillie music, thus making the filter of little use to the musical
scribe. Ont;' would be hard put to find any such music outside of harmony
textbooks.

METHOD AND ANALYSIS

The method is defined as follows:
et+N-l

(21l a '" F, s j n (!iWe jncr
j=cx

<x+N-l
(22) b l; F j cos (nWo jrH'<

i :::cx

(23l An(>,

Where ())o is the radian frequency of analysis,

rPo is the phase of analysis,

n is the harmonic number.

N is the nearest integral number of samples in one
period of the input waveform.

The initial phase angle, rPo, is included for generality. The method is

illch.'perlf.lelll (If this phase angle.

The summations ill'€' taken over one period of the input waveform, Since
N must be an integer, we can not analyse for an arbitrary frequency whose
period Illay not be an integral number of samples. We must settle for
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taking the nearest integer. Having chosen the number of samples in the
summation, we must then set Wo to 27f/Nh. If this is not done, a very
mange kind of inaccuracy sets in. We will show an example of this
prp'sl:'lltly.

We apply equations (21) (21) to the digitized waveform ora single
notp, of comtant frequency for each harmonic of the waveform. This
.,produces two output waveforms for each harmonic. The waveform
represented by A n-:-: in eq lIation 23 corresponds to the amplitude of the

harmonic as a function of time. The waveform represented by On«. in
equation 2'1 corresponds to the phase of the harmonic as a function of
timf', Wr. lll(ly convert this to frequency by taking the slope of the function
at each point in time. This may be done with a band-limited differenttatoi'
[Kalspr lOG?. 1966],

To bett!;r understl'lnd what the heterodyne filter does, we may examine its
output when a pure sinusoid is applied. The heterodyne filter is a
l1onlinp.ar filter. so the principle of superposition does not apply.
Eq U(ltiom: 21 and 22. however, are linear. The transformation to equations

;lIld does not ch;:mge certain principles. If a signal is annihilated
entll'ely by equations 21 and 22, it will not be present in the outputs of
either eq uations 23 and 24. Signa Is greatly suppressed in eq uations 21 and
22 will be greatly suppressed in equations 23 and 24.

If we apply' a pure sinusoid of fretlup.ncy W, we may compute the output of
the heterodyne filter exactly by means of the summation caleu!,,;
[H <Imming...
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{2S} Ano:

+ 2 cos [nWllh-·2q,e] }.
sin h] sin

The e;.;pression for the phase is. not included here because it is so complex
(IS to he almost meaningless. Equation 25 is plotted in figure 24a. The
frequency of analysis was the 5th harmonic of 500 Hz. We can see that the
response idr.nticill1y zero for all multiples of 500 Hz except the 5th.

It is interp.sting to compute the limit of the exact expressions for the
response to a pure sinusoid. If we define Llw to be (W-IlWo). the iimits
may be computed as shown in equations 26 and 27.

{28} .I im AnO'w....nWo

anCl
(27) lim - =

W-mWa bnCl

sin {2nWoh [¥ +a] } + N sin {LlWh [¥ +a] }

cos {2nWgh [N-l +a] } + N cos [N-l +a] }2 . 2

The first import;lIlt point is that the results are, in the limit, not dependent
lIpon the absolute phase of the input sinusoid. AIso, the magnitude of the
output converges to a constant times the amplitude of the input sinusoid.
The phase converges to a lineal' function of the frequency difference, Aw,
if the numb!?l' of points in the summation, N, is large compared to 1.
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USAGE

The biggest problem with using the filter is that the assumptions lIpon
which it is based ;lr€' rarely true. That is, all music instruments have
harmonics that change with time, and many have frequencies that are not
P.X act multiples of the fundamental frequency. Since the principal source of
error due to these deviations from the ideal comes from "leakage" from
ael j;w?I1t harmonics, the output may be improved somewhat by fmther
f il!prillg of these harmonics. Since the important part of the olltput of the
hetelOc1 yne filter is around zero frequency. we' can simply filter Ollt the
hctl'monir.s other than the one under analysis by replacing each point in
the OUlput by the average oYer one period of the fundamental freq uency.
ThiS pbcrs ;'In 'lclclitional zero of transmission over each other harmonic.
Figures 21b. 25<1. and 25b show the results of applying such a filter once,
twice. find three times. The Sideband rejection becomes quite strong. We
could lise a classical filter, like the Butterworth 01' Chebychev low-pass
c1rslgn, but this would not put a zero of transmission at the other
harmonics. We feel this feature is very important.

To get the slope of the phase function, we replace each pOint by the slope
determined by a least-sq U(lr€s fit of a lineal' polynomial centered around
that point. TIllS prOVides further noise reduction by averaging as well as
producing a band-limited approx imation to the slope at each point.

figure 26 shows a plot of the amplitudes of the harmonics of a music
tonp., Timp. is the axis going from left to right (about .5 seconds

tOl,II). and frequency is depth into the page. The first harmonic is in the
rf:'ar. figure 27 shows a spectrogram-like plot of this data as wel! as the
det,lIlcd frequcncy deviations of each harmonic as functions of time. The
analysis techniqlll? as described so far was llsed to analyse 16 music
instrument tones for a study in perception of musical timbre [Grey 19751
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FIGur-?E 2Ll. Equation (25) Evaluated for a wide range of frequencies. In this figure, we are
i'ltHlly<dI1G the fifth harmonic of a 500 Hertz tone. This is effectively the frequency response of the
heterodyne filter for a particular tone. In the lower plot, the output has been smoothed by
aver<1gil1r, over one period of the fundamental.
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FIGURE 25 This is equation (25) evaluated, as above, for the fifth harmonic of a 500 Hertz
tOile and Iben smoothed by averaging over one period. The upper plot has been smoothed twice,
and the lower plot has been smoothed three times.
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FIGURE 26. Per£,pedive plot of analysis data from heterodyne filter, shown as an Amplitude x
Frequf'nc y \( Time per!,pecli\/e plot. The detailed frequency variation of each harmonic is not
shown here. (X time; Y ::: amplitude; Z frequency. with the fundamental harmonic plotted in the
bClcl',ground).

.....'....... .., ,;:"",
" .

., .::r .

1-_···· ...
",

.: '.
'"'' .

FIGURE 27, Analysis data from heterodyne filter, shown above in the form of a spectrographic plot
(X ::: time, with 1/10 second lines; Y ::: frequency, with KHz lines; Width of bars := relative dB to
-llO),
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Tones were synthesiz.ed from these data. Putting the tones in this form
a110wed them to be normalized independently for pitch, duration, and
loudness, (is well as to be modified and blended. The synthetic tones were
judged quitf:' simibr to the original tones. This is, of course, the final test
of th"" analysis Appendix A shows the results of analysing

ill tones to determine how much perturbation the filter can
tolf:'rate I.lefore producine; results that are grossly in error. It would appear
that .is much (IS (l 2 pcrcent deviation in frequency with rise times as short
as [1 periods can IJe tolerated with reasonable results.

It is oi mtr;>rest to list the ways that this technique has been misused in the
jJ<tst with the hope th<tt future lIsers wiJI avoid these problems.

As was described in the historical reView, Luce used a method that was
very similar to this, but limited by the extreme cost of computer time in
those days. He selected single periods of the waveform and interpolated
them to get exactly 24 points per period. He then did the sUlllmations to
produce ilmplJtudes and phases for 12 harmonics. Note that this method
only gives one 2-1 numbers per period, whereas the heterodyne filter gives
one 2NM nllmbers. where N is the number of points in a period and M is
the number of hilrmonics under ilnalysis. The advantage of this extra
computatIOn is that a partlculJI' difficulty of Luce's is avoided. The
follOWing quote is from Luce's thesis:
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"Another very serious difficulty arises for
waveform') containing very narrow pulses well-

frorH each other if only 24 ordinates per
cycle of the fundarnental of the note analyzed are

Two npighbot'ing clata points are used in each
interpol<ltion. It is possible that none of these 48
d,lla poinls, corresponding to the 24 points in lime
c.elccled for interpolation during the cycle, contain
tI,e narrow pulse. Bec<luse of this phenomenon, a
small error in the measuremenl of the fundamental
frequency of Ihe note may result in the pulse beit,g
missed in r.ome cycles entirely and being selected
in others. Large fluctuations (from cycle 10 cycle) in
the calculaled spedral components resull."

Gy laking all the points in a period. we avoid this problem. We cannot,
howl'v('r, avoid a small (oreler of lIN) fluctuation due to the fact that the
true period is not an integral multiple of the sampling interval. Since this
fluctuatIOn is periodic with the same period as the note, the furthel'
filtering operations eliminate it entirely.

Pulse-like waveforms are quite common in music. A11 brass instnltnents
have pulse like waveforms. The human voice is often quite pulse-like.
Pulse-like w<lvdorms c(lnnot be ignored in musical contexts.

Hr:auch:lInp (lnd FI'r.eclman both thought of the summations in equations
:; I and '22 as discrete analogs of the Fourier integrals. This is dangerous
brCilus,? It leads one to sum over one period, but to lise an analysis

frequency (enD) which c10es not correspond to a period equal to an integral

mUltiph: of the sampling interval. This produces imperfect pole-zero
cancellation and all the resulting distortion. They too obtained ollly "a
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few" points pel' period, letting themselves in for the same kind of errors
Luce's ml:'thoc! obtaim.

l:-:kauch;;lInp later used the FFT illgorithm [personal communication 1974]
\vnh il Hamming willdow. The Hilmming window is eqUivalent to a
convolution in the frequency domilin. It is eqUivalent to replacing each

frequcncy-domain point (an,;, bnc;) with the sum of itself and a portion of
its neighbors [Bertrilll1 1970; Blackman and TUKey 1959]. This means
that "leakilge" between tldjacent harmonics, that very problem we have
tned so hilrd to filter out, is directly encouraged by the application of a
window function. Figures 28a and 28b show the frequency response of a
filter designed this way. The zeros of transmission at the neighboring
h<lrmonics have been removed. This method cannot possibly produce
accurate resu Its.

TIllS tl?chni'lue can be salvaged by doing the analysis at one-half the
frr;qw:l1cy (twice the period). This will produce an output that has only
even harmonics, indicating a tone an octave high. This way, when we

for a certClin harmonic, the acljilcent "harmonics" will, of course, be
zero. bec,lllSoe the odd harmonics will be zero. This way, anything the
t!;chniquE' IJroduces on the odd harmonics can be ignored as artifacts of
the Jnalysls.

[( cdrr [I used Lagrangian interpolation to produce a much higher
effect. VI' sampling rate and then computed an apprOXimation to the
Founer integ-rill by use of Simpson's rule. Even if we ignore the fact that
the Lagrangian interpolation does not have good band-limiting properties
[SchClfel' and Rabiner 1973J. there is a severe probll?m with the use of
Simpson's rule rather than direct summation when considered from a

pOint of view.

With Simpson's composite rule, the successive samples are weighted by the
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following cOl?fficients: 4,6, 4,6,4, ..., 4,6,4,2. The weighted s<lmples
then summ::cl. The problem is that this is equivalent to the sum of

threl; $cp:uate weights:

first: ,.., '7 ,.., '7 '7 ?L, ..... L. '-. '-. .... . •
second: 0. '7 ,.., '7 ..., ...,

'-. L. '-. L. '-.
thi,-d: 0, 0. ..., 0. 2. 0.4.. , .

" 2. 2
" 2. 0
" 0. 0

We see that the first sequence is pure summation. The second sequence is
a summiltion, but over N-2 points; a different fundamental frequency.
The third sequence has every other sample zero, which is characteristic of
a sampling rate a factor of 2 slower. This means that massive aliasing
occurs, as well as clllnihilatlflg the zeros of transmission. Figure 29a shows
the frp.quency response of such a fiiter. We can see the abased band up in
the high frequency range, as well as the fact that the response no longer
gOp.s ex Clctly to zero (It every other harmonic. Probably the only re<lson
that Keeler got (IS good reslIlts as he did is because he was analysing large
orgilll pipE'S, which presumably had few high harmonics, and thus little
:l1i;lsllIg. Figure shows what happens if Just a straight triangle rule is
used. The plot does not siww it. but the minima in the frequency response
are not actually zeros of transmission. The use of the triangle nile has
made the response nOll-zero at each of these points. This is because it is
·.equivalent to the sum of two weightings, one of length N and one of length
N-2.

Thlls we see that there are a number of ways of doing this process
incorrectly. It is hoped that this exposition will help others to find even
better methods.
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Clpproy.im<ites the integral by the triangle rule with somewhat better slIccess.
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BANDPASS FILTERING

INTRODUCTION

The bandpass filter IS one of the oldest technitlues for separating out a
::.ingk harmonic. Backhaus [1927. 1932) used a bandpass filter for studying
lI1di vIdu aI harmonics Qf music instrument tones. notably the violin. The
bank·of·fllters method of speech analysis has been widely used. There is
much eVidence that the basilar membrane in the ear is like a bank of
, .
bandpass fl.lters.

We ,will not attempt to repeat the wealth of literature that exists on linear
systems and line(l!' filters. but let us just review some basic principles of
filtering in generill.

The OUlput' of a filter consists of its !lartiw!ar response and its
!1011l ogo1ft1115. or frallsiolt response. The particular response is directly
rf:'I:1tr.d to the II1put signal. In fact. the spectrum of the palticular response
is just the product of the spectrum of the input signal and the frequency
response of the filter. The transient response is. however, sornewhat more
complicated.

Any linear filter has what are called natural jrl'qu.encit's. These can be
If?SOnances or anti·resonances. The transient response of a filter is made up
of slIlusolds of these frequencies.

There is <I rel<ltion between the freq llency selectivHy of a filter and how
f<lst it can respond to changes in the input signal. A very narrow·band
(i1ter has a very long transient response and changes very slOWly. This is
illustrated in figures 30 and 31. In the first figure. we see the response of a
very narrow b<lnd filter a suddenly.applied pure Sinusoid. The second
figure shows the response of a Wide-band filter to a suddenly.applied
;;;inusoid, In !';Jch figure. the upper plot is the. input signal, the rniddle plot
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IS the output signal, and the lower plot is the frequency response of the
filter. With this ill mind, let liS see how the bandpass filter can be used in
practice.

USAGE

If we suspect that a harmonic exists at a certain frequency. we can use a
bandpass filter to select it from a complex signal, with some ensuing 105s of
resolution in time. In fact, unlike the heterodyne filter, any sinusoid of
nearly-constant frequency can be selected. It cloes not have to be
harmonically related to any other sinusoids in the signal. Figure 32 shows,
'.in the top plot, the responsp. of a -lth order bandpass CHter (Butterworth,
?-O Hz brtween the :·d [?, pomts) to a complex signal. The center freq uency
of the filter is set to exactly the frequency of one of the harmonics of the
slgn;d. Notice the smooth amplitude envelope of the harmonic. The upper
plot in {igUlp. shows output of a filter with the same input as the
previous figllre but its center frequency does not correspond to any partial
in the input signal. The response consists almost entirely of transient
response. The particular response {s highly suppressed, as it should be.

We m(lY ::lpply (l pitch detector to the output of the bandpass filter to get
the frequency of the harmonic as a function of time. This is also a good
W<lY to tell if there is ('cally something there or not, because the output of
the pitch detector wiu be gibberish if there is not a near-sinusoid present.
T he center plot in figures 32 and 33 shows the Olltput of a pitch detector
(the optimum comb) ilpplied to that output of the bandpass filter shown in
the upper plot. As we see, the frequency varies smoothly throughollt the
duration of. the plot. ]f no harmonic is presel1l'; we do not get a consistent
reilding of pilch throughout the dU(,<ltion of the signal. thus 110 trace like
the nne shown is produced.
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FIGURE 31. The response of a broad bandpass filter to a pure sinusoid applied suddenly.
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FIGURE 32. Th..:se three plots show steps in the processing of the fundamental harmonic of
a pi;n)o lone in a piano duet. The upper plot shows the response to a bandpass filter the center
frequency of which (.oine ided closely with the frequency of the harmonic. The center plot shows
the results of applying the optimum-comb to the waveform in the upper plot. The minima in
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frequency of the signal as a funclion of lime. A vertical stroke has been placed at the beginning of
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domina"t list has a horizontal line drawn through it representing the average frequency of the
hClrmonic. The vertical stroke at the beginning of this lir,e is two standard deviations high.
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h"ve been elirninaled. The remaining list has a horizontal bar through it denoting the average
frequenc y in the There is, in fad, no sinusoid present at this frequency. This is a transient

<ind is entirely an artifact of the bandpass filter. -This trace will hopefully be eliminated
later due to its large frequency variation.
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all the subharrnonir.: traces, as is shown in the bottOm plot.



LOW LEVEL TECHNIQUES 84

If the center frequency of the filter is very low, it is possible that the pitch
detector can track sub-harmonics of the lowest ·hal'monic in the sound at
that pomt. Some of this low harmonic will sneak through the filter and
fool the pilch detector. As was shown before, the autocolTelation-type pitch
detectors respond jllst as well to integral mUltiples of the fundamental
period as to the fundamp.l"ttal period itself. Figure 31 shows multiple traces
of sllbhu!11onics of a IHlrmonic produced by the optimum-comb technique.
To elimrnate the spurious traces (all of the traces in this figure are
"pllrJ(llls), we may make some other crude mr.asurcment of the pitch which
does not havp. this problem and compare the h:sults. One simple technique
IS just to count the zero-crossings in the filter output, This prOVides a
crude estim:1te of the pitch of the signal and is enough to eliminate the
spurious trtlces,

To use the filter, we must know how to set its center frequency. One
convcnient method is to use a pitch detector (autocorrelation and comb
filtering Ita ve been previously described) to get an estimate of the harmony
of the signal. Since music uses ambiguous chords, we may expect several
significant pitches to be indicated. We may then apply bandpass filters to
all mUltiples of these pitches, up to some maximum. This will get
apprOXimations to the harmonics with limited resolution in time. We Illay
then tlpply a pitch detector (again, autocorrelation or comb filtering will
do) to get the frequency of the harmonic as a fUllction of time, and we
nny avc!'r1gP the rnrrgy of the signal to estimate the amplitUde of the
harmonic a function of lime, The bottom plot in figure 32 shows the
{intll frequcncy contolll' of a harmonic of a complex signal. The straight
line through the plot indicates the i'lverage frequency of the harmonic. The
vertical bar at the beginning of the horizontal line is two standard
deviations high. Figlll'e 35 shows what happens if the center frequency of
the filter is not f'xactly upon the frequency of the harmoni.:. This trace
was not accepted. as is shown by its absence from the lower plot. The
frequCI1cy deviation throughout the trace was unacceptably great.
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) 11 practice. the lise of a pitch detector to determine which bandpass filters
to apply only reduces the number of applications of filter by a factor
of about ?' from a dense covermg. For example, a 30 Hz bandwidth was
used in the program. A dense covering from 100 Hz to 2000 Hz
would be llbollt ilpplic<ltions. 111 fact, only about 75 applications were
11f.:f:'clccl. Thb. is >till a lot. It is enough so that this method of analysis can
hardly be called practic<l1 at this pOint in time. Perhaps with the advent of
higlHpepd speci:il-pulpose sIgnal processing hardware, the method may
bccome more than (J demonstration. It should be noted that just as much
time was spent doing the pitch detection 011 the filtered waveform as was
spent doing the filtering itself.
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POPULAR TECHNIQUES NOT FOUND USEFUL

INTRODUCTION

In tillS section, we will expose some of the weaknesses in other poplilal'
sigml procf.'sslIlg techniques that make them not useful for the musical
scribp.. We present these negative results for several reasons, perhaps the
most impOI't<lllt bl?ing the fact that the scil?nce and art of dig'ita) signal
processing is new enough that a great deal of experience with its
techlli(IU/:s has not had time to accumulate, Each of the techniques to be
d isCtlssed has been found to very useful in general. The linear predictor
fonm the ((Ire of most speech analysis systems in use today. The FFT is
the "work hone of the industry". The cepstrum is useful in speech as well
as picture processing, sonar, radar. and many others.
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THE CEPSTRUM

INTHODUCTION

The o:pstrum is defined (is the inverse DFT of the log of the magnitude
of the DFT of an input signal. This may sound a bit perverse, but if we
recall that the autocorrelation of two time.limited signals can be computed
by the Inverse DFT of the magnitude of the DFT of an input signal, we
«HI Sf?e that the processes are related. The cepstrum of a signal is a signal
(a jl/.7lc!iM1 of timt') whOSe' DFT is ti,e log-magnitudf of tile DFT of the
inf.11" signal. The cepstrulTI is a lime sequence, just like the signal itself,
and also like the autocorrelation fUllc[ion.

The (cpstrum is useful for dcaHr:g with sig'nals that have been mul[iplied
or convolved with other signals. For instance, we may think of the speech
prod llction mechanism as an excitation (the glottis) followed by a filtering
operation (the vocal tract), In picture processing, the signal call be
rrl'lr.sented (IS the excitation (the light somce) multiplied by the reflectance
function (If the illuminated object. In each of these cases, the log-
ll1::Jgilitlide DFT is related to the sum of the transforms of the individu1l1
S-Ip:n:!Is. If these signals, by themselves, occupy different parts of the
sp('(truln. then they can be separated by simply partitioning the cepstrul11.
In thiS manner, we may use the long-time end of the cepstrllm to detect the
pitch of a speech waveform [Noll 19671 or the short-time end of the
cepstrum to compute an approximation to the impulse response of the
voca I tract [Oppei'l heim 1968, I Miller 1971]. In speech, the signals
sepilrate nicely.

One plilce whrre the ce[)Strum may be of great use in music is in analysis
for the purpose of synthesis. Since we can sepa rate the functions of
periodicity generation from spectral shaping with the cepstrum, we may
use it to g:el1erate the impulse response a filter which can duplicate, as a
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lunctioll of time. the spectral shape of the waveform of a music
Since il number of instruments are almost perfectly periodic

(brasses. most woodwinds except during the attack), it may be possible to
"yntheslze many tones using these impulse responses. There are, however, a
large /lumber of instruments which are not perfectly periodic (all stringed
mstrlll11rnrs) find are thus not suitable for simulation in this manner,
unlf?ss some technique for dE'riving and modeling the excitation function is
fOllnd. (We ((In compute the excitation function simply from the long.time
part of the cepstrum. but unless we can model it more Simply, it is not
Jl1ll'nilble fO modification and is thus not useful for musical purposes).

DISCUSSION

The problem with using the cepstrum to compute, say. the pitch of music
imtrul1wnts is that in polyphonic music. we are dealing with the sum of a
number of waveforms. When we take the log of the magnitude of the
UFT of thl? input signal, we get a very complex result where the signals do
not partition .nicely. The information for each voice is spread all over the
Cf?PStllllll in (omph:x ways. For ins-tance. figure 36 shows the cepstrum of a
5'tnglf? VIOlin tone. Notice the single peak corresponding to the period of
the input signal. Figure 37 shows the cepstrum of two Violins being
played at different frequencies. The peaks no longer correspond to
frcqtll'ncies in the original signal. There is no clear way to extract from the
(cpstrum the information abollt the pitches of the two notes being played.
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FIGURE 36. This is Ihe cepstrum of a segment of the waveform of a trumpet solo. The
waveform was taken from the first note of Ravel's orchestration of Tableaux D'une Exposition. The
note a G4. or about 396 Hz. As we see. a single peak is evident at about 25 milliseconds, which

lhe period of the detected signal. The cepstrurYl is quite insensitive to reverberation.
as the trumpet was recorded in a large concert hall with extensive reverberation.

FIGURE 37. This is the cepstrum of a segment of the waveform of a brass choir. The
W.:lvr-·fonn was taken from the first brass chol'd of Ravel's orchestration of Mussorgsky's Tableaux
D\me The cepstrunl does not seem to produce a distinct peak corresponding to any
p€'riodkity in the input signal in this polyphonic case,
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Thl? Fourier transform in all its many forms is possibly the oldest and
mmt widely useful signal processing technique of all. Special processors to
compute the DFT by the Fast Fourier Transform algorithm [Cochran t't al

GentlemCln and Sande 1966; Gold and Rader 1969; Rabiner and
Gold Hl7S; OppenheIm and Schilfer 1975; Singleton 1967, HI68, 1969] are
aV<lilable from l1umeroLlS sources. When we began this project. the DFT
W;:lS the first technique calleclupon to help accomplish the task. It was later
abandoned for reasons that will be explained below. It may. in fact, be
possible to Clccomplish the task at hand with the DFT. but certain
problems would have to be solved which did not seem to have simple
solul ions.

DISCUSSION

Let liS begll1 by examining the DFT of a pure sinusoid with an
t::'xponential amplitUde. The (complex) signal that we shall transform is as
follows:

C28} Sn = e';(O"+ jwJT

Where Sn is the value cf the sinusoid (the input
sigt1al) at time nT, where T is the time
between consecutive samples

0' is the decay rate. 1/0' is the time constant of
the signal, i.e., the time it takes the signal to
decay 10 11e of its value at time=0.

W is Ihe radian frequency of the sinusoid.

j is the s.quare-root 01 -1.
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The transform can be computed as follows:
N-l N-l

(29) AI: '" L Sne-2nnkj/N '" l: en {(0-+jwH-21fjk/NI
n::8 n,,8

Ak IS the kIh value of the discrete Fourier
transform. It represents the frequency
k/ (NT).

NIS the number of points in the transform.

Since this IS jllst the sum of a finite exponential series, we can compute
IllIS summation in closed form: .

e IN «(T+ jwH-21f jkl _ 1
AI: '" e {(Q"+ JWH-21f jk/NI _ 1

Aftel' some manipuliltion, we find that the squ:::red magnitude of tl1i:;
expression is then the follOWing:

e (N-ll o-T 8 i nh2 (No-Tl +8 j n2 (NWT-21fk)
s i nh2 (o-T) +6 i n2 (WT-21fk/N)

It is easy to show that this expression is maximized when the follOWing' is
true:

(32) k = NwT
21f

This fl)(lximum is unique in the pnge T We can see from the

e;.;prl?ssioll ilbove thilt the peak widens as N gets smaller and as (j gets

largl:L fIgure 3Sb a shows equation evaluated for N=128, figure 38d
I'nl' N=20M:, ilnd figure 38f for N=18384. We see that as N is increased,
the peak becomes sharper anc! sharper.
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Figlll'cs :'8a. ?8c. and 38e show the actual OFT of a pure sinusoid at
liz evaluated by the fast FOllrier transform algol'ithll) for 128

points, pOllltS. and 16384 points. The results differ from the
calculated values because of roundoff error. In the longer transforms, the
error manifests itself as a spreading of the peak. It is roughly analogolls to
a multiplicative noise (rather than an additive noise).

LIkewise. figlll'es ?9a, 39b, 39c, and 39d show the spreading of the peak as
() increilses. The reciprocal of () is the attack time in seconds, so (j

incl'cilsillg means fast!?r and faster attack. A (j of 100 implies a 10
millisecond Clttack. which is quite common in music waveforms.

These caSf?S were idralized. In general, the attack is not a pure exponential.
Figure ./0 .-hows the DFT of a segment of a piano piece. The time
wmdow is c('ntered over the boundary between two notes. The lower voice
pp'l'sists throughout the winc:ow at a constant C't (261.6 Hz.). The upper
voice is between an £4 (329.6 Hz.) and an F4 (349.2 Hz), It is
clear that the region (Irollnd the £4 and the H is quite muddled with
Ill(lny peaks in eVidence. This OFT used 4096 points and occupied about

milliseconds wiclth in time.

.There is another problem with the use of the OFT for sounds that were
'recorded in highly reverberant rooms. In this case, the effect of the room
can be modeled by a linear time-invariant filter. The music is then
r.onvolved with the impulse response of the room, This is eqUivalent to
mUltiplying the transform oi the music by the frequency response of the
room (or (Jddin\?; the logrtrithms of the transforms). Since it is well known.
that concert halls have frequency responses with Illany nalTOW peaks and
v<lliPys of depth up to 20 and 30 dB [Schroeder 1962. 1962, 1£170], these
peaks ,md v<llleys can produce spurious peaks ill the DFT of music
recorded in such a room.
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more transient the waveform is, the more the peak in the OFT is spread.



96

:111111 ,
!,H

II

FREQUENCY IN KHZ

FIGURE 40. Discrete Fourier transform of a L1096 point (200 millisecond) segment of a
piano duct. The time window is centered over the boundary between two notes. The lower voice

throughout the window at a constant CLl (261.6 Hz), The upper voice is changing between
an [4 (329.6 Hz) and an F4 (349.2 Hz). The region around the E4 and F4 is quite muddled with
many peak'> in evidence.
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41. Disc rete Fourier transform of a 4096 point (200 millisecond) segment selected
frorrl thc rcnter of the first G-minor brass chord in Tableaux O'une Exposition. Some of the
pr inclple notes pl'esent in the chord Me G2 (98 Hz), G3 (196 Hz), 8b3 (233.1 Hz). and 04 (293.7
H7). This recording was made in a highly reverberant concert hall. Since this is equivalent to
multiplyinp, the transform of the music with the frequency response of the concert hall. we see
many superfluous peaks representing the natural modes of the hall. Near the 8b3 (233.1 Hz) there
is an extra pea'" Ihat is only 5 d8 I.;;wer than the main peak. This causes considerable confusion in
trying to the discrete Fourier transform for polyphonic music analysis in reverberant
environments.
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Figure ·/1 shows the OFT of a 200 millisecond segment near the center of
the first block chord. This chord is a G·minor chord. It has notes at C2
(98 Hz), G3 (196 Hz), Bb3 (233.1 Hz), 01 (293.7 Hz), and many more. We
can notice many peaks. In the region of the Bb3 (233.1 Hz), there
is an extra peak that is only 5 dB lower than the main peak. The same is
true of the G3 (196 Hz).

For reasons, we deCided not to use the OFT in this investigation.
L,ltel' on, we show cases where we llsed the OFT as the front end of a
hypothetical music analysis system and compare the results with our
,prefern,>'i implell1enta tion.
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THE LINEAR PREDIC'fOR

INTRODUCTION

Till;' Iinrar prrdictor [Atal and Schroeder 1968; Atal and Hanauer 1971;
noll 197?; Griffiths Itakura and Saito 1968, 1970, 1971; Levinson

Wkner HH7; Makhoul and Wolf 1972; Makhoul 1975; Markel 1972]
is a technique for computing an all.pole filter the frequency response of
which best approximatl?S the spectrum of the input signal. It has become
very popubr recently in the speech community because one can.

imatp. the spectrum of a speech Signal and then determine the
formant regions by examining the frequency response of this filter. It
proVides much-lIt:'eded smoothing of the spectrum, giving quite often clear,
unambiguous pe<tks at the formant frequencies. This technique belongs to
the world of estimation", in that the filter thus created models the
filtering activity of the vocal tract. The linear predictor estimates the
s.'Ystfm consisting of the resonant regions of the vocal tract.

DERIVATION

l\ simple way to derive one forl11 of the linear predictor was given by
M [19721 First, we define a lineal' finite impulse response filter of
thr iol1owing form:

•

(33) A(z)

Where A{z) is the Z-transform of the filter
transfer function.

Z is the IInit timt'·adl1anCf opfI'(jtol'

8 j are the coefficients of the difference equation
that defines the filter,shown below
equation (35).
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If Xi is the input sequence Vi is the output sequence of the filter, we
may obt<lin the energy in the output of the filter by merely suming the
sq u of the output of the filter.

. L
(34) Energy '" l: y2n

n=8

Where VI is the,output of the filter at time iT.

lind <'I Iso:
M

(3S) Y == Xn + L aiXn_in
1=1

After substituting (35) into CH), differentiating with respect to ai' setting
the enl?rgy to zero. and collecting terms, we get the normal equations for
the filter coefficients:

M L
(38) L B j L '"

1=1 n=8

for k=l, 2•... M

This is a system of linear equations in the vari<lbles, the a i. It can be
solved in (l number of efficient ways [Levinson 19't7; Markel 19721 It
produces a filler that best reduces the input sequence to zero. Such a filter
h (is (l freq urncy response that is the in verse of the spectrum of the input
signal. We can lIlvert the filter simply by making it an all-pole filter. using

the coefricients. a j • on the delayed output signal rather than the delayed

mput signal. This filter has a frequency response that approximates the
sp('ctrufIl of the input signal. This is a discrete realization of the Wiener-
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HopI' integral [Levinson 1917; Wiener 194'7; Lee 1960]. and uses the RMS
(,ITOI' criterion for optimality. This technique also belongs to a larger topic
of ",',ystP'1l1 estimation" [Tribolet 1974; Sage and Melsa 1971], where one
ilWrnpts to infer .1 lineal' system from its impulse response. A superb
revil'wof lineal' predICtion may be found in Makhoul [1975],

USAGE

This is commonly used in vocoder and speech analysis systems. For
vGcoder use, the input speech is processed for pitch. VOiced-unvoiced
decision. and filter coefficients a i. These parilmeters are transmitted to the
receiving station. The speech is then resyntheSized using a pUlse train at
the computed pitch for voiced excitation, and white noise for the unvoiced
excitation. The filter tlien simulates the spectral shaping imposed by the
vocal tract.

ThiS technique can also be used to aid pitch detection. The input signal is
filtcl'I:d hy the inverse filter. This evens out the spectrum. removing the
effects of the forJl)(Ints. The resulting waveform is much more pulse-like.
Til is Ollipllt (<Ill then be autocorrr.lated to produce peaks which ar.: much
mop: sharp than those procluC!:d by autocolTelating the unfiltered
wavrform.

This technique of "spectral flattening" or "prewhitening" does not apply to
polyphony. Unless the filter is of extreme order. making it expenSive to
cOlnpute. the interleaved harmonics of the notes will not be adjusted
f:'qually. The autocorrelation then shows one sharp peak corresponding to
the clomin<lnt tone and a multiplicity of other peaks, corresponding to the
otlH:,r tone.

Anot her possible usage would be to compute a filter of high enough order
that it simulated the harmonics themselves as high-Q.. resonances. Figures

•
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12 and ,j 3 frequency responses of filters of various order computed
by 1111: ;lIItocorrelalion method [Markel, Itaklll'al As we see, the frequency
rlOspolU': :Jppro<lches the spectrum as the oreler is inuc(lsed. This points up
again Ihat Ihe linear prediction algorithm is a spectral matching process
[I\filkhoul Sillce the DFT itself has not proved useful in this task,
there is no II?<lson to believe th,H an apprOXimation to the DFT would be
rtny mOle IlSI'flll.

Griffiths [J97 rl] used this method for determining the frequencies of a
number of sinusoids which were added tog'ether. With a 12 pole filter and
a 25 dB signal.to·noise ratio, he obtained estimiltes fOI' the frequencies of
lip to three sinusoids added together. The etTor was as much as 12
percent, and sometimes peaks were not even located. In our case, we must
detect lip to 40 sinusoids and determine the pitches to better than 3
percent in all Cilses.
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INTERCONNECTION

OVERVIEW

The music :1l1alysis system as it WoS implel11 l?11ted for the purposes of this
thesis combines the prev iOllsly discussed low-level routines into a complete
,Sy,tf>l11. This is done in the folloWing steps:

An estimate of the frequencies present is obtained by running the
optimum-comb pitch detector over the entire music sample at J0
millisecond intervals. We cail these "windows" into the sound file. If a
p,Hlicular period ilppears in many consecutive windows, a list is made of
irs OCCUIT€nCes. A list is redundant if it is a harmonic of some other list.
RednnclillH li.m (llf> eliminated. This prodllces il list of regions which have
the same periodicities present. These are rcgions wherein the harmony
does not change. These are arbitrarily grouped into larger regions so that
more data may be dealt with at once. These macro-regions are then used
as the gUide for the b;:mdpass filter.

The bandpass filter is set to all harmonics of <III the periodicities that are
present in a given macro-region up to a certain maximum frequency. For
the examples shown later, a maximum frequency of 1.5 KHz was
sufficient. Any more comprehensive system would have to use a much
higher frequency range than this. The output of the bandpass filter is
rlll1 through an optimum-comb pitch detector which is swept over the
frf.'quencies in the passband of the filter. The minima of the optimum-
comb olltput ilre linked into Itsts which indicate the existence of a
frequency at that pilch over the time that the minima are found. The
amplitude enyrlopr of the filter olltput indiciltes the amplitude function of
thl? harmonic in question. It is these amplitude and frequency functions
that ilre j',!SSrd to the intermediilte·h?vel routines for scoring and grouping
Into Hotes. Before we leave this level, many checks are done to throw out
tracf:'S that are obViously spuriOUS.
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We will first discuss the theoretical basis and the collStraints on the music
th,lt :lllow us to analyse it in this manner. We will then discuss the details
of the algorithms.
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THEORETICAL BASIS

To allow this dissertation to be completed in a finite amount of time,
(I:rlain restrictions have been placed on the music that will be allowed.
These restrictions, combined with the properties of music instruments,
make the problem manageable. These properties and restrictions are
discussed below.

ALL TONES ARE NEARLY PERIODIC

This restricts the c!<lss of instruments to woodwinds, brass, strings, and
5(11)(' pp.rCllSSlve instrurnrnts (piano, marimba, etc). TIllS assumption allows
tiS to infer (l note from its harmonics. It insures that notes will have
harmonics. It does not t{'lIus what the harmonic structlll'€will be, or how
the harmollic struetlll'€changes with time. It can still be that the note will
not have a fIrst harmonic (a slIlusoid at the fundamental frequency). The
note can also consist of a single sinusoid. Later, in the intermediate·level
proceSSing, further restrictions will be placed on the tones. For the low·
(PVf?!, this is suffiCient.

ALL FREQlIENCIES ARE NEARLY PIECEWISE·CONSTANT

ThIS restriction eliminates strong vibrato, glissand i, and other cases of Ilon·
comtant pitch. This allows us to filter out 11 single harmonic by using a
lilter of a constilnt frequency. We are assured that the tone will not jUlllP
out of the range of one filter and into the range of another. Vibrato can
be tolt:rated up to a point, but some intermediate-level routines attempt to
model the sound as haVing constant frequencies, and would thus make
e!Tors if strong Vibrato was present.
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THE FUNDAMENTAL OF ONE NOTE WILL NOT OVERLAY A
HARMONIC OF ANOTHER NOTE

Thi!' is very important. If the fundamental frequency of a note is the same
<is the frequency of a harmonic of another note that is sounding at the
same time, it appears to be very difficult to distinguish this case from the
case of a single note with a complex harmonic structure. It is not clear how
(01' that) we distinguish these cases. It is possible that we hear differences
in the times that the instruments bp.gin, 01' that we can distinguish because
the instnlml:nt!' ilrp. inv'atiably at different pitches. It is clear that
a more ad vilnced It;lnSCl'lption system should be able to separate the notes
in these casf.'s. It is certainly the case that separate vibratos on the tones
makes 1111:11') aurally separate much more conVincingly. The subject of
when a group of harmonics fuses into a single percept has not been
researched fully III the past. Rathel' than attempting to solve the problem
here, we will finr.sse it by reqlliring that the input music not exhibit that
property. Or likewise, if it exhibits the property. we will not expect the
higher 1I0tr. 'to appear in the output manuscript. This gives us the
property that ;l set of harmonics uniq uely infer their fundamentil I. A11 we
must deal with is nOIse and processing error which may cause some
harmonic to be missed. We do not have ro try to expand a single set of
harmonics into more than one note.

TilE PIECE CONTAINS NO MORE THAN TWO VOICES

Tim restriWon allows US to compute tbe musical harmony from the
pE'l'io(\it:ilY of Ihe waverorm without haVing to about whether some
vOIce IS lost bcc;luse it is masked by several other voices. When using the
diatonic sCilI1:. :'ll1y two notes infer (l harmony. thus a two-voice piece will
always infer at least one root frequency, and generally will infer several.
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OTHER CONSIDERATIONS

We also p,xpcct the tones to be smooth. The amplitude and freque,icy
functions of the harmonics of music instrument tones vary slowly with
time. except during the attack and decay portions of the note. Since these
portions are relati vely short. compared to the total length of a note, we
nerd not consider them. This aSSlll'es us that the amplitude ili'ld frequency
contours will be continuous ,md will not vary greatly. This is important,
bCC(l1l5l? thell we Gin lISe this smoothness criterion to eliminate noisy traces.
This eliminates certain instruments. like drums and cymbals, which not
only cio not have harmonics, but they do not have smoothly varying
partial tones. This also elimlllates heavy reverberation. Recording in a
highly revcrberant room causes phase <llld amplitude jitter in each
harmonic. Each time a reflection reaches the microphone. the attack of the
'note with all its inhannonicity occurs again. Figure H shows the
amplitude and frequency trace of a harmonic from a piece that was
recorded in a highly reverberant concert hall. The jitter due to the
reflections is quite <lpparent here in both the amplitude and frequency
plot.

With the above restrictions, we have some hopE' of accomplishing the task.
Let lIS look now at how the routines call coax out the secrets of the input
wavdorm.
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fiGURE 44. The upper plot the waveform of the output of a bandpass filter
cenlered ilt G3 (196 Hz) on the first brass chord in Tableaux D'une Exposition. The center plot
shows the pilch as a fllncliol1 of tirr1e as tracked by the optimum-comb. The jitter both on the
Clrnplillldc of Ihe and on Ihe frequency is due both to thlil extremely reverberant
clwiromn(\nl of Ihe concert hall and lhe choral effect of having many musicians playing the same
nole (or l10tes at octaves), The notes and their harmonics beat highly due to the inevitable

among lhe musicians. Despite this variability! the frequenC)1 function is accepted as is
in Ihe lower plot.
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FIGURE lI5. This is Ihe waveform of a violin duet. One violil) is playing a 84 {ll9lJ Hz} and
the other is playing em FltLi (370 Hz). There is no periodicity evident to the unaided eye in the
WilVE:'form.
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FIGURE 46. When Ihe optimum-tOmb is applied 10 this waveform, it produces the above
plot. We c;m (Icarly see the minima at aboul 4, 8, and 12 milliseconds. These correspond to 250
H7, 125 H2, find 62.5 Hz. The Fn4 is roughly the 3rd harmonic of the 8 millisecond period al':ld the
Bll ir.. the 4th hClrmonic of the 8 millisecOI1d The frequencies detected by the
oplil11urn-comb are generally suffkient 10 assure that all the harmonics of all the notes in the piece
at thai I ime "Ire al frequencies which are multiples of Ihose found by the optimum-cotflb. This is
VlO·ry ir"podant for planning at which frequencies the bandpass filters should be placed.
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PRIMARY SEGMENTATION

We firsno partition the piece on the basis of its musical harmony.
This gives lIS a gUide as to where to look for hal'moi1ics. As mentioned
before. this can be done using the optimum-comb as a periodicity detector.

Figure ·f5 shows' the waveform of two violins playing simultaneously. One
is playing r,-f Hz) and the other is playing Fit'! (370 Hz). It is difficult
to detect any periodicity in the waveform by direct observation. Figure 46
shows the output of the optimum-comb for the above mentioned
wilvrform. We (::In see strong periodicity at about 4.8. and 12 milliseconds.
These colTe"pond to about 250 Hz. 125 Hz. and 62.5 Hz. The F#4 is
roughly the 3rd harmonic of the S millisecond period and the B4 is
roughly the -Ith harmonic of the S millisecond period. This shows that the
periods detected by the optimum-comb are sufficient to assure that we can
fmel the frequencies of all the harmonics present by taking multiples of the
frequencies represented. by those periods. The problem is that there are
more periodicities found by the optimum comb than are actually needed
Cor this tilsk. Since there does not seem to be any good a priori way of
elimlnatmg-the ullnecessary ones, we must settle for doing more work than
WI? hav", to. We can. however, notice that one period is a harmonic of
other periods and is thus redundant. For instance, in the set 4. S. and 12
ml1lisrccinds. 4. milliseconds is r.edundant and need not be included.

ON TilE OPTIl\HJM·COMB

The first pass through the piece is a straightforward application of the
optimum-comb pf?rioclicity detector. There is little of interest here except
that there is a way to reduce the computation time. If the time step
between applications is less than the summation interval. then the

<. ?umrnation can he broken lip into intervals whose length is just the time
between applications. The total summation may be obtained by summing a
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number of these intervals. thus reducing the computation to a fixed
amount, regiHdlp.ss of the total summation width.

To f'nh::tnr.p thi" ;;ccuracy of locating the minimum. the four points around
the rnmllnUIll are uscd to generate a Lagrange polynomial which is then
di!fr.'ICllli''lll?d and the location of the minimum e:.;tracted. This allows us
to f.,P.t somewhat finer resolution than an integral number of samples
would aHow,

Consecutive minima which al'e VAry close in period are linked together
into lists, Figure 12 these ,m as determined for the first brass
chorale in Tableaux d'Wlt' EXj'osition, The only special consideration here
IS that loss of a minimum at a single point is tolerated. A list remains
continuous evell though an application of the optimum-comb does not
have a minimum at that period, but has one in the neighboring
appHca t ions.

ON TilE ESTIMATION OF ROOTS

Thr:ose lim :ne then examined to genP.!':-tle regions. Each region is
char;lcterllf:d by a number of "roots", A root is a frequency such that a
,numbf?r or the harmonics in the region are integral multiples of
'thp. root frequency, Some number of roots will account for all the
h:ulllonics in il region. For N-voice pieces, only N roots at most are
reqUired, We cannot, however, tell on an a /'rio1'1 basis which roots form a
complete sP.t. We must settle for some duplication.

The first estimate of the regions is determined just by the beginning and
ending times of the lists of minima. For each region. the minimum number
of frequencies is determined which can produce all of the frequencies in
the region, In other words, redundant harmonics are eliminated as
candidates for the roots 'in a region. Adjacent regions are then merged if
they contllin the same roots.
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The following is a table that presents the results so far for the first second
o! {j two-violin piece, The first column gives the beginning time of the
l'l:gioll, the s('cond column gives the frequcncies of the roots found in that
re'.:ioll, The third column gives the fl'eqllf:ncies of the notes that were

'.

sounding elunng that region, and the IZlst columll comments on the roots.
11 i'IE . ROOTS NOTES COMt1ENTS
U1S.} (HZ.) (HZ.)

o
10

188

3!:,0
390
id3l3

1835 165, 186
188
32.1

IG2.4
] 73.8 165, 185
20.1

179.8
186.8
138.8 262, 70S
')-"),.1 ••
188
21313
272
2013

11th harmonic of 185 Hz
Poor approximation to 196 Hz
5th subharmonic of 165,

6th of 196
Poor approximation to 165 Hz
Poor approximation to 185 Hz
8th 5ubharmonic of 165.

9th subharmonic of 185

Approximation to 185 Hz
Leftover from last note
Poor approximation to 262 Hz

Poor approximation to 2138 Hz

ti3.7
85.7

3713
63.7

730

51

i12. ()
51
1,2.G
48

G3.7
85.7
24

262, 2213

262, 186

4th subharmonic of 298.
5th subharmonic of 262

5th subharmonic of 208

difference tone between 262
and 2213

4th sUbharmonic of 262
3rd subharmonic of 282
8th subharmonic of 198.

11th sUbharmonic of 262

from this table, it should be clear that the roots determined by this process
a not entirely reliable. The problem is thai there is no way to judge the
quality of a minimum produced by the optimum.comb method. The exact
depth of the minimum is highly variable from application to application.
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dcprnding on the exact amplitudes of the notes involved. The period
f.:stiI11Jtf..'s do not vilry appreciably from application to application. Since
W(' (ilnnot tell whether a particular periodicity is better than any
other. there is no way to eliminate the less lIseful root estimates. To make

that no tones ,"He lost, root estimates for adjacent regions must be
merged before planning the filter frequencies.
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BANDPASS FILTERING

ON LOCATING CENTER FRE<tlJENCIES

BANDPASS FILTERING

First, we must determine at what frequenCies to apply the filters. This
comf?S from eXClmining the estimates of the roots of each region of the
piece. The only measure of quality of the root estimates is the length of a
reg:ion. A long region means that these roots were present for a long tirne.
This is evidence that they are not transient phenomena. Based on this
observation, we form macro· regions by starting with the widest regions
',and grow outward by absorbll1g adjacent regions until the entire piece is
covered. Because of memory limitations, we cannot handle more than .5
seconds of sound at a time in the filter routines, thus we cease grOWing a
region wh/?Il it approaches .5 seconds in length.

To samp. extent. the procedure described above is an ad llDe one. This is
beccH/sf? th('le cloes not seem to be. at this time. anything better to be clone.
Since the purpose of locating the roots of the regions is to reduce the
number of filtering operatiollS over what would be reqUired for a dense
covering, it IS not damagmg that we include spurious roots. This just
!r1rans. that we wlil not realize the minimum Ilumber of filtering
operrltiollS. In rvery case examined so far, some saVings have been
rr;>;llized. so th(' procedlll'e seems worthwhile. The average saVings seems to
Ile roughly a factor of three over the dellSe covering.

Once the macro.regiolls are defined and the roots determined, a list is
made of all the harmonics of each root up to some maximum frequency.
This maxinmm could have been set as high as the Nyquist rate, but was
arbitrarily set to indude up to the 5th harmonic of the highest note in the
pircc under ;'lIlalysis. This maximum frequency setting does not affect the
illlalysis. prOViding it is set high enough. so that setting it any higher
Simply Wi'lstrs time without adding to the quality of the analysis.
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ThIS list of cClnchdate center frequencies is examined for redundant entries.
An I,ntry is redundant if it is within the passband of a filter set at an
ad jacent frequency. TIllS reduced list is then taken as the final list of
center frequencies.

ON FILTER PARAMETERS

A bandpass filter is defined by many parameters. For communication
value. we use traditional filter types: Chebychev. Butterworth, etc
[Guillim;:l11 1057; Karni 1966J. transformed to the discrete domain by use
of the bilinear transform [Gold and Radel' 19691 The resulting filters
have infinite length impulse responses. The filter coefficients are
determined by a program which takes the filter specifications. and
computes the coefficients (see AppendiX B). In selecting a filter type and
I'<lrallleters. the considerations are as follows:

I . What is the band width? A bandpass filter attenuates frequencies
outside of irs passb,md. We determine the band width by choosing
two freq uencies which represent the endpoints of the passband,

2 . Whrlt is the rlttelluation outside of the passband? This determines the
orda of the filter. The order of a filter is an integer. It deter.nines
how many natural frequencies the filter has. Outside of the
passb:lIld. the frequency response (beiore transformatiop to the
discrete doma in!) drops off rough Iy 20 dB per decade (factor of 10
in frequency) for each order. Since a bandpass filter has two skirts
(p laces where the response drops off sharply), the effect is halved.
That is, increasing the order by 2 causes an increase of the

I"<tte ot ZO dB pCI' deCode 011 both sides of the passband.

3 . How close to constant is the response in the p<tssband? This determines
how accurate the harmonic amplitUdes will be as they emerge from
the filter.
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The relations Clmong these parameters are comple:.:. Generally. it works like
this: the transient response is directly related to the band width. It is

related to the attenuation rate. The more narrow the band. and
[Iif: bstr.i' the falloff. the longer the transient response. There is a tradeoff
betwe.;n consl<lncy in the passband and the attenuation rate. In the
Chebychcv filters especially. there is a direct relation. The more ripple
(distortion) you allow in the passband. the greater the attenuation rate.

Making a choice of exactly the parameters to lise is an exercise in whim.
siner there is gr.onr.orally no "optimum" setting. When thinking abollt
Illusical sound. we might conclude that since harmonics are linearly spaced
in frc1lllf:?ncy. a linear frequency scale is what is. called for. that we should

a wnsl;lnt bandwidth throughout the frequency range. and that
(C!Her fl'l?qucllcies should be placed at uniform intervals. Linear distance.
however. on a piano keyboard reaches frequencies that increase

This might lead one to think that the bandwidth could be
WIder for higher frequcncies because the spaCing of musical notes gets
wider with frequency, The ear is physically set up on a scale that is

between linear and exponential. and since we are mimicing the
f?'lr's performance, we perhaps should' take advantage of the
pX(Jcrimentallon that natlll'e has done for tis. Figure 47 shows the relation
between c!istatlCf? along the basilar membrane (corresponds to filter
bandWidth) with frequency. It is clear that this relation is not simply
log'arithmic or simply linear. The vertical axis on the plot represents what
is calleQ "tc';lalness" (a pOOl' translation from the German) and is measured
in "Barks". after the great researcher B:ukhaus. Tonalness represents
critical bandWidths in the car. If we think of the ear as a band of
balHJpass filters, a critical b,mcl is ilnalogom to the bandWidth of the filter.
For 1I1St:ItlCP', two sinUSOId, will sounel rough if their frequency separation
is small!?r than a critical bandWidth. and will sound smooth for frequency
sr.p<lrations wider than a critICal bandwidth.
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FIGURE Ll7. Thir. is a plot of length along the basilar membrane versus frequency (after
Zwic V,N). The verlical axis label is called "tonalness" and is measured in "barr.s" (after Barkhaus).
On0 b;1rk to one critical bandwidth. Thus this curve gives us the frequency resolution
of the par. Note Ihat a critical bandwidth is not the inherent bandwidth of the hairs along the
h"'.il<lr rnembr,me, but is i'l much more narrow bandwidth which is hypothesized to be a
COn<eqllenct:' of the neur<ll interconnections of the hairs. The point is that the curve is neither

(liI',8 the "iemo keyboard) nor linear (like harmonics) but is something in between. The
',lope k, below 500 Hz and represents the greatest resolution. Most of the lower partials

of (11 (an be independently discriminated, Generally, it is thought that "dissonance"
occur'; when more than one partial falls within a sil1gle critical bandwidth. This plot is suggested as
a guide for placement of bandpass filter frequencies for a dense covering of the
frequel1cy spectrum.
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A difference of 1.0 on the tonalness scale represents one critical bandwidth.
This corresponds to etlu<lliengths <lIang the basilar membrane.

However, the program currently uses a linear frequency scale. The
bClnclwidth is SN to a constant 20 Hz throughout the range, which extends
from about 80 Hz to about 5000 Hz. It would be very interesting to use
the biological model (lnd see if good results were obtained and time was
savpd. This experiment is deferred for the time being.

The progrilm USf.'S a 4th order Chebychev filter with a :?odB passband
rippll? If it were IJeing done again, we feel that Il:ss ripple is ill order. The
ripple C<1l1.9:d ct'rt(jin harmonic amplitudes to be estimated incorrectly.
Figure '18 shows the impulse respollse and the frequency response for thiS
kind of filter when centered around 100 Hz.

The impulse response associated with a 20 Hz bandWidth is quite long, as
can be seen from the figure. With some of the higher harmonics, where
.the activity is quite weak, considerable transient response was excited.
The lISt' of wider bands, as suggested by the physical model and the
exponelltial models mentioned abov,=, would help alleViate this problem.

ON PROCESSING FILTER OUTPUT

The olltput of each filter is sent to an optimum-comb pitch detector. The
detector searches for frequencies within the passband of the filter. It is
applied ('very milliseconds throughollt the macro-region. The output of
the pItch detector at each application is a list of the frequencies where
min 11)1;'-1 in the comb output were found. 1\ gil in, polynomial interpolation is
IISp.cl to lOCal!? the I1lll1ima more acclll'ately. ThiS is essential. At 5 Khz, for
instance, ;H KHz sampling rate. the period is only 10 samples long. A
shift of one-h,lIf sample IS eqlllvalent to a frequency change of about 250
Hz. Intf.'rpolrttion. then,is essential for the higher harmonics.
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FIGURE 48. Impulse i'lnd frequency responses of the bandpass filters that were used for
the harillonic extraction. The bandwidth is about 20 Hz. This filter is CE!l1tered On 100 Hz. The
filter W;y. Illade by first desi8ning a 2nd order Chebychev low-pass filh?r with 3 dB of ripple,
trandorrning it to a 4th order bandpass filter (all in the continuous domain), then transforming to
the domain via the bilinear transform. Of course, the 3 dB points had to be mapped first
to assure the correct cutoffs after transformation. The advantage of designing the filter in this
manner thai it is a closed form solution (no iteration) and thus can be programmed very
efficiently. It lar.E'S only a few milliseconds on the computer to set up the coefficients for a filter
of ilrbitrary ripple and cutoff frequencies. If we were to atlempt the task again, a filter with less

..b;:md ripple would be preferred. The passband allenuation sometimes reduced the amplitude
of a good harmonic to the point that it could not be distinguished from a noise trace.
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Each such freg uency is compared with the previous application.
Frequencies whose periods are within 2 samples are considered for linking.
Each freg uency is linked to its best match from the previous application.
These links produce lists of minima.

After aII the lists ha ve been formed in this macro-region. a "weakest
bOllllcl"l'y first" merging algorithm [Yakimovsky 1973] is used to link
ad j:lcent lists whose average periods are very close. This merging
algorithm is used brcausc each tirlle two lists are merged. the resulting list
has III general a different average period. so that it must be compared

with its neighbors. Each time t\110 lists (Ire merged. the boundary
between them is deleted and the "scores" (magnitude difference between
the average periods of the lists) of the two remaining' boundaries are
l'i?complited b::lsed on the new compOSite average period for the list. We
cannot just li)f?rge lists which have scores better than some threshold
without recomputing the averages. This could allow glissandi. which would
have small/owl changes in frequency but large global changes.

This procedurE' is sensible because we know that the frequencies present in
the music change slowly and smoothly. so we can be sure that minima
whose freq urmcies are very close are quHe likely to belong to the same
harmonic. Since we know that the frequencies of notes. and thus their
harmonics. are lltcHly f,itawisf-COllstallt. we can eliminate glissandi. and
C!:'It:lIl1 noise tr;1ces which ::lppl'::lr to have SWiftly-changing frequencies.

With the lim that remain, some simple tests to eliminate noise traces are
dOl'll? /\ list whose total deViation (maximum frequency in the list minus
till: minimum frf:'quf.'l1cy) is too large IS elimil;ated. Lists whose frequencies
changes too rapidly (has too great a slope) are eliminated.

/\ S W(lS mentioned before. the optimum-comb pitch detector (and. in fact,
a 11 autocorrelation-type pitch detectors) responds as well to subharmonics
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of a frequency as to the frequency' itself. We must h<!ve a way to eliminate
these slIbharmonics. This is done by applying a crude pitch detector which
does not have this problem and comparing the results. The pitch detector
llS!?d is just the length of the list in time divided by half the number of
zero crossings in that interval. This gives an order-of-magnitude pitch
estil1l<ltc which is then used to eliminate lists corresponding to
'subharrnon ICS.
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INTERMEDIATE-LEVEL
TECHNIQUES
INTRODUCTION

At this point of the analysis, we are presented with a list of sinlJsoids that
are present in the original sound. We have their amplitudes and
frequencies as functions of time. The purpose of the intermediate-level
programs is to infer from these data what notes are present, their
frequencies and their extent in time.

A t this level, we must also eliminate information that is not strictly
erroneous, but nonetheless is not desired. One example of this is found in
string instruments. When a musician plays a string instrument, like violin
or guitar, the strings other than the ones being manipulated also sound. It
would be extremely difficult for a musician to damp the other strings all
the time. It is not common practice to do so on stringed instruments except
in some schools of classical guitar. The resonances of the other strings are
usually 15 dB or more softer than the principal sounds, so they are
generally not heard unless one listens very carefully. Our program,
however. picks these extraneous tones out quite nicely. They appear in all
the output. Rather than report exactly what is present, we Wish to mimic
human behavior and suppress these tones that do not have immediate
musical meaning. Other extraneous sounds include box resonances
(stringed instruments, for instance, have very strong box reson<lnces), and
strings that continue to Vibrate past the intended ending of the note
(common with open strings).

In the follOWing' sections, we describe the processes as they roughly
corrf?spond to separate programs in the processing path. First is
segmentation and scoring. The scoring is the key to this entire section.
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Without rating the output of the low-level processes as to quality and
suitilbility. no cogent decisions as to what notes are present could be made.
With these ratings. the .notes can be inferred by accumulating groups of
high-qllillity harmonics without combinatoric searches. After the notes are
derived. we proceed tQ separating till? notes into the upper and lower
voices. This is done using the assumption that the piece has no more than
two voices at any given time. Finally. the output is prepared for the
l1lallllscripting program. TIlJi.s involves some cleverness to assure good
readability.
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HARMONIC PROCESSING

SEGMENTATION AND SCORING

INTRODlJCTION

From ba ndpass filtering and pitch detection, we get rough traces of the
amplitude and frequency contours for each harmonic present in the piece.
The problems are many. First, any given trace may not include the full
duration of a note. This is because of space limitations in the filtering
program. The signal must be broken up at arbitrary places and processed
in pieces. These pieces must be glued back together later. Second, any
'.g;i ven trace may include more than one note, one after another. This is
because the transient response of the filter may continue to ring after a
harmonic disappears. It can be excited by activity elsewhere in the
spectrum. This can continue indefinitely. or another' harmonic of similar
frequency may be picked up. Third, pOOl' traces 31'e caused not only by
weak signals, such as extraneous resonances or high harmonics, but can
also be caused by haVing the center frequency of the filter be offset from
the actual frequency of the harmonic. In fact, thel'e are usually 3 traces for
each harmonic: one right 011 the frequency, one above, and one beiow.

From this, we can see that the first thing that must be done is to break up
the traces into units that we know contain no more than one harmonic of
one note, if they contain anything meaningful at ali. The next thing that
must be done is to produce a score lor the trace which reflects its "quality"
in some way. We must deCide what "quality" means in this context. Gluing
together component pieces of a long note can be done later.
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SEGMENTATION AND SCORING

The segmentation is acn.:::lIy the easiest part of the processing. Here, we
simply determine the threshold on the amplitude function such that 90
percent of the energy in the harmonic is at amplitudes above this
threshold. The amplitude function is then scanned for regions that exceed
this threshold. Segments that are shorter than 35 milliseconds are assumed
to be unimportant and are discarded. This is based on the fact that most
meaningful musical notes are longer than 100·milliseconds. Occasional
grace notes and trills will involve notes as short as 50 milliseconds. Our
prognllm are set tip (from this point on) to favor notes of duration 80
milliseconds or longer. This number is a compromise with the desire to
include meaningful musical notes and the desire to eliminate noise traces.
We must set the threshold on length long enough to eliminate as much
spuriOUS transient response of the bandpass filters as possible. We include
harmonics at this point of durations 35 to 80 milliseconds because they
may get merged into a longer note SUbsequently.

Before we proceed further, let me point out an ambiguity of terminology.
When a piece of music is written down in traditional music notation, the
resulting doctlli1ent is called a SCQre. AIternately, when we rate an entity by
assigning it a number which reflects its quality, thiS number is often called
a score. We hope the context will distinguish these meanings clearly. In
this section, we are interested in assigning a quality measure to the traces,
so it is the second meaning that is relevant here.

The scoring of a harmonic is the most important process because it is the
only clue as to the viability of a note that is assembled from a group of
harmonics. As an example how much data is assembled. a single 2-bal'
piece that was processed contained 27 notes, or about 150 meaningfUl
.harmonics (about 5 harmonics per note). The output of the bandpass
filtering and pitch detection produced about 2000 amplitUde-frequency



127 SEGMENTATION AND SCORING

traces. That means that over 90 percent of the traces produced by the
filtering and pitch detection must be discarded. The traces come from
multiple detections of sillgle harmonics, and traces of transient responses
and noise pattel'lls in the high-frequency ranges. The score must reflect the
likelihood that a given harmonic is real and not just a noise trace.

The criterion we have chosen is smoothness of the curves. We reqUire the
amplitude curve to correspond well to a low-order polynomial (6th order or
so), and we reqUire the frequency to be nearly constant. Since the
sluggishness of the bandpass filter smooths out any fine detail in the
harmonic. thiS is a reasonable consideration. Strong. valid harmonics tend
to have clean, smooth traces and nice even frequencies. Vibrato can cause
the frequency to be non-constant. Rather than deal with thiS aspect now,
we have finessed the problem by not cC!nsidering it. Any more
comprdlf;!lsive music<,ll scribe should allow certain forms of frequency
vari(ltion like vibrato, glissando, and expressive frequency changes.

We produce a composite score for the trace by taking into account the
residual error of the amplitude aild frequency fits as well as the
coefficients of the frequency fit. This not only gives a measure of the
qua lity of the fit. but also J. measure of the constancy of the freq uency
during the note. We also use the distance between the center frequency of
the filter and the frequency of the harmonic. Since the traces are better as
they approach the center frequenry, because they are maXimally distant
from the high·(t resonances of the filter, this is a reasonable measure tC'
help discriminate good traces from transient response. Each of these
measllt'es must be made commensurate with one another. For instance, the
coefficient of the second degree term of the frequency polynomial is a
squared quantity and its square root must be taken.

One of the bigger problems in nonnal!l.ation of the components of the
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score is equalization for duration. We want scores for long notes to be
"commensurate with scores for short notes. The terms in question here are
the residual errors for the polynomial fits. If we view the fit as a

regression process, then the residual error will be distributed as X2• To
show this and the assumptions it involves, let us show where this result
comes from. This presentation is patterhed after Freund [19621 Since this
is a standard derivation, we shall only pr,esent the results, not the
interven ing steps.

Given a sequence of abscissa. Xi, and their ordinates, Vi' r€'(lresenting, in
this case, equally spaced' points in time and the value of the amplitude 01'
frequency curve at tha-t point in time. We assume, then, that the Vi are
independent random variables haVing the following condition,,}
probabi Iity distribution:

Where. Xi are the independent variable, 1S i
Yi are the dcpendt'nt variable, but are indejJende?,r

random variables distributed normally about
an Nih-order polynomial.

0- is the st andard deviation of said distribution.

2l j are the coefficients of said polynomial.

Here, the <.1) are the same for each value of i. We obtain maximum

likelihood estimates of the regression coefficients, a j, and then compute the
residual error as follows:
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Where p is the root-mean-square residual error of
the abscissa and the polynomial

p2 will ther. be an estimator of 0"2 and is thus distributed as X2. The
main assumption here is that the ordinates are distributed normally
around a polynomial. This is, of course, not entirely true. There is nothing
in the physics of music production that requires the harmonic amplitudes
to be polynomials. We violate the assumption with the hope that the
resulting computations will still be meaningful.

The use of the X2 property of the reSidual elTor is that traces of different

lengths (different values of M, i.e., different numbers of degrees of

freedom) can be compared by first normalizing bi' the X2 value for that
number of degrees of freedom. In fact, we find that this does help produce
more commensurate reSidual errors between long segments and short
segments, but due to the fact that the assumptions fundamental in the
process are violated, the correction does not seem to be enough. Long
segments still have somewhat higher residual errors than short ones.

.To be explicit, the score, representing the "badness" of the trace (that is,
'inverse quality) is computed as the sum of the follOWing terms:

(f t - The quotient of the residual error of the amplitUde fit, as defined in
equation (?,8), and the average amplitude of the harmonic. The

reSidual error of the amplitude fit was normalized by the X2 value
for the number of degrees of freedom (points) in the amplitude
function that were llsed in making the polynomial fit.

(\-2 - The quotient of the reSidual error of the frequency fit and the
average frequency of the harmonic. The residual error is again

normalized by the X2 value.
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{f3 - The first-order coefficient of the frequency fit, divided by the
average frequency of the harmonic.

Cf4 , The square root of the second-order coefficient of the frequency fit,
again divided by the average frequency of the harmonic.

(Sis - The magnitude of the difference of the average frequency and the
center freq m!ncy of the filter.

The totaI score was then computed as the weighted sum of these terms:

Where the k j are the weightings of the various
error terms

The first four terms, (r I through Cf.4, were normalized by the average
value (amplitude or frequency) of the harmonic. This gives a measure of
the rdatil1e error rather than the absolute errol'. This allows us to compare
strong harmonics with weak. high frequency harmonics with low frequency
ones. OtherWise, the expected error range would vary with these
parameters.

In (r 4• the square root was taken because the second-order coefficient is a
squart'cl quantity. The root must be taken to make it commensurate with
the other error measures. which are all linear quantities.

For reference, the values for the weights, kif were k J=100. k2=3000,
k3=10. k4=20. ks=4.
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FIGURE 49: Plots from the, segmentation and scoring algorithm. tach picture shows an amplitude
and a frequency curve. The horizontal line across the amplitude plot denotes the threshold where
9:)% of the energy of. the plot lies at amplitudes above this line. The small arrows denote the
region being fit and scored. The smooth curves through the amplitude and frequenc.y plots are the
polyncmiClI fits to these curves. In figure 49c, the polynomial fit for the frequency rises at the end
of the plot. This is Cl boundary effed common in this kind of approximation that the slope of the
apPl'OxilMltion i>lrayr.. <1t the ends of the window. The numbers at the top represent the various
$eoring contributions, <1lready weighted and 11ormalized, as described in the text. CF represents
the center frequency of the filler th::!t produced Ihese plots, AVFR represents the average
frequel1cl in Ihe region being fit, and SCORE represents the sum of Ihe contributions from all five
error <.Ourees. These tr"'ces were taY,en from the analysis of a two-part piano piece. There was a
262 HI. 110ft> and i-l 332 Hz nole being played al Ihis lime. We see four traces of the same
harmonic: the r,econd hannonic of the 262 Hz note, al about 525 Hz. II is clear that the score
improves r,mallel') as the center frequency of the filler (CF) approaches the actual frequency
of the harmonic. This is a good demonstration of why a scoring system is necessary. Each
hilrmonic produces many traces. The good ones must be separated frOm the spurious ones. The
error criteria used here seems to accomplish this effectively.
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Figure 19 shows four examples of segmentation, polynomial fitting', and
scoring 011 a single harmonic. The harmonic chosen is the second
harmonic of a 262 Hz note (C1), which is at about 525 Hl. These traces
are taken from the first notes of a two-part pi?no piece. There is also a
332 Hz note (E1) sounding at this time. The four traces in the figure are
separate traces of the same harmonic. This shows how adjacent filters will
pass the same hannonic with differing degrees of faithfulness. Over each
flg:ure is a iist of parameters. CF represents the center frequency of the
.filter that produced the trace. In each figure, the upper plot represents the
amplitude envelope of the filter output. The bottom plot represents the
olltput of the pitch detector which was applied to the filter output. Across
the amplitude plot is a horizontal line which represents the threshold such
that 95 percl?nt of the energy in the amplitUde envelope is at values above
that threshold. This is how the segmentation is done. The small arrows
point out the limits of the region above threshold that is being processed.
Sometimes a single trace will have several disjoint traces above the
threshold. The next figure shows such an example. Both the amplitUde
and frequency functions were fit with polynomials. The polynomials are
also plotted. They Clrethe smooth lines through the plots. The amplitude
polynomial is of order 6, and the frequency polynolillai is of order 2.

Above each figure is listed the contributions to the total score from each of
the five errol' fUl1ctiolis. The label CONll on the figure refers to the
weighted, normalized quantity k I(r I' The label CONT2 refers to the

weighted, n.ormalized quantity k2{r2, and so on. The total which is
the slim of these contributions as expressed in equation (39), is labeled
SCORE in the figures. The parameter AVFR is the average frequency in
the region uncleI' analysis.

As we can see, the errol' score decreases monotonically as the center
frequency of the filter approaches the actual frequency of the harmonic,
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even if we discard the contribution from k5(YS' which represents exactly
the e1istonce from the frequency of the harmonic. The contribution from

ks(¥s is included to strengthen this bias toward centered filters.

Remember that the frequencies of the filters was determined by the comb
filter, so that they do not necessarily represent the frequency of the
harmonic that passes through the filter. We indude this last term to
represent only the fact that the trace is better when the frequency of the
harmonic is near the center frequency of the fiiter, and thus the overall
score for the harmonic is more likely to be meaningfUl.

In figure 50 we see four more plots, again of the same harmonic, which is
the third harmonic of the 332 Hz note (E4) at about 987 Hz. Since the
strengths of the harmonics generally decrease as the harmonic number
increases, these upper harmonics become increasingly difficult to follow.
Often, even when the filter is ex actly c,entered on the harmonic a good
trace with low error cannot be obtained. As a result, these upper
harmonics cannot be used with gTeat confidence to infer the existence of
notes.

Figure 5l)a and SOb show how a single harmonic cail get spuriously broken
into two pieces. Here the harmonic was beating with the transient response
of the filter and went below the segmentation threshold and was thus
broken ur.
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FIGURE 50: Plots from the segmentation and scoring algorithm. As with the previous figure, these
traces were tat,en from the analysis of a two-part piano piece. There was a 262 Hz note and a
332 Hz nole being played at this time. We see four traces of the same harmonic: the third
harmonic of the 332 Hz note, at about 987 Hz. As we ascend in harmonic number, the traces get
wear, and 'noisy, such that there are many spurious traces, and high error scores on the good
traces. For this reason, we cannot rely on the higher harmonics as evidence for notes except for
certain it)struments with strong high harmonics.
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At this paint ill the analysis, we have a large set of possible harmonics.
For each possible harmonic, we preserve only a few numbers: the average
amplitude, the beginning time, the ending time, the average frequency, the
etTOr score, and the amplitude function polynomial. A11 information
regarding the exact shape of the amplitude or frequency function has been
discarded.

It seems to be a property of machine perception programs that they get
more and more heuristic and less and less defensible on theoretical bases
as they proceed to higher and higher levels of proceSSing, away from the
low.level, signal.processing techniques. This program is no exception.
Each heuristic is based in the properties of musical sound, but sometimes
the is especially tenuous.

Our first task is to merge duplicate traces. Since we get several traces for
each hilrrnolliL, we can combine these into one compOSite harmonic. This
reduces the data immediately by a factor of three or so. This initial
merging is only done for traces that overlap significantly in time and
whose pitches are within a few percent of Gile another. 'Ne cal! these
l'e<illad harmonics. The parameters of the reduced harmonic are taken
from the parameters of the harmonic with the lowest error score. In the
case of several harmonics with low scores, a weighted average is taken to
form the new amplitude and frequency. The parameters are weighted by
the reciprocals of the scores of the individual harmonics.

Next, a list is formed of these reduced harmonics in order of their average
amplitude divided by their error score. This prOVides simultaneously a
measure of the strength and the quality of trw reduced harmonic. We
then attempt to group together a number of harmonics that infer a note.
One problem in so doing is avoiding a combinatoric search. Assuming
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thrtt the lower-level procedures hrtve produced faithful traces, we can just
pick off the best reduced harmonic (in the sense of having the largest
amplitude-error score quotient) and assume that this is the first, second or
third harmonic of a note. This is a purely heuristic assumption but it is
based on the observation that most musically interesting tones have strong
lower harmonics. This does not account for many effects present in human
hearing, like the existence of residue pitch, but it is a reasonable
compromise for the current study.

With this reduced harmonic, we first search tht: entire reduced harmonic
list to see if there is another reduced harmonic existing at the same time
that has one-half or one-thll'd of the frequency. If there is no such tone, we
take our original reduced harmonic to be the fundamental of the note, else
we take the lowest reduced harmonic found as the fundamental. We can
then race through and pick out harmonics for this fundamental just by
locating reduced harmonics that exist at the same time and which have
',frequencies that are close to the predicted frequency of the harmonic in
question.

Once the harmonics are seiected, the note can be tested for ·viability. The
first test is whether the fundamental is at all strollg. We reqUire the
fundamental to be of substantial strength and quality. This is, again, a
departure from human percept'lal performance. If the fundamental is
strong. we examine the strengths of the harmonics that are not multiples of
two and not multiples of three. The 1st, 3rd. 5th, and 7th are examples of
harmonics that are not of two. The 1st. 2nd. 4th, 5th, 7th, and
8th harmonics are examples of harmonics that are not multiples of three.
This is to try to determine whether the fundamental is a Splt'ious trace
and the note is really two or three times higher than are It}/;" . :lesizlng.
We threshold the ratio of the sums of the qualities for these selected
harmonics with the sum of the quality for the remaining harmonics. This
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secms to be an adequate technique, although it occasionally eliminates
useful notes.

We require also that the harmonics be dense. That is, for two or more
harmonics, we require that the note possess all but one harmonic for
acceptance, unless it is only odd harmonics, in which case it must possess
a" the odd harmon ics up to the highest harmonic in the hypothesized
note. A note consisting of just one harmonic, the fundamental, we reg uire
to be qlIite strong for acceptance.

We then merge notes that have very nearly the same frequency and
overlap considerably in time. These can be produced by haVing a very
long note. The initial segmentation based upon the musical harmony of
the piece is made, 50me errors in segmentation result. The most common
form of this kind of elTor is that a long note can get broken into smaller
pieces, These pieces must be glued back together at some po:nt. We have
chosen to do so after the note hypothesis 11as been formed.

The data representing the note is then reduced to just four numbers: the
pitch, the begll1ning time, the ending time, and the quality (amplitude over
error score), The beginning and ending tirnes are obtained by f!roduciilg
an overall amplitude profile for the note based on the polynomial
representations of the amplitude curves for each of the harmonics. This
avera II profile is subjected to a threshold that assures that 95 percent of
the energy is above the threshold. The times where the profile drops below
this threshold are taken to be the begmning and ending times of the note.

Figure 51 shows a representation of one of the notes inferred by this
procedure, The curves on the plot represent the amplitude polynomials for
each of the harmonics. The text in the lower part of the picture represents
information on each of the harmonics. The first column is the beg'inning
time, the second column is the ending time of thE' harmonic. These times
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are in tens of milliseconds. The next column is the average amplitude of
the harmonic The fourth column is the error score of the harmonic.
Sometimes there is 110t a space between the figures in the third and fourth
columns. The last column represents the average frequency of the
harmonic. The isolated pitch figure at the bottom of the plot represents
the weighted average pitch of the tone, which is derived by diViding down
the average pitches of the harmonics, weightll1g' them with the quality of
the reduced harmonic, and averaging them.

Even at this iate stage, imprecisions occur. Figure 52 shows one such error.
There is a strong noise burst on the end of one of the harmonics. This
burst is enough to cause the ending time of the note to be overestimated.
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Given this list of notes from the pt:evious processing stage, we must now
link them into melodies. For convenience, we do not attempt to handle the
case where parts cross. To handle crossing parts cOlTectly, we would have
to identify the instrument involved. as well as examine the musical context
in great detail.

We have decided lIpon a very simple algorithm for selecting melodic
groupings. At this point in the algorithm. we make use of the assumption
that thp.re are no more than two independent voices in the piece. This way
we can search for places where there are two notes sounding
simultanE;ollsly and identify the voices positively. Any place that can be so
identified is called an island. This island represents a place where there is
no doubt as to the voices (upper or lower) a particular pair of notes belong
to.

To finish the assignment, we lise a global scoring algorithm. We assign a
"score" to a particular assignment which is the sum of the magnitudes of
the differences of the frequencies of adjacent notes in the melodies. We
can then search all possible assignments of the unassigned notes and
comparE' the various possibilities by comparing their scores. The
assignment with the best (lowest) score is chosen.

Figure 53 shows the initial melodic assignment for a guitar duet. The score
'for the duet is shown in figure 60. What we see in this figUl'e are the
assignments based on the existence of islands in the piece. Each note is
r('pn?sentf;>d by a horizontal line. When a note is assigned' to a voice. a
"tail" is drawn at the end of the line which points up. denoting
membership in the upper voice. or clown. denoting membership in the
lower voice. The dotted lines represent melodic connections made between
notes which indicate melodic adjacency. In this figure. there are 8
unassigned notes.
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With a small number of notes and a branching factor of two, it is
reasonable to do an exhaustive search to determine the best melodic
assignment. For this to be practical, the algorithm whi.ch determines the
melodies once the notes ";.;'-:. ".lssigned to the voices must be fast.
Fortunately, this can be done in a very simple manner. With the voices
already assigned, we merely start at the beginning of the piece. We locate
the first notes in the piece in each voice. We then locate the second notes
in each voice simply by searching forward in time. We proceed through
time in this manner, annexing notes onto their respective voices, until we
ex haust the notes in the piece. This assignment is linear and can be made
very fast by sorting the notes into time order. This sort only has to be
donp. once.

Figure 54 shows the results of the melodic grouping' for the guitar duet.
Figures 55 and 56 show the same plots for the pseudo-violin duet whose
score is shown in figure 58.
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Fi::;ure 53. This shows the first stage of the melodic grouping. This is from a guitar duet.
Tho for this piece i<;. shown in figure 60. Each note is specified by a horizontal line. Some

h,w(;' alroady been o",sip,ned to the upper or lower './oki:. There is a "tail" On each assi8ned
note that points up or down, denoting rllembership in the upper or lower voice, respectively.
Those that are assigned to voices in this plot were so assigned by finding pairs of notes that
were sounding simultaneously'. :11 such a case, the upper note will be assigned 10 the upper voice,
and the lower note to Ihe lower voice. The dolled lines indicate a melodic connection between
adjacent notes of a melody.
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Figure 54. This shows the final melodic grouping. This is from a guitar duet. The score
for this piece is 5hown in figure 60. As in the previous figure. each note is specified by a
horizonlal line. Some notes have already been assigned 10 the upper or lower voice. There is a
"tail" on f?<lch assigned note ihal points up or down, d0noting membership in the upper or lower
voice, respectively. The remaining melodic membership was assigned by determining the voice
m;signlllent which minimized the sum of the magnitudes of the differences in frequency between
6ilch pair of adjacent notes in any proposed melodic assignment. Since the number of notes is
small, thi5 was done by a factorial search.
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Figure 55. This shows the first stage of the melodic grouping for the pseudo-violin duet.
The score for this piece is shown in figure 58. The format of this figure is like that of the
previous two figures.
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Once the melodies are determined, the manuscripting is just a matter of
'preparing input for Leland. Smith's manuscripting program [1973).

Smith's program relieves us of having to consider the exact geometric and
spacing details, bur it does not guarantee that what is printed makes good
musical sense. For instance, it is a convention that once an accidental
occurs in a measure, the effect of the accidental persists throughout the
measure. This means that we must keep track of each accidental and reset
the flag at the end of the measure,

It is also a convention that a note of a certain duration shall only be
written on an integral number of those durations into the measure. For
instance, a syncopated note of three eighth-notes duration which begins
after ,111 eight rest at the beginning of a measure is usually not written as a
dotted quarter. It is usually written as an eighth tied to a quarter, Thus
we must build up each duration from an assemblage of notes connected by
ties.

Still. compared with the difficulties involved in the low level tasks. this
aspect of the problem is simple.

There is. of course. indeterminacy in a musical score. We can scale all the
note representations by any 'number of factors of two and still make
musical sense. A piece written in 1/4 can be written eqUivalently in 2/2
with little difficulty. We rely on the human to resolve the ambigUity in this
case.

AIt hough some work has been dOlle on inferring the key and time
signature of pieces [Longuet-H iggens and Steedman, 1971], we did not
attempt to do so here, The reasons al'e that it would appear that any
algorithm to do this must be dependent on the style, and that some of the
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pieces we were interested in were atonal pieces and thus had no key
signature. It would be an interesting exercise to see if the key and time
signatures could be inferred .in general in some meaningful way.

AIso not discussed here is the problem of tracking rallentando.
accelerando, or other slow changes in tempo. This prOVides a special
problem for the musical scribe. Detecting the beat, especially if any
syncopation is involved, seems to be quite difficult. It is hard to define a
strategy that will do this in any general fashion.

There is also the problem that the times and durations that the compmer
determines will be, in general. real numbers, whereas these must be
converted to simple rational lengths for the score. We do this by asking the
user what the smallest length note is that he will accept. A11 note positions
and durations are forced into multiples of this length. This means that tpe
user can ask for a quite grotesque score by giVing a very short duration as
the fundamental length.

This is not really a satisfactory arrangement. because we are generally less
concerned with when very long notes end than when shorter notes end.,
Thus, to specify the (lu:-ation of a note that is slightly longer than a whole

',note down to the nearest 64 th note may not be exactly what is called for.
Yet, if the composer wishes to specify a tone that continuously melts into a
rapid, syncopated segment, that is exactly how he would write it. In other
words there seems to be many options as to how to notate such cases,
depcnding on thl:' ex act style of music involved and the ideas the composer
is trying to embed in his piece. We have taken a somewhat neutral attitude
here by attempting to do only an adetl,uate job. rather than a superlative
one in choosing among the printing' alternatives here.
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.A trial system usine; the discrete Fourier transform (OFT) was made before
we realized that such a system was not capable of dealing with
reverberation 01' Vibrato. Although we do not attempt to deal with vibrato
here, the ability can be worked into the current framework without too
much difficulty. This is not tme for the DFT. In any case, iet us present
the results of low·level analysis using the OFT.

The OFT-based system made one complete pass through the sound
waveform and applied a 4096-point OFT every 10 milliseconds. At a
sampling rate of 25600, the DFT Window was 160 milliseconds Wide. Since
a second-order weighting fUllction was used, the effective width of the
Window was less than half of this. This is similar to the averaging period
of the bandpass filters that were preViously discllssed. The magnitude of
the DFT was computed. Peaks were detected. in the spectrum and were
illterpolated to get the freq uencies and amplitudes more accurately. The
method of Rife and Vincent [1970J were lIsed for the weighting and
interpolation. In their terminology, method II was used with a class-III
weighting function of second order.

The first measures of two pieces were done. The guitar duet, whose SCOl'e
is shown in figure 60, and the pseudo-violin duet, whose score is shown in
figure 58. Figures 57a and 57b correspond to the guitar duet, figures 57c
and 57d to the pseudo-violin duet.

In ('ach piece, the left-hand figure bas a point for every peak in the DFT
that was found. The vertical axes are labeled in Hem and represent the
frequencies of the spectral peaks. In the right.hand figures, the points in
adjacent time slots have been linked together into lists. The head of each
list is marked on the plot by a small vertical stroke. Isolated vertical strokes
are lists of one element. We can see in the pseudo-violin duet that some
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harmonics which actually belong to different notes have been merged
because of their proximity in frequency. We can see this in the lower plots
(57c (llld 57d) in the fundamental frequency of the first tW/J notes in the
lower vOice. These two notes actually occupy the first and second 200-
millisecond windows of the piece. In 57d, we see that the two harmonics
have been linked together, because the peak in the OFT representing these
harmonics moved smoothly from one frequency to the next at about 200
l1)illiseconds into the piece. This can be dealt with later by noticing that
the frcquen'cy has a quantum jump over the duration of the harmonic.

This method might be Viable for non-reverberan:, non-Vibrato cases,
although for the guitar piece, method would have to be developed to
recover the missing harmonics, such as the second harmonic of the AS
(220 Hz) at "bout 1400 mi1liseconds (figure 57b). The second and third
harmonics of the note only appear briefly in the DFT.
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r1GURE 57. These are the results of an '.?xperimental system using only the discrete Fourier
as the low-level routine. Every 10 milliseconds, a new DFT was computed. In the left

(a and c), each point represenls a peak in the OFT. All horizontal axes are in milliseconds,
11';e vertical axes (Ire in Hertz. The right figures (b and d) have been processed to link peaks in
adj;,cent lirr1e windows. A vertical denotes Ihe beginning of a list of consecutive peaks. The
piece th,1t produced Ihe top plols (a and b) is the guitar duet whose score is shown in figure 60.
:rhe that produced Ihe bottom plots (c. .and d) is the pseudo-violin duet whose score is showt'
in figure 53. In each case, only the first measure of the piece is shown here. The transform was
4096 points (160 milliseconds long) and 8 second-order time window was used. The method of Rife
and Vincent [1970] W8'; used to interpolate the peaks. We can see, especially on the guitar piece,
thaI harmonics of notes known to exist are often missing. Although there is not an exactly
analogous illustration, we can compare Ihis with the results of the programs using bandpass
filtering in figure 53.



15J INTRODUCTION

YES, BUT DOES IT WORK?
INTRODUCTION

In this section we present the results of our work, a critical review of its
faults. ,md some ways that a future system might better be constructed.

One of the pieces shown was entirely synthetic, essentially untouched by
the disturbing properties of transmission through the air. This was done
for debugging purposes. The other piece was performed by the author and
recorded at home on a cheap Sony tape ·recorder. Both pieces were
composed by the author. They are both segments of larger pieces. They
were chosen because they both exhibit properties that make them
compatible with the restrictions we have imposed on the kind of music
that will be accepted for analysis.

In discussion pOSSible improvements, we c!eal with each stage of the
analysis separately. We outline a possible two-step filtering scheme that
use: wide band filters to determine the strongest sinusoid in a given
frequency region, then a narrow band filter to extract that sinusoid
individually.

A rating scheme for notes is suggested which is somewhat like that applied
to individual amplitude and frequency traces. This would allow
comparison of note hypotheses and a similar SOI't of maximizing search
would be possible.

Other improvements include changing the tempo to compensate with the
performer's tempo changes, and many other fine points.
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Here we present two examples to show the operation of system as a
whole. The first example is synthetic and was both synthesized and
analyzed entirely within the computer. This the piece the programs
were debugged on. The utility of working with a synthetic piece is that one
knows exactly when each note begins and ends, exactly what the pitches of
the notes are, and exactly what their amplitUde and frequency functions
are. It is a little unreal in that there ,is no digitizing noise, no room noise,
no spurious sounds from box and string resonances, and no room
reverberation. The second piece, however. possesses all these problems.

Even though the synthetic piece has no noise. it is still not a trivial
example. It is non-trivial because the tones were generated from the
analyses of actual violin tones by use of the heterodyne filter which
preserves all the highly time-variant properties of the tones. Another
reason why the piece is non-triv ial is that it is quite fast. Quarter.notes
occur at 160 per minute, making the length of each eighth-note only 200
milliseconds. Since the note is staccato, its effective length is even shorter.
These short notes spell death to most signal-processing techniques because
there is little or no steady-state portion of the signal. Transient responses
are strongly excit::::\.

Figure 58 shows the original score of the synthetic piece. This piece was
synthesized for pseudo-violin. using the analysis data of an actual Violin. It
sOllnds a little strange because only the analysis data of an Eb4 was used
to synthesize all the notes. When you resynthesize a note off the original
frequency, the timbre of the tone is altered. sometimes quite a bit, although
the spectral shape and the transient behavior is identical at either
frequency.
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Figu re 59 is the final output of the transcription programs. As is easily
seen. a11 the notes are present. they begin at the ;:orrect times, and they al'e
at the right pitches. The note lengths, however, have been consistently
underestimated. This is because the segmentation algorithm threshold was
set quite high to eliminate noise traces and consequently eliminated some
good data, Any more comprehensive system should go back and, knOWing
the pitch a'nd rough duration, analyze specifically for the time limits of
each note. Knowing the pitch of the note and all the simultaneously
sounding notes would enable us to perform this analysis,

Figure 60 shows the original score of a guitar duet. This piece is
somewhat slower than the previous one. The eighth-notes are of about 250
milliseconds dUl'atioll, for an overall tempo of 120 quartel'-notes per
minute.

Figure 61 shows the final output of the transcription programs for this
piece. Again, the durations are consistently underestimated. There is one
note missing toward the end of the piece. This was lost due to one
harmonic being coincident with the other note sounding at that time.
il second harmonic being lost due to noise. The remaining harmonics were
not strong enough to infer a note at that position. This points up another
deficiency of the program that infen the notes from the harmonics: when
a harmonic is used to infer a note and that note is accepted, that harmonic
is removed from the list of harmonics. This means any subsequent note
that might also lise that harmonic must do without it. The program was
arranged in this manner to help eliminate the problem of hypothesizing a
note based on each harmonic present. This way, we hypothesize the lowest
one. and remove all the harmonics from further consideration. Clearly,
some compromise could be arranged.

One hopeful sign is that thi: guitar piece was recorded in a noisy
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,

environment. with poor equipment and no special care taken in type of
tape used, type of tape recorder, type of microphone, micwphone
placemel1t, or any of a number of considerations that define good
recording technique. The only consideration was that the recorder was not
saturated during the recording.

In fact, the guitar was not tuned to A1=140 Hz. for the recording. The
result of this is that aii the pitches were about 2 percent higher than
concert. The program rounded this upward and printed the score
uniformly one half.step higher throughout. This shows the literal-minded
nature of the computer. We did nothing to correct thiS mistuning. A more
comprehensive program would notate this piece in the key of C. or Db.
'We made no ttttempt to do so here. We might expect that doing this for a
capella vocal work would result in the score slowly drifting from the
originai key. The program is arranged so that this would be notated as a
sudden shift in key by one half-step.
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FIGURE 58. The original score for a pseudo-violin duet. The tempo is rather fast. There
are 160 quarter-notes per minute, or about 200 milliseconds for each eighth-note. Since this piece
goes below G3, this score could not have been played on actual violins. With computer
synthesized violin-like tones, we have no such restrictions.

FIGURE 59. This is Ihe score produced by the computer. The lengths of the longer notes
are (onsistantly underestimated. This is because the threshold for noise rejection is set so high
thelt the tail ends of the notes are lost.
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FIGURE 60. The original score for a guitar duet. lhe tempo is 120 quarter-notes per
minute, cr about 250 milliseconds for each eighth-note.
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FIGURE 61. This is the score produced by the computer. Again, the lengths of the longer
notes are consistantly underestimated. Also, there is a note missing iii the last The most
conspicuous change, however, is due to Ihe fact that the gUitar was misluned somewhat high. The
literal-tninded computer 1ailhfully reports the score here one half-step high throughout. The'
intervals between consecutive notes is correct in terms of the number of half-steps the interval

Please note Ihal Ihis is nol good musical notational style. This should be notated in
the ft,ey 01 Db, which would make all the accidentals dissapear. We retain Ihis notation because it
is general, and can represent 12-\on8 pieces as well as tonal pieces, although the
representation is quite clumsy in many cases.
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After this exposition, we ask the'question !IOW can we do tIlls better? As it
turns out, constructing the prog'rams to actually demonstt'ate the concepts
of the system were very enlightening as to how it all should have been
done, We shall examine the system one piece at a time to give a
presentation as to how this task can be done better and what the weakest
parts of the current implementation are.

PREDICTION AND FILTERING

Since most of the computer time for the task is used by prediction and
fHtering, we might look to see how they might be improved. One could
imagine a two· level search strategy something like the following:

. First. a bank of wide-band (third-octave perhaps) filters is applied. If the
energy in the output of the filte'r is too small, that frequency band is not
analyzed flinher. A filter of this Wide bandWidth wilf. in general, pass
several sinusoids at once. A pitch detector is applied to the output of the
fi Iter. There ex ist pitch detectors that will detect the pitch of the strongest
sinusoidal component in the signal. This gives us the frequency of one of
the sinusoids that is passed by the filter.

Once we 0L)tain this frequency. we may apply a more narrow band filter to
eX<lctly this frequency as well as to integral mUltiples and integral fractions
(If this frequency, so as to capture the subharmonics and harmonics of the
Sillusoid, We may progressively narrow the band of the filter untH it is
clear that no sinusoid is present at this frequency or until we get a good
estimate of its frequency. Once we know a sinusoid is present at a
.particular frequency and what bandwidth filter is necessary to extract it,
we may sweep forward and backward in time, searching for the tl"Ue extent
in time of this sinusoid.
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There are various complications that may occur which should be noted.
First, another note may sound at some other time that would require us to
make the filter much more narrow. We can tell this by noting that the
output of the pitch detector suddenly becomes garbage when there is still
plenty of energy at that freg uency.

If another sinusoid suddenly were to appear at very nearly that same
frequency. we could notice the sudden phase change, which would
manifest itself as a spike in the frequency trace. The total energy in the
filter output would presumably increase. unless the sinusoids cancel each
other out. They may also beat.

Another thing that may happen is that there may be Vibrato on the
sinusoid. which would imply that its frequency is constantly changing. We
may track the freq uency by making the filter freq uellcy follow the
frequency estimate from the pitch detector. This has stability problems.
We must introduce some smoothing so that instabilities do not occur. We
must force the filter to stay within certain bounds, such that excursions
outside these bounds will be taken tu mean the trace is noisy and that
.either nothing is present or a more narrow filter must be used. Let us note
that the problem of tracking the frequency of a single (monophonic)
pf:'riodic signal is one that has been addressed extenSively by the speech
community. Some groups consider this to be a solved problem. We believe
that there is still work to be done in the case of it noisy enVironment, as we
ha ve in this case. Even if the piece is recorded in a very quiet room, there
is always the "noise" consisting of the Vibrations of the strings that are not
being played.

We persist in using bandpass filters rather than DFT or other signal-
.processing teclmiq lies on the grounds that the filter gives us a great deal
of flexibility. it can deal with reverberant enVironments, it preserves time
information. and can handle continuously-changing frequencies. This last
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fe<lt c<lnnot be performed with the DFT simply by looking- for a peak at a
certa in place. Only a time-variant (adaptive, in this case) filter can deal
successfully with vibrato.

These procedures, we believe, call accomplish the low-level tasks well in
somewhat less compute time, providing much more power.

To show how this might work, we have computed some test cases using- a
200 millisecond segment of a two-part piano piece. The notes being- played
during this segment are a D4 at about 294 Hz (3,4 milliseconds period)
and an F4 at 349 Hz (2,86 milliseconds period). Figure 62a shows the
waveform of the signal itself. Figure 62b shows the discrete Fourier
transform of the waveform. We can see the notes and their harmonics
clearly (piUS <I lot of other stuff). Figure 52c shows the cepstrum of this
waveform. As we might expect, the cepstrum of this polyphonic piece is a
mess. The peaks do not .\.eem to correspond to the periods of anything that
we know is present in the signal. Figure 62d shows the autocorrelation of
the waveform, and figure 62e shows the optimum-comb applied at a place
in the middle of the waveform segment. These last two plots show
sig;nificant activity at multiples of the periods of the notes that are present.
We notice that the peaks coincide at abollt 17 milliseconds. This is because
D4 and F4 form a minor third. This implies that their frequency ratio is
about 5/6. Indeed, 5;::3,4 milliseconds is 17, and 6:::2.86 milliseconds is about
17.16 milliseconds.

The next figure, number 63. shows the same sequeno' of plots for the
filtered waveform. The wavefol'm in figure 63a was filtered with a 4th
order Butterworth bandpass filter with 3dB points at 170 Hz and 230 Hz.
The filtered waveform is sliown in figure 63a. As can be seen f!'Om the
successive plots, we seem to. have isolated a signal at about 174 Hz. This is
a subharmonic of the F4 which is probably caused by a lower string
resonating.
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FIGUI<E 62: This and the following three figures examine a 200 millisecond segment from the middle
of <1 Iwo"pArt piano piece. Present at this time are a 04 at 294 Hz (3.4 milliseconds period) and an
FLl <'It 3L19 Hz (2.86 milliseconds period). Figure 62a shows the sound waveform itself. Figure 62b
f;hows the discrete Fourier transform of this segment of sound. We can see the peaks
corresponding to lhe notes quite clearly. Figure 62c shows the cepstrum of this segment. As we
might expect, the peaks in the cepstrum do not seem to have any obvious meaning. Figure 62d
shows the autocorrelation of the music waveform. We can see peaks corresponding to the
subharmonics of the two notes present. At just over 17 milliseconds, the peaks line up. This is

Of! and F4 form a minor third which implies a frequency ratio of nearly 5/6. In fact, 5*3.4
rnilli::,ec onck, is about 17 roilliseconds and 6*2.86 milliseconds is about 17.16 milliseconds. Figure
62e ·,how!, lhe oplitllum-comb applied to this waveform. We can see that it corresponds greatly to
the il1ver',c of the ilutororrelillion with the exception that the minimum at 17 milliseconds I:> mOre
prol1ounc cd than the rn<lximum in the autocorrelation at 17 milliseconds. Neither is very prominant,
corl1parcd 10 Ihe other features in the plots.
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FIGURE 6:3: The tipper plot shows the waveform of figure 62a filtered by a 4th order Butterworth
filter whoce 3 dB points were at 170 Hz and 230 Hz. Again, fjgure 63b is the discrete

Fourier tran!.form of the waveform shown in figure 63a, figure 63c is the cepstrum, figure 63d is
the autocorrelation, and figure 63e is the optimum-comb. We can see that the autocorrelation and
the optimum comb seem to have detected a frequency at about 5.8 milliseconds. This is about 174
Hz, or an F3. This is a subharmonic of the F4 that is being played. It is quite likely that this

a spurious resonance of one of the lower piano strings.
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We can see that the amplitude of the filtered signal is somewhat low. This
may be our only clue for eliminating this signal from consideration later.

Figure 61 shows the original piano waveform filtered by a similar filter
with 3d B points at 255 Hz and 345 Hz. We see the D4 shining through on
the subsequent plots.

Likewise with figure 65, the 3dB points are 425 Hz. and 575 Hz. We get
indications of a signal of perioo about 1.7 milliseconds, which corresponds
roughly to the second harmonic of the D1.

We hope that these examples show that the 2-1evel search procedure
described above has potential.

INTERMEDIATE LEVEL PROCESSING

One of the most important techr.iques that should be incorporated into the
intermediate-level routines is the ability to consl:llt the original sound
waveform again to verify details, such as the exact beginning and ending
times of harmonics. Since the intermediate-level routines know what
frequencies are hypothesized to be present, they are optimally sUited to
determine how a sinusoid to be verified should be extracted.

We could envision a system which formulated many hypotheses before
beginning to eliminate them. The current approach is myopiC, in that it
formulates a note hypothesis from the harmonic data and deCides then and
there whether to accept it. We should formulate the N strongest hypotheses
at each point in time and find a rating system to decide among them.
',These hypotheses then might serve as gUides to returning' to the original
sound file and searching for missing harmonics.
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FIGUHE 64: The upper plot shows the waveform of fiaure 62a filtered by a 4th order Butterworth
filler 3 dB points were at 255 Hz anrJ 345 Hz. Again, figure 64b is the discrete

Fourier tram.,form of the waveform shown in figure 64a, figure 64c is the cepstrum, figure 64d is
Ihe autocorrelation, and figure 64e is the optimum-comb. We can see that the autocorrelation and
the oplimL!m comb 10 have detected a fmquency at about 3.4 milliseconds. This corresponds
well to the period of the D4 that is being played.
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I-I(;UHI: {h: I he upper piot shows the waveform of figure 62a filtered by a 4th order Butterworth
filter whose 3 dB were at 425 Hz and 575 Hz. Again, figure 65b is the discrete

Fourier transform of the waveform shown in figure G5a, figw'e 65c is the cepstrum, figure 65d is
the <'Iutocorrclation, and figure 65e is the optimu·m·comb. We can see that the autocorrelation and
the optimum comb seem to have detected a frequency at about 1.7 milliseconds. This corresponds
well to the period of the second harmonic of the D2 that is being played.
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In the current programs, the filter bandwidth is a constant small size. This
means that the timing mformation, such as when the harmonic starts, ends,
and its exact amplitude envelope, is not terribly accurate. It has been
greatly smoothed. If we used variable filter bandwidths, such that the
widest filter was used that successfully extracted the harmonic, some of this
time resolution might be regained. This would allow us to use this detailed
time information in the intermediate-level processing. For instance, we
could easily distinguish a spurious resonance by noting that its onset
corresponds to some time after the onset of another stronger note in the
piece. We might b8 able to distinguish notes at octaves by the onset times.
The detailed frequency variations will help with that also, especially since
one is likely to have different Vibratos. We might also think about using
the detailed amplitude envelope of the harmonics. In plucked or struck
instruments, the time of the initial maximum that each harmonic attains
SOOI1 (lfter the beginning of the note could be lIsed as a cue that these
harmonics belong to the same note. One must be a bit careful, in that
'.generally the high harmonics of a plucked string occur first, followed by
the fundamental.

ON IDENTIFICATION

It is theorized that the attack polrtion of the tone is a very important cue
for human identification of the instrument. It is possible that by increasing
the time resolution of the low-level routines, machine identification of the
instrument will be possible. It is clear that identification, human 01'

otherwise, cannot be done on the average amplitudes of the harmonics
alone. For instance, with two instruments playing at octaves, the harmonics
overlap entirely, such that each pair of harmonics will either add or cancel
to some degree. This produces a completely unique spectrum. Either we
must theorize that the human can recognize that this is the octave
COil JunctIOn of two instruments, or that the human can somehow separate
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the individual contributions of the instruments. or we must admit the
of factors other than the harmonic amplitudes being used. In

John Grey's dissertation [Grey 19751 three cues for timbre were strongly
suggested. Olle was the bandwidth of the signal. which roughly means the
number of harmonics present. Another factor was the type of noise burst
at the beginning of the tone. A third factor was roughly related to the
overall attack time of the tones in question. Two of these three cues are in
the attack portion of the tone.
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In this dissertation, we have examined the problem of the transcription of
musical sOlind by digital computer, A series of programs were developed
using many signal-processing and artificial-intelligence techniques which
accomplish the task of automatic musical transcription on a limited basis.
Most of the limitations were introduced for convenience and for the
purpose of finishing the dissertation in a finite time. In fact,
straightforwa'rd extensions of the techniques used in these programs would
atlow elimination of many of the restrictions.

The overall plan of the system was as follows: First, an attempt was made
to determine the lwrmony of the piece through the use of a periodicity
detection algorithm, This gave LIS root jreqluncits whose mUltiples were
guaranteed to represent the frequencies of all the sinmaids present in the
signal. Narrow bandpass filters were then centered on these frequencies to
try to extract each of the harmonics of each of the tones present separately..
A pitch detection algorithm was used at the, output of each filter to
determine if there was any periodicity at that frequency, A rating of each
filter output was made which represents the quality of the filter output.
This rating was Ilsed to choose the "best" signals to use to infer the notes.
The notes were inferred by choosing high quality signals and then finding
harmonics amund them to form a complete note, Tt.; note hypotheses
were compared and the best ones selected. A melodic grouping ?lgorithm
diVided the notes into upper and lower voices, The melodic information
was then formatted and delivered to the manllscripting program which
produced the final hard-copy score output.

The restrictions imposed on the music were as follows:
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All tones are nearly periodic. This eliminates drums, gongs, and other
percussive instruments. We have not dealt with the problem of
detecting and tracking wiele-band and inharmonic signals which
these instruments represent.

AII freq uencies are nearly piecewise.constant. This eliminates trills,
vibrato, and glissando. This was just so that we could use filters at
fixed frequencies. The programs can be upgraded to use adaptive
filters which chase the tOile around as the pitch changes.

The fundamental of a note will not overlay a harmonic of another note
sOllnding simultaneously. We do not understand at this time all
the f(lctors that are involved in human separation of notes with
these characteristics. We do not understand why people "fuse" the
harmonics of an instrument into a single percept, but distingUish
two separate instruments which are playing in unison. Perhaps if
the frequencies and attacks were exactly synchronized, people could
not so distinguish them. We must do further experiments in
human perception to gain insight into these processes.

The piece contains no more than two voices. This was done fOI'
convenience. There is no inherent limitation Which neces"ltates
this.

Other limitations. Notes must be longer than 80 milliseconds in duration.
This is because we distinguish between transient response from the
bandpass filters and signals by assuming that the transient response
will die out in less than 80 milliseconds. The use of variable-Width
filters' can help distinguish this better. We also reqUire that the
fundamental frequency of a tone be present. This is because we do
. not have a convenient way of assigning a rating to an entire note
right now. Presumably such a measure could be made. For the
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same reason. we require that the harmonics be dense. that is. have
no missing harmonics. unless all the even harmonics are missing. as
in the case of the clarinet.

With these restrictions in mind, examples were processed through the
programs with relatively good results. The computer usage was enormous.
This system can hardly be called practical at this time.

We feel the main contribution of this thesis is the knOWledge that this task
can be done by computer and it seems likely that it can be advanced to a
relatively high level by simple extensions of the procedures developed
here.
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APPENDIX A:
THE HETERODYNE FILTER

INTRODUCTION

This appendiX is devoted to implementation details and a critical
evaluation of the heterodyne filter. The filter has been run on a series of
synthetic tones which demonstrate its powers and its weaknesses well. For
implementation details, we have chosen ALGOL as a vehicle for
communication of algorithms. This is not necessarily directly useable on
everyone's system, but we hope the implementation will be a simple matter
of conversion.

A CRITICAL TEST

To empirically test the performance of the filter, we have chosen a
periodic waveform with harmonics such that each harmonic is some
fraction of the previous harmonic. We have placed an overall amplitude
envelope on the test signal that consists of a line segment for the attack
a'nd constal,lt amplitude for the steady-state. It is interesting to vary the
time of the attack and see how the output of the filter behaves. In each of
the cases shown, three smoothings were applied, each smoothing done by
averaging over about one period of the signal. We present the results of
these tests in figures AI through A12. A11 of the figures except A6 have
each harmo':ic 70 percent of the amplitUde of the previous harmonic.
Figure A6 has each harmonic 50 percent of the previous harmonic. We
experiment with a 505 Hz signal and a 101 Hz signal. The first two
figures, AI and A2, show simple cases where the atta,t:k time is several
periods long. In AI, the attack time is 25 periods, and in A2, the att'ack
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time is 10 periods. In each figure, there are four plots. The upper left plot
is a perspective drawing showing the amplitudes of all the harmonics as
derived by the heterodyne filter. In each case. we analysed up to the loth

harmonic. The first harmonic is in the rear, the 10lh harmonic is in the
fore. The upper right plot in each figure is a similar plot for the
frequencies of the harmonics, except that the first harmonic is in the f1'ont
and the i 01h harmonic is in the rear. The lower left plot is a pair of
graphs showing the amplitude (upper) and frequency (lower) contours for
just the first harmonic (fundamental) by itself. The lower right pair of
graphs is the same thing for the loth harmonic. This is so that we can see
ex actly when the frequency trace stabilizes. In general. it takes a few
periods before the frequency curve settles down. There is some confusion
at the end of f>ach plot due to the edge effects. For any practical situation,
the tone should be surrounded by silence of length at least i periods on
each side.

In figures A3 rind A4, we shorten the attack time to exactly 5 periods.
This causes the frequency trace to lag behind the amplitude curve. In

figure A3, we see that for the 10th harmonic, the frequf>ncy curve is about
25 milliseconds late in stabiliZing. In figure A5, the attack time has been
shortened to one period. This is an extreme case and causes the frequency
trace to be greatly in error, especially in the higher harmonics. In figure
A6, we see the case where each harmonic is only 50 percent as great as the

.previous harmonic. Here, the 10th harmonic is so weak that it cannot be
traced at all. It is a typical form of behaVior for the frequency curve to
drop down to the frequency of the next lower ha.rmonic when the
amplitude of the harmonic is too weak.



172

.........

-

", r'
'..t. .-..;.,:.- .... ",; ... :::::. 1
'" , . : : : : : : : : : : : : : : : : : : : : : : :": : : JJ

' [:.... . -. .", ::::::::::::: ". i .
• 0

1111111 111611

:t (l

;: fl

I
\

fl fl { \

!l II

.0 .1 1

"--'

III n

{\
11
I'
I

II I
(l I
I' II
h I)
II f
N
Ir n+-. I i , I
n ,n .1,
II '11.ft
I
II "J'II
r. f

JI I'
I

" t. tt
Nr:
Y

1 !l

I
,Il .1

FIGLJI?E A1. This shows the output of the heterodyne filter for a synthesized input signal which
of a 505 Hz signal with a 50 millisecond linear attack on each harmonic. Each harmonic is

70% of the amplitude of the previous harmonic. The upper left figure shows a perspective plot of
the Rli1plitudes of the harmonics as determined by the heterodyne filler. The upper right plot
shows the frequencies of the harmonics. The lower left pair of plots show the amplitude and
frequE'tlcy of the first harmonic, the lower right pair show the amplitude and frequency of the 10th
h.=lrmOllic. There is error in the frequency plots around the attack and the ending, but the
amplitude plots seem to be accurale except for a slight rounding of the ends of each line segment.
If we set the amplitude of the fundarl1ental to 1.0, then the harmonic amplitudes are as follows: 1.0,
0.7. 0.49. 0.343, 0.240, 0.168, 0.118, 0.082, 0.058, 0.040 These plots were generated using a
program which wa!i written by John ::;rey for his dissertation.
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FIGURE A3. shows the output of the heterodyne filter for a synthesized input signal which
of a 100 Hz sign;)1 with a 50 millisecond linear attack on each harmonic. Each harmonic is

70% of Ihe amplitude of the previous harmonic. Since this is a slightly faster attack than the
previow,:; figure, we see Ihe atla'::k portion of the frequency somewhat more distorted.
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FIGUf'(E ALi. This shows the output of the heterodyne filter for a synthesized input signal which
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which is quite fas!. As we would expect, the frequency trace for the few periods is not
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F A6. the output of the heterodyne filter for a synthesized input signal which
of i1 Hz sig!';.')1 with a 10 millisecond lineal' attack on each harmonic. Each harmonic: is

of Ihe i1lnplitudc of the previous h<lrmcnic:. This case is similar to figure Ail, but the higher
,we Il1uch wcaV,cr. In fact, the 10th harmonic is so weak that its frequency be
Iraer,eel. The plots are correct, ho\'iever, up to the 9th harmonic. The relative

Clmplitudes of Ihe harmonics in this case are as follows, setting the amplitude of the first harmonic
to 1 for convenience: LO, 0.5, 0.25, 0.125, 0.063, 0.031, 0.016, 0.008, 0.004, 0.002. Thus, the
amplitude of Ihe 10lh harmonic is only 1/201h of the amplitude of the 10th harmonic in the
prl"vioLJs figures.
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In figures A7 through A12. we experiment with changing the frequency of
the tone while the analysis proceeds. Figures A7 and A8 show a 1 percent
change through the note, figures A9 and Al0 show a 2 percent change,
and figures A11 and A12 show a 5 percent change. We can see the failure

start to set in in the loth harmonics with a 2 percent change. With a 5
percent change, the top several harmonics do not track properly, especially
with the lower tone. When the frequency deviates this far, we can no
longer guarantee absence of "leakage" between adjacent harmonics.

IMPLEMENTATION

T here are several things that can be- done to simplify the computation of
the heterodyne filter. The first is to use "sliding" summations rather than
computing the entire summation at each point. This is an old and well
known trick that has great use here. The only problem is the accumulation
of roundoff error, AIthough not included in the thai follows, one
feaw re that was included in our own program was reSetting all the sums
every 1000 samples.

In converting the phase angle at each sample into a continuous phase
fUllction, it is somewhat difficult in the presence of noise to avoid
,occaisional jumps of multiples of n. Schafer [1969] gave an algorithm for
"unwrapping" the phase in this manner. Unfortunately, his algorithm is
not effective in the presence of large amounts of noise. Our approach has
been to use the /Ingle sum and difference formulae to compute not the
angle. but the diffmmce of the angle with the angle at the previous sample
point. This works ,as follows:

(A2) cos (ifJ ) ..no:
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FImJl(F M:. fhis Ihe output of the heterodyne filter for a synthesized input signal which
of <l 100 Hz :,i8n31 with a 50 millisecond linear attack on each harmonic. Each harmonic is

70% of the amplitude of the previous harmonic. Here we slew the frequency of the note from 100
Hz \0 101 liz over the duration of the tone. This is a 1% change, less than a quarter-step. As in
Ihe prcviou:; fifi,ure, the heterodyne filter seems to track acceptably.
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Hz 10 !i J() Hz 0'/01' the duration of the tone, This is a 2% change, slightly less than a quarter-step,
Tlw:. to be <Iboul the limit of the i1l1owable frequency change. Some of the frequency traces
for Ihe higher harmonics are not tracking properly.
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of a 100 Hz -:;iRnili with a 50 millisecond linear attacr, on each harmonic. Each harmonic is

of the arnplilude of the previow;; harmonic. Here we slew the frequency of the note from 100
Hz 10 IO;:! Hz over the duration of the lone. This is a 2% change, slightly less than a quarter-step.
Thi,. '.('f;:' In'; 10 be about lhe liIllit of Ihe allowable frequency change. Some of Ihe frequency traces
fOI Ihe hir,her harmonics Me not tracking properly.
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FIGURE A11. This shows the output of the heterodyne filter for a synthesized input signal which
com,is!s of a 500 Hz signill with a 10 milliseco,nd linear allacl', On each harmonic. Each harmonic is
70% of the nmplitucle of the previous harmonic, Here we dew the frequency of the note from 500
H" to 525 Hz over Ihe duration of the lone. This is a 5% change, almost a half-slep. This exceeds
the hounds thi'lt Ihe helerodyne filler can accept. Note that at the 10th harmonic, it drops down
and "tarb Iracr,ing the 91h harmonic.
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(AS) /\(} ... t _l(sin(Doe))
t..>. an cos (Doe)

Where ano.: is the real part of the heterodyne filter
output at the a th point, for the nth
harmonic, as shown in equation (21) in the
text,

boo.: is the imagin.ary part of the heterodyne filter
output at the a th point, for the nth
harmonic, as shown in equation (22) in the
text,

()no.: is the phase angle at the a th point, for the nth
harmonic, subject to the initial conditions
°no:::0,

rPno.: is the principal vallu of the phase angle, (}no.:'
at the a th point, for the nth harmonic, and

Doe is (8no.:-en,o.:_ll, the difference of the phase
angles of Ihis point and the previous point,
as computed by the sine sum and difference
formulae.

This may look like a succession of tautolog;ies, but the result is a nice
continuous phase with few discontinuities.. The only jumps occur where
the amplitude goes tv near zero, where the phase is then Ju.st the of
the noise, which is, of course, random.

This method gives, in general, a much smoOther phase than Schafer's
method.
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A HETERODYNE FILTER PROGRAM

BOOLEAN PROCEDURE HET(INPUT,AMP,FREQ,CLOCK,FUND,HARMONIC,
AVWIDTH,NSMOOTHS,N,M};

REFERENCE REAL ARRAY INPUT,AMP,FREQ;
VALUE REAL
VALUE INTEGER HARMONIC,AVWiOTH,NSMOOTHS,N;
REFERENCE INTEGER M;
BEGIN

COMMENT This program takes an array of sound samples in INPUT of
length N (INPUT(I:N]), the fundamentfll frequency of the tone, FUND,
the sampling rate in samples per second, CLOCK, the number of the
harmonic under analysis, HARMONIC, the number of smoothings,
NSMOOTHS. the Width of the window used to compute the slope of the
phase, AVWIDTH, and returns the amplitude of the harmonic as a
function of time, AMP, and the frequency of the harmonic as a function
of time, FREq, and the number of valid points in AMP and M.
M is set to the input data length, N, minus the length of the period of the
fUlldamental frequency in samples. A typical call might be
HETO,A.F,20000,155,3,25,3,10000,M). This would t?,ke from array I, put
the amplitude in A, the frequency in F, sampling rate would be 20000
samples per second, the fundamental frequency would be 155 Hz., we
would analyse for the 3'd harmonic (465 Hz.), would average over 25
points for the frequency curve, would do 3 smoothings, would take 10000
points (.5 seconds) out of I, and would place the number of output points
in M;

INTEGER PERIOD;
REAL OANGLE,ANGLE,CS,SN,LCS,LSN;
REAL SUMT,SUMT2,SUMF,SUMFT,TIME;
REAL TIt11 NC, TSAMP ,HFREQ;
REAL CSUM,SSUM,TEMP,PI,TWOPI;
REAL ARRAY FSAVE,FTSAVE[!:AVWIDTHJ,SINTAS[0:S000l;
INTEGER I,J,K,L,INDEX;
LABEL EX IT ; ,
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COMMENT At first. we merely set up some constants and then load the
sine table. This table could. of course. be set up once and for all
beforehand. rather than be set up each time. Further, the table could be
set up using the sine recursion formula at one mUltiply per point rather
than calling the sine routine (generally 7 multiplies);

BEGIN
REAL ARRAY SNSAVE.CSSAVE f l!PEAIOD+1J;
FUNO...CLOCK/PERIOO:

".PI ;
ANGLc.-.:.,
DANGLE...5e013*HARl10N IC*FUNOICLOCK:
. FOR ]...0 STEP 1 UNTIL 5000 DO

The sine table should be computed beforehand,
just once for all the harmonics:

CSUM 0:
SSUM e;

IF PERIOO+AVWIOTH<N THEN
BEGIN

GO TO EXIT;
END;
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COMMENT Here we actually do the heterodyne filter. It consists of
multiplying the input signal by the sine and the cosine of the frequency of
analysis (HARMONIC:;:FUND) and averaging over one period of the
fund:lInental frequency. This is done by a sliding average. SN and CS
repre,Sent the SINE and COSINE at the expected frequency of the
harmonic (HARMONIC:;:FUND). We keep the sum of the input stream
times the SINE in SSUM. and the sum of the input stream times the
.COSINE in CSUM.. SNSAVE and CSSAVE are just to avoid doing a
'multiply to update SSUM and CSUM.;

Jf-l;
FOR 1f-1 STEP 1 UNTILN 00
BEGIN

INDEXf-ANGLE;
SNf-SINTAB[INOEX];
INOEX... INDEX+1250: ,
IF THEN INDEX... INDEX-50eO;
CS...SINTAB[INDEX1;
ANGLE...ANGLE
IF THEN
IF I>PERIOD THEN
BEGIN

CSUM CSUM-CSSAVE[JJ;
SSUM SSUM-SNSAVE[Jl;
COMMENT SUbtract off thG point past the

end of the window. This saves doing
the entire summation each time;

END:
CSSAVE [J] ...1NPLlT [J ] *CS;
CSUM...CSUM+CSSAVE[Jl;
SNSAVE[J] ... INPUT[IJ*SN;
SSUM...SSUM+SNSAVE[JJ;
IF I>PERiOD THEN
BEGIN

AMP [1-PERIOD1 ...CSUM;
FREQ[I-PERIOO]f-SSUM;

END:
J ...J+1 ;
IF J>PERIOD THEN Jf-l;

"'END;
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COMMENT Now we smooth the curves by averaging over a window
around the period of the fundamental. This places a new zero of
trallsrnission at each harmonic except the one under analysis. Generally.
three smoothings are recommended. Q.uite often, unacceptable ripple will
be present in the output without: these smoothings. These smoothings are
to be preferred over a standard low-pass filter because they place an
explicit zero of transmission at the other harmonics. The variable L
below denotes the Width of the average. It starts out at 0 and grows to
LENGTH. This means that it takes one period for the average to get
st<lrted, which m€<lIlS that yOll will not get zeros of transmission at the
other harmonics until the smoother has a chance to "warm up". If you
have N smoothings, you must wait N periods for good results. Each tone to
be analysed should have several periods of silence around it to get these
filters started;

M...N-PERIOO;
FOR K...l STEP 1 UNTIL NSM001HS DO
BEGIN

LENGTHwPERIOO+(K MOD 31-1;
COMMENT We fi Iter at the period, the period

plus one sample, and the period minus
one sample. This is a "shotgun" approach
to help when the is sl ightly
different from what we expect it to be;

L...0;
SSUM 0;
CSUM e;
FOR STEP 1 UNTIL M00
BEGIN

IF I>LENGTH THEN
BEGIN

SSUM SSUM-SNSAVE[J};
CSUM CSUM-CSSAVEEJ1;

END
ELSE L...L+1;
COMMENT L is the width of the averaging

interval, lsLslENGTH;
SSUMI-SSlIM+AMPE!];
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COMMENT - Smoothing algorithm, continued. We keep around two
history arrays, SNSAVE and CSSAVE, which represent the input streams
over one period so that they can be subtracted off at the end;

;
;

COMMENT We must save copies of the
inputs to the smoothing routines
because we overwrite these

in the next steps;
AMP [I J

IF J>LENGTH THEN
END;

END;
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COMMENT Now we convert to magnitude and pha,se form. To assure
that the phase remains continuous, even during noisy parts, we compute
the change in the angle by the difference·of-sines formula. We keep
around the SINE and COSINE from the orevious steo and oroduce the• ••
angle increment by the arctangent of the difference in angle from the last
sample to this one. Here we assume a procedure of value REAL which
takes thp. aret<lllgent of '(\ number which is a fraction. 'We assume, then,
that ATAN(NUM/DEN)=ATAN2(NUM;DEN), except that the case
DEN=O is handled properly in ATAN2 (that is, it returns plus or minus
n!2, depending on the quadrant). We enter with AMP and FREQ.
containing the quadrature components of the harmonic. When we exit this
section. AMP contains the amplitude of the harmonic and FREQ.. contains
the phase of the harmonic.;

LSN AMP U] ;
LCS FREO [1] ;
AMP (11 ...SQRTILSNt2+LCSt2);
LSN LSN/AMP [1] ;
LCS LCS/AMP [lJ ;
COMMENT LCS a'nd LSN i I I be the cos i ne and sine

of the phase angle at the previous sample;
FREQ[!1 ...ATAN2ILSN,LCS);
. FOR 1...2 STEP! UNTIL M00
BEGIN

SN-At1P (I 1;
CS...FREQ [I] ;
AMP[!1 ...SQRTISNt2+CStZ);
SN SNIAr1P [11 ;
CS CS/AMP[IJ;
COMMENT This makes SN and CS the sine and

cosine of the phase angle at this point;
NUM..SN*LCS-CS*LSN;
COMMENT NUM and DEN are the sine and cosine

respectively of the difference between
the phase angle of the previous sample
and the phase angle.of this sample, as
computed by the angle sum and

formulae;
FREQ(IJ ...FREQ[!-lJ+ATAN2INUM,DEN);
LCS CS;
LSN SN;

END;
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COMMENT Now we compute the frequency from the phase by getting
the slope of the phase. We do this, adding some additional smoothing in
the process, by computing a least-squares fit of a straight line to the phase
and lIsing the slope of this line at each point as the difference of the
actual frequency and the expected frequency of the harmonic. Again, the
sums are computed by sliding averages.;

SUMT<-0;
SUI1T2..0;
SUt1F..0:
SUMFT..0;
Tl ME<-0;
TIMINC<-AVWIOTH/CLOCK;
,SAW'...I/CLOCK:
HFREQ..HARMONIC*FUND;
j ..l;
L...0;
FOR 1...1 STEP 1 UNTIL M DO
BEGIN

IF I>AVWIDTH THEN
BEGIN

TEMPl ...TIME-TIMINC;
SUMT..SUMT+TEMP1;
SUMT2...SUMT2+TEMPlt2;
SUMF<-SUMF-FSAVE[Jl;
SUMFT...SUMFT-FTSAVE[jl;

END ELSE L...L+l;sum...SUMT+TIME;
SUMTZ...SUMT2+TIMEt2;
TEt1Pl·FREQ [r ] *TIt1E;
SUMFT...SUMFT+TEMPl:
FSAVE[JJ ...FREQ[I];
FTSAVE[JJ ...TIMEl;
TIME...T111E+TSAMP:
IF THEN FREQ[I] ..HFREQ
ELSE FREQ[ll ...HFREC+

(L*SUMFT-SUMT*SUMFl/
({L*SUMT2-SUMTt2}*TWOPI);

J ...J+l:
IF J>AVWIDTH THEN j ..l;

END:
END;
HET..FALSE;

EXIT:
END;
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APPENDIX B:
ON DESIGNING DIGITAL FILTERS

INTRODUCTION

ON DIGITAL FILTERS

During the course of this thesis, digital filters of many different varieties
were Llsed. Since the basis of the low-level processing is the bandpass filter,
it was important to have a way of designing dig'ital bandpass filters very
qUickly. The only closed-form solutions for filter coeffici.ents that are
currently known are the classical analog designs, like the Chebychev,
Butterworth, Bessel, and others. In this method, we first design
a low-pass filter, and then transform it to get high-pass, bandpass, 01'

bandstop filters. We chose to do this transformation in the continuous
domain. The am log filter is then transformed to the digital domain by use
of the bilinear transform. Of course, the 3dS frequencies must have been
already 'warped' before transformation to digital.

PROCEDURE

We, of course, will not attempt to review all of analog circuit design theory
here, Two appropriate references are GUillemin [1957] or Karni [1966].
Neither will we review the bilinear transform for the generation of discrete
filters from continuous. For this information, see Oppenheim and Schafel'
[1975] or Rabiner and Gold [1975]. What we would like to discuss are the
details of what we feel to be a convenient, stable technique for numerically
evaluating the coefficients. AII of the processing is done in factored form,
that is, all the roots are kept separately as complex numbers. For an Nth

',order filter, we will have N such numbers. When we go to bandpass or
bandstop, there will then be 2N such numbers, for each root in the
original low-pass design will generate two roots in the bandpass or
bandstop case.
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Each of these filters accept the following as design information: the
frequency of the ?dB point (in the bandpass and bandstop cases, the
frequencies of both 3dB points are required), the order of the filter (in
bandpass and bandstop cases, this number will be doubled), and the type
of the filter. ClIi'r€ntly.only Butterworth and Chebychev at .5 dB ripple, I
dB ripple. 2d B ripple and 3dB ripple are allowed. It is a simple matter to
add other kinds.

LOWPASS AND HIGHPASS

These are the simplest cases. For the lowpass, we just take the continuous
filter design directly. For the highr<lss, we merely invert the roots. This Is
simply done by clividing the .::onjllgate of the root by its magnitude
squared. Remembering that it is highpass, we go directly to the digital
conversion. Both filters are designed with their 3dB point at 1. They must
be scaled to the proper frequency. This is done simply by mUltiplying all
the roots by that frequency.

BANDPASS AND BANDSTOP

The;;e are the most interesting cases, for each original root must create two
roots in the transformed filter. This is done by means of the following
transformations:



195 ON DIGITAL FILTERS

(81)

for the bandpass case and for the bandstop case:

(B2)

Where P is the cornplex frequency variable of the
original low-pass design.

s is the complex frequency vallable of the
transfori'lIeJ filter.

W() is the geometric mean of the 3d8 frequencies of

the desired bandpass or bandstop filter

We can see what this does to each pole of the original design by just
substituting the complex frequency of the original pole as P in the above
equations an9 solving for s;

(83)

(B4)

Where A is the complex frequency of one of the
original low-pass' poles.
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Again, (B3) is for the bandpass case and (B4) is for the bandstop case. To
compute these numbers, we may lise arctangents and do it in magnitude-
angle formulation, but we have found that the Cartesian coordinates give
slightly r!'lore accuracy. To perform the complex square root, all we need to
do is compute the square root of the length of A2_4w(} and compute the
SINE and COSINE of one-half the angle of A2_4wl This can be done
as follows:

<as}

(88)

(87)

C ... '.!l+C2 . 2
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Where a is the real part of A2_4w02,

{3 is the imaginary part of A2_4w0
2,

C is then the cosine of the angle of A2-4wr/,

C2 is then the cosine of half the angle of A2_4w,l,
52 is then the sine of half the angle of A2-4WfJ2,
k is the magnitude of the square root of A2_4wo2.

sgn ({3) is +1 if and -1 if {3<0

This is shown for the bandpass case, but may also be done for the
bandstop case similarly.

TRANSFORMAnON TO DISCRETE

After the transformation to the proper kind of filter, we may inspect fol'
stabiiity just by examining the ,'ea} parts of the filter. We have found the
filters designed this way all have negative real parts as high as 201h order.

We then group the conjugate poles together for lump.transformation to a
digital second.order section. The remaining real pole. if any. ',vill be
transformed into a first-order section. We r.an also order the poles
according to what hoped to produce minimum roundoff error.

After the transformation. we can normalize the response so that certain
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frequencies have a magnitude transfer function of 1.0. For the low-pass
:lhif'bandstop cases, we wish 0 frequency to be passed with gain l.0. For
the high-pass case, it is infinite frequency (7f in discrete domain). For the
bandpas<; it is Wo• the geometric of the 3dB frequencies. We
can get ,I'-:s factor by computing it as v::.; g;o along, or by computing it
at the end of all the transformations. It is simple to compute at the end
and is guaranteed to give the' correct results. so this is what was used in
our progrflm. We merely predict the transfer function at the critical
jreq uency and mUltiply the first filter section input terms by the inverse of
the predicted transfer fUllction.

This completes the deSign of the filter. It is realized in form as the
con junction of many &€cor.d-order sections and possibly a Single first-order
section.
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