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Entropy-based multi-stream combination

Hemant Misra Hervé Bourlard Vivek Tyagi

Abstract. Full-combination multi-band approach has been proposed in the literature and performs

well for band-limited noise. But the approach fails to deliver in case of wide-band noise. To overcome

this, multi-stream approaches are proposed in literature with varying degree of success. Based on our

observation that for a classi�er trained on clean speech, the entropy at the output of the classi�er

increases in presence of noise at its input, we used entropy as a measure of con�dence to give weightage

to a classi�er output. In this paper, we propose a new entropy based combination strategy for full-

combination multi-stream approach. In this entropy based approach, a particular stream is weighted

inversely proportional to the output entropy of its speci�c classi�er. A few variations of this basic

approach are also suggested. It is observed that the word-error-rate (WER) achieved by the proposed

combination methods is better for di�erent types of noises and for their di�erent signal-to-noise-

ratios (SNRs). Some interesting relationship is observed between the WER performances of di�erent

combination methods and their respective entropies.



1 Introduction

Multi-band approach has been discussed in the literature for its superior performance for band-limited

noise [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Recently, many variations of multi-band approach have been proposed.

The most promising ones include full-combination approach [6, 7, 8]. The superiority of full combination

approach for di�erent kinds of band-limited noise was shown in [10, 11]. In [11], it was reported that

in case of wide-band noise the performance could not be improved further as compared to a full-band

system.

To overcome this problem of wide-band noise, multi-stream approaches are proposed in the literature

with varying degree of success. Full-combination multi-stream is one such approach [12, 11]. In general,

the streams in a multi-stream system can be from di�erent sources, let us say, video and audio. In some

other cases, the streams could be di�erent representations obtained from the same common source. In

the present work, the streams are the di�erent feature vectors obtained from the same common source,

that is, full-band speech, and all the possible combinations of these feature vectors. The three feature

vector representation we have considered in our experiments are raw cepstral coe�cients, delta cepstral

coe�cients obtained from raw cepstral coe�cients and delta-delta cepstral coe�cients obtained from

delta-cepstral coe�cients. Though delta and delta-delta features are obtained from raw features, it is

assumed that they include dynamic information incorporated in them and this information is comple-

mentary information. As in the full-combination approach, all the possible combinations of these three

feature vectors are considered in our full-combination multi-stream approach. The novelty of our ap-

proach is the method used to combine these streams to make the system more robust to di�erent types

of noises.

In multi-stream paradigm, evidences from a number of representations of the full-band speech signal

are combined to achieve robustness. It is assumed that di�erent representations of the signal carry

complementary information and thus can compensate for errors that are not common among the di�erent

representations. In this paper we propose a new entropy based method for combining di�erent streams.

We have investigated the method for full-combination multi-stream approach. In the next section we

introduce our entropy based weighting approach in the frame work of full-combination multi-stream

approach. In Section 3 the database used and the experimental setup has been explained. The results

and conclusions are presented in Section 4.

2 Entropy based full-combination multi-stream

Entropy plays a central role in information theory as a measure of information, choice and uncertainty [13].

In case of several classes, the uncertainty as well as entropy is maximum when all the classes have equal



probabilities. In case of Hidden Markov Model (HMM)/Arti�cial Neural Network (ANN) based hybrid

automatic speech recognition (ASR) system [14, 15], the output of the ANN are estimates of posterior

probabilities, P (qkjxn; �), where qk is the k
th output class (each class corresponds to a particular phoneme

or an HMM state) of the ANN, xn is the acoustic feature vector for the nth frame and � is the set of

parameters of the ANN model. Instantaneous entropy, hn, at the output of such an ANN is computed

by the equation,

hn = �

KX
k=1

P (qkjxn; �) � log2P (qkjxn; �) (1)

where, K is the total number of output classes (or phonemes in our case).

In one previous study [16] it has been observed that if ANN has been trained for speech signal,

it gives low entropy for speech signals but gives high entropy for music signals. This result has been

successfully used in speech/music discrimination in [16]. In our study, we observed that if the ANN has

been trained on clean speech, the average entropy (averaged over all the frames of a particular stream)

at the output of the ANN increases in case of noisy speech (Tables 3 and 5). From the tables it can

be concluded that average entropy is high for speech signals having high SNRs, and higher the SNR of

the speech signal is, higher is the entropy at the output of the ANN experts. In other words, for noisy

speech, the posterior probabilities tend to become more uniform and the discriminatory power of the

ANN decreases. It can be stated that if there is mismatch between the training and testing conditions,

this will be re�ected through the entropy at the output of the ANN. We have used this information in

our full-combination multi-stream approach for weighting di�erent streams.

In our full-combination multi-stream approach (Fig. 1), three di�erent feature representations were

used. As mentioned before, the three feature vector representation were raw cepstral coe�cients, delta

cepstral coe�cients and delta-delta cepstral coe�cients. These three representations as well as all possible

combinations of these three representations were treated as individual streams. One ANN expert was

trained for every stream. The total number of experts trained in our case were 7 (the 8th combination

being the prior probabilities in case none of the 7 experts are reliable).

As mentioned earlier, in HMM/ANN hybrid systems, output of the ANN expert trained on the ith

stream is the estimate of the posterior probabilities P (qkjx
i
n; �i) for each of the 27 phonemes qk and

nth data frame for the ith stream xin. �i is set of ANN parameters for ith expert classifying xin in

terms of qk classes, k = 1; � � � ;K. It is assumed that the streams that have higher entropy (posterior

probabilities of di�erent phonetic classes being similar) have less discriminatory information than those

streams which have less entropy. The other interpretation is, the output of the ANN expert has higher

entropy when there is more mismatch between training and testing conditions. Therefore at the time of

testing the streams that are more corrupted by noise, their expert will face more mismatched conditions.

Consequently, the entropy at the output of such experts will be high. High entropy implies that the
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Figure 1: Multi-stream full-combination approach using Raw features (R = r1; � � � ; rt; � � � ; rT ), Delta

features (D = d1; � � � ; dt; � � � ; dT ) and Delta-delta features (Dd = dd1; � � � ; ddt; � � � ; ddT ) as individual

streams as well as all possible combinations of the three features as separate streams in the frame work

of a HMM/ANN hybrid system.

posterior probabilities are approaching towards equal probabilities for all the classes. The experts having

high entropy have less discrimination, therefore such experts should be weighted less. Similarly, the

experts having low entropy will have higher discrimination among classes and should be weighted more.

To achieve the above, the idea of inverse entropy weighting is investigated in this paper. Entropy of

ith expert for nth frame is computed by the equation

hin = �

KX
k=1

P (qkjx
i
n; �i) � log2P (qkjx

i
n; �i) for i = 1; � � � ; I (2)

where K is the number of output classes or phonemes (27 in our case), xin is the input acoustic feature

vector for the ith stream for the nth frame and I is the number of experts or streams (7 in the present

case).

The combined output posterior probability for kth class and nth frame is then computed according



to:

P̂ (qkjXn;�) =

IX
i=1

wi
nP (qkjx

i
n; �i) for k = 1; � � � ;K (3)

where Xn = fx1n; � � � ; x
i
n; � � � ; x

I
ng, � = f�1; � � � ; �i; � � � ; �Ig and

wi
n =

1=hinPI

i=1 h
i
n

(4)

In the above equations, I is number of streams. The term in the denominator of Eq 4 is for normalizing

so that the sum of combined probabilities is equal to one (
PK

k=1 P̂ (qkjXn;�) = 1).

The obtained combined posterior probabilities are send through a decoder after being divided by

a-prior probabilities of their respective phones to get the decoded output.

Some simple variations of this inverse entropy method were also tried, including

Inverse entropy weighting with static threshold: In this approach, a static threshold is chosen for

the entropy (1.0 in our studies). If the entropy of a particular stream for a frame is more than 1.0,

the weight assigned to that stream is heavily penalized by a static weight of 1

10000

1. The streams

with low entropy (less than the threshold of 1:0) for the same frame are still weighted inversely

proportional to their respective entropies. We called this approach as Inverse entropy weighting

with static threshold (IEWST). In this case, the equations are modi�ed as:

~hin =

8<
:

10000 : hin > 1:0

hin : hin � 1:0
(5)

wi
n =

1=~hinPI

i=1
~hin

(6)

Minimum Entropy Criterion: In this variation, for a frame, the stream that has the minimum entropy

is chosen and rest of the streams are ignored. This is done for all the frames in the test utterance.

Therefore at each frame level the stream that has the minimum entropy is chosen and is used for

decoding. We named this approach as Minimum entropy (ME). The corresponding equations in

this case are:

P̂ (qk jXn;�) = P (qkjx
j
n; �j) (7)

such that

j =
argmin

i
hin (8)

1Some other values of static weight were also tried and all of them gave similar performance



Inverse entropy weighting with average entropy at each frame level as threshold: In this

weighting scheme entropy of each stream at each frame level is computed. Then the average

entropy of all the streams for that frame is calculated by the equation,

�hn =

PI

i=1 h
i
n

I
(9)

This average entropy is used as a threshold for that frame. For that frame, all the streams having

entropy greater than the threshold are weighted very less ( 1

10000
) and the streams having entropy

lower than the threshold are weighted inversely proportional to their respective entropies. The

equations in this case are:

~hin =

8<
:

10000 : hin > �h

hin : hin � �h
(10)

wi
n =

1=~hinPI

i=1
~hin

(11)

The approach is referred to as Inverse entropy weighting with average threshold (IEWAT).

Ideally we would like the discrimination by the combination to be superior than any of the individual

streams. Therefore, it will be interesting to know about the average entropy of the combined posterior

probabilities (P̂ (qkjXn;�)). It can be veri�ed that any linear combination of the streams will always yield

an entropy value between the highest and lowest entropy values among all the streams. Therefore, the

simple inverse entropy weighting combination will always give an entropy value between these two limits.

But in case of non-linear combinations investigated in this paper, some interesting results regarding the

average entropy of the combination were obtained. These results are reported along with the WERs

in Section 4. Some interesting parallels are drawn between WER and average entropy of the di�erent

combination methods.

3 Experimental setup

In the experiments reported in this paper, Numbers95 database of US English connected digits telephone

speech [17] is used. There are 30 words in the database and there are 27 phonemes to represent the

phonetic transcription of these 30 words. To simulate noisy conditions Noisex92 database [18] is used

and the car, factory and lynx noises are added at di�erent SNRs to Numbers95 database. Also, we used

an in-house recorded car noise provided by our project partner Daimler Chrysler (reported as Noise50 in

our paper). We ran the experiments using two types of features, PLP [19] and J-Rasta PLP [20]. The

window size and window shift were 25.0 ms and 12.5 ms, respectively.

In our full-combination method it is the a-posterior phoneme probabilities that are required. An

ANN/HMM hybrid system was used for all the experiments because it gives an estimate of a-posterior



phoneme probabilities at the output of the ANN. The ANN used was a single layer Multi-layer Perceptron

(MLP) with variable number of units in the hidden layer. The number of hidden units in an ANN expert

were proportional to the dimension of the input feature vector stream fed to that expert (Table 1). The

feature vectors used in our study were: raw cepstral coe�cients (13 dimension but the 0th coe�cient is

Feature Stream Dimension of feature stream Number of hidden units in ANN expert

Raw (R) 12 * 9 = 108 600

Delta (D) 13 * 9 = 117 600

Ddelta (Dd) 13 * 9 = 117 600

R-D 25 * 9 = 225 1200

R-Dd 25 * 9 = 225 1200

D-Dd 26 * 9 = 234 1200

R-D-Dd (Baseline) 38 * 9 = 342 1800

Table 1: Number of hidden units in every ANN expert. In the experiments the 0th cepstral

coe�cient has not been used. Raw is static cepstral coe�cients, Delta is delta cepstral

coe�cients and Ddelta is delta-delta cepstral coe�cients. The baseline system is R-D-

Dd.

not used), delta cepstral coe�cients (13 dimension) and delta-delta cepstral coe�cients (13 dimension).

The input layer was fed by 9 consecutive data frames. The output of the ith ANN expert was the posterior

probabilities P (qkjx
i
n; �i) for each of the 27 phonemes qk and nth acoustic feature vector frame xin.

At the time of recognition, combined scaled posterior probabilities (Eq 3) as well as scaled posterior

probabilities from the MLP are passed to the HMM for decoding. The HMM used for decoding had �xed

parameters with �xed state transition probabilities of 0.5. Each phoneme had a 1 state model for which

emission likelihoods were supplied as scaled posterior from the MLP. The minimum duration for each

phoneme is modeled by forcing 1 to 3 repetitions of the same state for each phoneme. A language model

was used such that all word sequences were equal probable. It is similar to not having a language model

for decoding. Phone deletion penalty parameter was empirically optimized for clean speech test database

and then it was kept constant for all the experiments reported in this paper.

4 Results and conclusion

WER results of the above experimental setup are presented in Tables 2 and 4 for PLP and J-Rasta PLP

features, respectively. From the tables it can be seen that PLP features are more degraded by noise as

compared to J-Rasta PLP features. Robustness of Rasta features towards noise is well established and



the same observation is reported in [8].
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Moreover, for PLP features, the performance of the proposed entropy weighting schemes is either

better or comparable to standard full-band system under di�erent noise conditions. Of all the noises

considered in this paper, the performance in the presence of factory noise is generally the worst. In

most of the cases it is the Inverse entropy weighting with average threshold (IEWAT) which performs the

best (except in few cases where Inverse entropy weighting performs slightly better). In case of factory

and noise50 noises, usually the improvement in the performance is not signi�cant but for the other two

noises (car and lynx noise) the improvement in performance is as high as 22.6% (for car noise at 0 db

by IEWAT) and 36.7% (for car noise at 0 db by Inverse entropy weighting). The average improvement

in performance by di�erent methods are as follows: 9.9% by Inverse entropy weighting, 9.2% by

IEWST, 7.4% by Minimum entropy criterion and 11.8% by IEWAT.

Similarly, for J-Rasta PLP features, the performance of the proposed methods is either better or

comparable to standard full-band system under di�erent noise conditions, but the improvement in per-

formance is less signi�cant as compared to the PLP features. Again the IEWAT performs the best in

most of the cases. The Inverse entropy weighting fails most of the times and in few cases it is the

Minimum entropy criterion which performs slightly better than IEWAT. The average improvement in

performances by di�erent methods are: -0.5% by Inverse entropy weighting, 4.2% by IEWST,

4.8% by Minimum entropy criterion and 6.9% by IEWAT.

Apart from WERs, the entropy tables (Table 3 and 5) also reveal few important things. Average

entropy at the output of each expert is higher for high SNR input speech signal. As mentioned earlier,

the experts were trained on clean speech. When they were tested on noisy speech (mismatch conditions

during training and testing), it is re�ected in their output entropies. More the mismatch is, higher is

the entropy. There is a slight exception to this rule in case of PLP features in presence of factory noise.

In this particular case, the 0 dB SNR speech signal has less entropy as compared to 6 dB SNR speech

signal. It could be because of the statistical conditions of noise in the particular case being too biased.

Except this, in all the cases, we observe the trend that high SNR at the input of an expert leads to a

high entropy at the output of that expert.

There is something more to look at in terms of entropy of the combination for di�erent weighting

strategies. As stated earlier, entropy for any linear combination always lies between the highest and

the lowest entropies among all the streams. Same can be observed from the entropy results of inverse

entropy weighting. In this weighting the entropies for the combination are high and at the same time

WER performance is also not signi�cantly better (specially for J-Rasta PLP features where performance

drops for this kind of weighting).

As expected, the minimum entropy criterion gives the least average entropy values. But this is a

highly constrained situation where only the stream having the least entropy is chosen at every frame

level. In this situation the other streams don't contribute in the decision. But from the results it can be



seen that even this highly constrained situation gives an improvement in the WER performance as well

as a decrease in entropy. Out of the two other non-linear combinations, average entropy and WERs for

IEWST are always higher as compared to IEWAT. WER performances of IEWAT is best in most of the

cases and also the entropy of the combination is always the least (except the highly constrained case of

Minimum entropy mentioned above).

Though it is a preliminary conclusion, in general, we observe that the WER for a combination

strategy is lower when entropy is low. We can't say that decreasing the entropy always gives the best

result (Minimum entropy criterion performance is inferior to IEWAT), but it can be said that if constraints

are put properly, the WER and entropy both decrease. And it indicates a strong correlation between

the two. It would be interesting to do more studies in this direction and see if the concept can be

strengthened.

From the experimental results we can conclude that the entropy based weighting scheme for full-

band multi-stream approach and its variations proposed in this paper help in improving the performance.

The streams considered in our paper are the basic streams and it is felt that entropy based weighting

can further improve the performance if streams carry information which is more complementary. It is

seen that the performance is best for IEWAT. This is a case where threshold for entropy is dynamic and

dynamically the streams having low entropies are the one which are considered for combination at every

frame level. It opens up a new research direction where some new methods can be thought to reject the

streams which are less reliable and this reliability is expressed in their respective entropies.
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