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Abstract

The ability of a normal human listener to recognize objects in the environment
from only the sounds they produce is extraordinarily robust with regard to char-
acteristics of the acoustic environment and of other competing sound sources. In
contrast, computer systems designed to recognize sound sources function precar-
iously, breaking down whenever the target sound is degraded by reverberation,
noise, or competing sounds. Robust listening requires extensive contextual
knowledge, but the potential contribution of sound-source recognition to the pro-
cess of auditory scene analysis has largely been neglected by researchers building
computational models of the scene analysis process.

This thesis proposes a theory of sound-source recognition, casting recognition as
a process of gathering information to enable the listener to make inferences about
objects in the environment or to predict their behavior. In order to explore the
process, attention is restricted to isolated sounds produced by a small class of
sound sources, the non-percussive orchestral musical instruments. Previous
research on the perception and production of orchestral instrument sounds is
reviewed from a vantage point based on the excitation and resonance structure of
the sound-production process, revealing a set of perceptually salient acoustic fea-
tures.

A computer model of the recognition process is developed that is capable of “lis-
tening” to a recording of a musical instrument and classifying the instrument as
one of 25 possibilities. The model is based on current models of signal process-
ing in the human auditory system. It explicitly extracts salient acoustic features
and uses a novel improvisational taxonomic architecture (based on simple statis-
tical pattern-recognition techniques) to classify the sound source. The perfor-
mance of the model is compared directly to that of skilled human listeners, using




both isolated musical tones and excerpts from compact disc recordings as test
stimuli. The computer model’s performance is robust with regard to the varia-
tions of reverberation and ambient noise (although not with regard to competing
sound sources) in commercial compact disc recordings, and the system performs
better than three out of fourteen skilled human listeners on a forced-choice classi-
fication task.

This work has implications for research in musical timbre, automatic media
annotation, human talker identification, and computational auditory scene analy-
sis.

Thesis supervisor: Barry L. Vercoe
Title: Professor of Media Arts and Sciences
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CHAPTER 1 I ntrOd u CtiO N

| am sitting in my office, and a Beatles compact disc is playing on my stereo. |
hear many different sounds, yet | have little difficulty making sense of the mix-
ture. | can understand the singer’s words and can tell that it is Paul McCartney
singing. | hear drums, electric guitars, organ, and bass guitar. In addition to the
sounds reproduced by my stereo’s speakers, | can hear cars driving by, the chatter
of children walking home from the school bus stop, and the humidifier humming

in the hallway. The telephone rings, and | answer it. | recognize my wife's voice
from a single word (“Hi"), and realize that she is calling to tell me when she will

be home from work. | turn down the stereo to hear her more clearly, and now |
can hear that our cat is scratching the sofa in the next room.

These examples are mundane, but they illustrate how easily we gather informa-
tion with our ears. The language we use to describe our perceptions is also reveal-
ing. We often describe what we hear in terms of the objects producing the sounds
and the information that the sounasieey. We hear dogbarking nervouslyor
viciously), aglass breakinganairplane flying overheadabell ringing, aviolin-

ist playing a melodyand so on. (Loudspeakers—as in the example above—are
special-case sources that reproduce sounds originally produced by other sources.)
We routinely understand mixtures of sounds, somehow segmenting, parsing, dis-
entangling, or otherwise interpreting the complicated auditory scene that arrives
at our ears.

Hearing is an important part of normal human interaction, yet we understand sur-
prisingly little about how our brains make sense of sound. Our limited knowledge
is partly a result of the inability to gain conscious access to our perceptual pro-
cesses, but our language, far removed from sound waves, also limits us. We have
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difficulty explaining what something sounds like except by analogy to other
sounds. Our descriptive words for sound—Iloud, bright, rough, cacophonous,
sweet, open, dark, mellow, percussive, droning, scratchy, dull, smooth, screechy,
pounding, noisy, clanging—are extremely context-dependent, and most of them
have no clear relationship to properties that scientists know how to measure.

Motivation and approach

This dissertation is driven by the desire to understand how human auditory per-
ception works. In it, | take the view that the human auditory system is a complex
information-processing system. By considering the constraints under which the
human system operates, the limitations of its “hardware,” and the perceptual abil-
ities and limitations of the listener, it is possible to form theories of the system’s
operation. The theories can subsequently be tested by constructing and evaluating
computational models. In this dissertatithreoryrefers to an idea or algorithm,
andmodelrefers to its implementation, usually on a general-purpose computer.

Computational models are the best tools we have for understanding complex sys-
tems. By formulating a theory of a system'’s operation, constructing a model that
embodies the theory, and then testing the performance of the model, it is possible
to identify the strengths and weaknesses of the theory. Sometimes, the model will
mimic some aspect of the system, and this correspondence can be taken as evi-
dence in favor of the theory. More often, however, the model will fail to account
for crucial aspects of the system’s behavior. These shortcomings are valuable
because they tell us about the weaknesses of the theory, often highlighting tacit
assumptions made by the theorist. Models are also valuable because they can be
extensively manipulated. By changing parameters or selectively enabling and dis-
abling the model’'s components, it is possible to gain insight into the operation of
the system as a whole.

In this dissertation, | describe a theory and computational model of auditory
sound-source recognition. The theory is a response to ongoing work in the
nascent field of computational auditory scene analysis (CASA), where systems
are developed to model the process of understanding mixtures of sounds. By and
large, current CASA models rely on handfuls of signal-processing techniques
and sets of “grouping heuristics” to divide a sound signal into parts arising from
independent sources. Although some authors have acknowledged the need for
“top-down” processing in auditory scene analysis, current CASA models make
little use of world knowledge or contextual information to aid the process of
scene analysis. This contrasts starkly with the human perceptual system, for
which context is indispensable. | view hearing as a complex task similar to
assembling a jigsaw puzzle, where world knowledge (“ah, that’s a bit of tree
branch”) can be used to get closer to a solution (“it must go with the other branch
pieces in the corner heré”)n this view, recognition is intimately tied to the pro-

1. Of course, with hearing, the puzzle is always changing, making it important to assem-
ble the pieces quickly!

10
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1.2

cess of understanding. Complex mixtures would be impenetrable without exten-
sive knowledge-based inference. It remains to be seen if models without
extensive world knowledge can solve any interesting—thegasistic—percep-

tual problems. So far, there has been no existence proof.

The model | describe operates on recordings of isolated sound sources and recog-
nizes a limited range of sound-source clasgbe non-percussive orchestral
instruments. It cannot be viewed as a complete model of human sound-source
recognition. However, | have endeavored to construct a model that could be inte-
grated into a suitable CASA framework. The representations described here may
be extended easily to include other kinds of sound sources. Although the model is
not complete without both pieces, recognizing isolated sound sources is a suffi-
ciently complex problem to merit attention on its own. In the following discus-

sion, | point out the additional complexities due to mixtures of sounds when it is
relevant.

The ideas described in this dissertation are not the result of my efforts alone. Sev-
eral of the techniques | employ are inspired by (or derived from) research in
visual perception. In particular, my views on representation and modeling are
strongly influenced by the work of David Marr, and several ideas have been
adapted from work by Shimon Ullman and Eric Grimson. My views on auditory
scene analysis are particularly influenced by the modeling work of Dan Ellis, and
by the writing of Stephen Handel and Stephen McAdams. | have also drawn from
the theories of mind described by Marvin Minsky and Daniel Dennett. At times, |
employ language reminiscent of the writing of J. J. Gibson and the ecological
psychologists; their influence is visible most clearly in my experiments, which
employ real-world stimuli rather than laboratory confections.

A theory of sound-source recognition

In this section, | outline a general theory of sound-source recognition. In the rest
of the dissertation, | will provide evidence that supports some of its elements,
demonstrate a computational model based on its principles, and show how the
model recognizes sound sources in a manner similar to humans. The general the-
ory of sound-source recognition that | propose can be stated simply. Recognition
is aprocess—rot an achievement or goal. It is the process of gathering informa-
tion about objects in the environment so as to more accurately predict or infer
their behavior. | will use the language of classification to describe this process,
but it is important to note that the theory makes no claims about the immanent
status of categories. Categories, or classes, are merely groups of objects that have
similar characteristics in some frame of reference. A particalsgorizationpr

division of objects into classes, is useful only insofar as knowledge of an object’s
category label enables the perceiver to make accurate predictions about some
unobserved aspect of the object.

| adopt the viewpoint that a sound-producing object belongs to various categories
at different levels of abstraction. An illustration of this idea, synthesized from

A theory of sound-source recognition 11



drawings and discussion by Bobick (1987) and Minsky (1986), is shown in Fig-

ure 1. Some general properties of this organization are worth observing. The par-
ticular categories shown are not the only possible choices—others might include
“things Bill likes to listen to,” “brown wooden things,” or “things with ornate
shapes,” but these latter sorts are not as useful to the recognition process because
they do not permit as many inferences. At the top of the figure is a single cate-
gory, labeled “Sound Source,” that contains all sound-producing objects. It does
not, however, allow the perceiver to make inferences much stronger than

“vibrates somewhere in the frequency range that can cause a human eardrum to
move.” At the very bottom are categories containing only a single object making

Too
More High Less
Property Property
Information Information
Required “pitched" O Required
O Source
Harder Upper O Easier
To Fringe Non- To
O Percussive
Know Musical Know
Category Instrument Category
o Bowed
More B?S'C . O | Stmng t O More
Specific Level-Ban O nstrumen O O Abstract
Less O O More
Uncertainty Lower O Uncertainty
About Fringe Q O About
Properties Properties
y Too O Perlman

Playing
a Violin

FIGURE 1.

Recognition as classification in a category-abstraction space. The illustration is a

synthesis of drawings from Bobick (1987) and Minsky (1986). A particular sound
source—Iltzhak Perlman playing a violin—is a member of different categories at
different levels of abstraction. The arrows indicate that a change in the level of
abstraction affects both the difficulty of determining the category of an object and
the amount of information represented by knowledge of an object’s category. The
shaded regions and their labels correspond to Minsky's “level-bands.” Minsky
(1986) argues that there is a privileged level for reasoning and recognition that
occurs at an intermediate level of abstraction.

12
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a specific sound. In between, as the level of specificity increases (and the level of
abstraction correspondingly decreases), more specific details are known but more
information is required to choose among the categories. As the level of abstrac-
tion increases, less information is required to classify an object, but the classifica-
tion does not provide the same predictive strength.

The process of recognition begins at an intermediate level of abstraction, where
classification is relatively easy but still yields useful information about unob-
served properties. It then proceeds to more specific categories as warranted by
the needs of the listener. Sensory data accumulate, and increasingly specific clas-
sifications are made when they are useful. This approach has the benefits that it
requires less effort when less-specific information is needed, and that the per-
ceiver need never examine every possible categorization directly.

In this outline, | have purposely provided little detail about the various parts of
the process. In the rest of the dissertation, | fill in the details by proposing a com-
putational model of the recognition process. A small set of sound sources, the
non-percussive orchestral instruments, are considered in depth, and the model is
tested with natural recordings of sounds produced by these instruments. Its per-
formance on a battery of classification tasks is compared to the performance of
human listeners on similar tasks, highlighting the strengths and weaknesses of
the model.

This dissertation will not address the acquisition of the category-abstraction

structure or the development of new feature detectors. These difficult problems
are left for future research.

Applications

The primary goal of this research is scientific: to present a theory of sound-source
recognition and test it with a computational model. There are also several practi-
cal areas in which such a model might be applied, including:

* Media annotation: Over the last two decades, digital media have prolifer-
ated. For example, my personal digital-audio library includes well over 500
compact discs, and my laptop computer stores a wide variety of digital
image, video, and audio files. To the computer or compact-disc player, how-
ever, these are merely streams of bits in some coding scheme. They are con-
verted into images or sounds when | decide to play them. Today, we have
internet search engines that can identify text documents matching a user’s
query, but multimedia documents are opaque to search engines. Today’s sys-
tems have no way of discovering if a spoken phrase in a recording or an
object in an image matches a query and retrieving the relevant document.

Recently, efforts have begun that will result in standardized “descriptors,” or
meta-datdormats, for multimedia data (MPEG Requirements Group, 1999).
However, for most of the descriptors we would like to use—in queries such
as “find the cadenzas of all the Mozart concertos in the database, and sort
them by instrument” or “find all the photographs of Abraham Lincoln"—we

Applications 13



have no tools that can extract the relevant information automatically. The
producer of the data must add the meta-data by hand. Sound-source recogni-
tion—at the level achieved by the model described in Chapters 4 and 5—
could be used at the point of production, where sounds are often isolated on
separate channels of a multi-track recording system. Meta-data could be
added before the sounds are mixed together and preserved throughout the
production process. Better yet, recordings could be distributstductured
formats (Vercoe et al., 1998) that preserve the isolation of individual sounds
until the time of playback, and then techniques like those described here
could be applied by the end-user.

Talker identification: Identifying a particular human voice is the one exam-
ple of sound-source recognition that has received considerable attention in
the scientific literature (e.g., Reynolds, 1995). The theory of sound-source
recognition described in this dissertation is a general one, and as such can be
viewed as a generalization of theories of talker identification. However, the
techniques used here are very different from those typically used to build
talker recognition systems. Some of the acoustic properties determined to be
important for recognizing musical instruments may also be important for
recognizing human talkers, and the hierarchical classification framework
described here might be put to good use in speech systems as well.

Music transcription: The process of listening to a piece of music and
reconstructing the notated score is knowtrasscription More generally,
transcription is the process of determinimigich musical notes were played
when(and bywhatinstrument) in a musical recording or performance. In the
general case of music played by multiple instruments (or a single polyphonic
instrument such as a guitar or piano), the task is one of polyphonic pitch
tracking. This is extraordinarily difficult—humans require extensive training
in order to transcribe music reliably. However, because transcription is an
important tool for music theorists, music psychologists, and musicologists—
not to mention music lovers who want to figure out what their favorite artists
are playing in rapid passages—it would be wonderful to have tools that
could aid the transcription process, or automate it entirely. State-of-the-art
polyphonic pitch tracking research demonstrates that the task is made sim-
pler if good—and explicit—models of the sound sources (the musical instru-
ments) are available (Kashino & Murase, 1998). By integrating sound-
source recognition with a transcription engine, the end result can be
improved dramatically.

Structured-audio encoding:As noted above, structured-media formats

make automatic multimedia annotation easier. In addition, they give the end
user more control over the media playback. For example, an audio enthusiast
could take better advantage of a seven-speaker playback setup if the audio
material was not pre-mixed for stereo playback. Movie soundtracks could
include speech tracks in multiple languages, enabling distributors to provide
only one version of a movie for international presentation. Amateur musi-
cians could “mute” a particular part of a recording and play along.

Although structured formats provide immense advantages over their non-
structured counterparts (such as the current generation of compact discs and

14
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videotapes), we currently have no way of automatically adding structure to
an unstructured recording. In the future, by combining robust tools from
sound-source recognition, CASA, music transcription, and speech recogni-
tion, it may be possible to build fully or partly automated tools for unstruc-
tured-to-structured encoding.

A composer’s workbench:The research described in this dissertation
embodies a viewpoint on musical-instrument sound that is informed by
knowledge of human perception. The techniques used to recognize sounds
could be inverted and used to create new sounds based on natural, verbal
descriptions. With a single workstation including analysis and synthesis
tools, a composer could more easily create a wide variety of new sounds.
Virtual instruments could be created—for example, “like a very large brass
instrument, but with a percussive attack and pronounced vibrato"—without
extensive physical modeling. Automatic indexing would be a valuable tool,
enabling automatic responses to naturally posed requests such as “play back
the part where the clarinet comes in.”

Environment monitoring: One of the most obvious applications of sound-
source recognition is environmental monitoring. A home-monitoring system
could alert the homeowner if there is someone knocking at the door, if the
baby is crying, or if water is boiling over on the stove. Such systems could be
used as the basis of prostheses for listeners with severe hearing loss, convert-
ing auditory information into another medium, such as a visual display.

Synthetic listeners and performers:Endowing computer systems with the
ability to recognize sounds and understand the information they convey
would enable a host of exciting applications. We could build virtual music
instructors (with unending patience!), virtual orchestras to conduct, and vir-
tual performers to jam with. Although these applications may sound far-
fetched, each has already been demonstrated in some form (Vercoe, 1984,
Vercoe & Puckette, 1985).

1.4 Overview and scope

This dissertation makes contributions to modern hearing science at several levels,
ranging from practical signal-processing techniques to a new philosophical view-
point. Among the contributions are:

A review of musical instrument sound production and perception from a uni-
fied viewpoint, based on the excitation and resonance structures of the sound
sources and on modern hearing models.

A psychophysical experiment testing human abilities on instrument-classifi-
cation tasks using realistic—that is, musical—recordings of orchestral
instruments as stimuli.

A demonstration of the extraction of perceptual features from realistic
recordings of orchestral instruments made in realistic—that is, noisy and
reverberant—environments.

Overview and scope 15



* A broad theory of sound-source recognition with applications to human
talker identification, multimedia annotation, and other areas.

* A computational framework based on the theory, with behavior similar to
that of humans in several important ways.

This dissertation is conceptually divided into three parts. The first part, consisting
of Chapters 2 and 3, reviews human and machine sound-source recognition abili-
ties, highlighting many of the constraints under which sound-source recognition
systems operate. The second part, consisting of Chapters 4 and 5, describes a
computational architecture for a novel model of sound-source recognition. The
third part, consisting of Chapter 6, compares the abilities of the artificial system
to those of humans on a variety of classification tasks.

In Chapter 2Recognizing sound sourced review the psychophysical evidence

that shows that a sense of hearing is used to make inferences about objects in the
world, and that these inferences are based on categorization at various levels of
abstraction. | claim that knowledge of class membership can be used to help sort
out the contributions of various sound sources in a complex auditory scene, and
that previous research in computational auditory scene analysis has suffered by
ignoring or postponing the potential contributions of sound-source recognition. |
describe recognition as a process of refinement that begins at an appropriate level
of abstraction and gradually becomes more concrete until sufficiently powerful
inferences can be made for achieving the listener’s goals. | present a set of crite-
ria for evaluating sound-source recognition systems, and, in light of these criteria,
compare the state-of-the-art in artificial systems to human abilities. | conclude
with the observation that current artificial systems can recognize either a small
number of sound-source classes with reasonable generality or a larger number of
classes with very limited generality. One of the challenges for the rest of the dis-
sertation—and for the next generation of sound-source recognition systems—is
to increase the number of classes of sound while maintaining the ability to gener-
alize.

In Chapter 3Recognizing musical instruments| restrict attention to a limited

set of sound sources consisting of the common non-percussive musical instru-
ments. | review the extensive literature on the production and perception of
orchestral-instrument sound, highlighting the constraints of the sound production
process and the perceptual limitations of human listeners. These are summarized
from a viewpoint centered on the excitation and resonance structure of the instru-
ments, which strongly supports the traditional division into instrument families.
One of the core theses of this dissertation is that many sound sources—including
the non-percussive orchestral instruments—are recognized primarily by percep-
tion of their excitatory and resonant structures.

In Chapter 4Representation | describe a series of representational transforma-
tions, beginning with an acoustic waveform generated by an isolated sound
source and resulting in an abstract model of the source’s excitation and resonance
structure based on perceptually salient acoustic features. The representations are
functionally matched to current models of the human auditory system, becoming
increasingly speculative with each level of abstraction away from the sound
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wave. The description of a particular sound source is refined over time as sounds
produced by the source are heard. The chapter concludes with a description of a
taxonomic inheritance hierarchy that contains abstract models for a variety of
sound sources. This hierarchy comprises the knowledge base used during the rec-
ognition process.

In Chapter 5Recognition, | present a computational framework for sound-

source recognition, based on the theory outlined in Section 1.2 and using the rep-
resentation scheme described in Chapter 4. The framework has conceptual ties to
the theories of decision trees, spreading activation, and taxonomic Bayesian
belief networks. It employmaximum a posterioglassification within a taxon-

omy of sound-source classes. The basic algorithm is extended with context-
dependent feature selection and beam searchiffipisvisationalalgorithm is

robust, scalable, and flexible. It is sufficiently general to be expanded to a wide
range of sound-source categories, and it does not depend on a fixed set of fea-
tures.

In Chapter 6Evaluation, the recognition framework is tested on a battery of
classification tasks, and its performance is compared to that of human listeners
on similar tasks. A listening experiment is performed to evaluate human abilities
on musical instrument recognition tasks using both isolated tones and real music
as stimuli. The model described in Chapters 4 and 5 is tested on a forced-choice
classification task using the same stimuli and is shown to exhibit performance
competitive with experienced musical listeners with both types of stimuli. Fur-
ther, the model performs as well or better—and satisfies the evaluation criteria
outlined in Chapter 2 more thoroughly—than previous sound-source recognition
systems.

Finally, in Chapter 7Conclusions and extensiond evaluate the potential of the
theory of recognition and identify several directions for extending the research
presented here. Among the conclusions prompted by this work are that “timbre”
is useless as a scientific concept, and that an ability to resynthesize acoustic
wave-forms is not a necessary component of machine-listening systems.

Overview and scope 17
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cuir2 RECOQNIZING Sound sources

For hearing to serve as a useful sensory modality, the listener must be able to
make inferences about sound-producing objects. By recognizing the kind of
object that is producing a sound, a skilled listener can predict properties of other
sounds the object might produce. Of course, these inferential capabilities are not
limited to sonic properties. Knowledge of sound-source identity can be used to
infer other characteristics of the sounding object, or waokie behaviors in the
listener himself. For example, an animal in the wild might recognize that a partic-
ular sound, a “growl,” has been produced by a large nearby predator, and this rec-
ognition might trigger a “fleeing” behavior. The inferential abilities enabled by
sound-source recognition confer an immense selective advantage to animals that
possess them.

This chapter has four main components. First, the complexity of the sounding
world is considered, and some strategies for coping with mixtures of sounds, as
revealed by research @uditory scene analysiare presented. Attempts at con-
structing artificial listeners based on the principles of auditory scene analysis are
considered, and sound-source recognition is acknowledged as an essential miss-
ing component of existing systen&econd, the constraints of the sounding world
are considered, and a set of criteria for evaluating listening systems, both biologi-
cal and machine, is presented. Third, the abilities of human listeners are reviewed
in light of these criteria. Artificial recognition systems constructed in several
domains are similarly reviewed. Finally, the common weaknesses of the artificial
systems are highlighed.
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2.1 Understanding auditory scenes
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The sounding world is complex. In a typical environment, many objects produce
sound simultaneously, and the listener must somehow organize the complicated
auditory scenén such a way that the contributions of each sound source are com-
prehendedAuditory scene analysian area of psychophysical research, attempts
to explain how a listener understands a continuous sound mixture as arising from
a set of independent sources.

The task of auditory scene analysis is made difficult in part by sound’s transpar-
ent nature. Each sound source creates small variations in the ambient air pres-
sure—sound waves—which travel away from the source. The difficulty arises
because the sound waves from independent sources arrive at the ear as a sum of
the individual sound waves, and the listener has access only to the mixture. As
Helmholtz observed more than a century ago:

“The ear is therefore in nearly the same condition as the eye would be if it
looked at one point on the surface of the water through a long narrow tube,
which would permit of seeing its rising and falling, and were then required to
take an analysis of the compound waves.” (Helmholtz, 1954, p. 29)

Even without this additional complexity, auditory scene analysis has much in
common with visual scene analysis, which is by no means an easy problem to
solve.

Exploiting environmental constraints

The structure of the world places constraints on sound production. As a field of
study, auditory scene analysis is concerned with identifying these constraints,
their effect on sound mixtures, and possible strategies for exploiting them to aid
understanding. In his book that named the field, Bregman (1990) presents a set of
such constraints and strategies, along with evidence of their use by human listen-
ers.

For example, only rarely will independent events appear to be synchronized, so
sound components that start, end, or change together are likely to have arisen
from the same source. The human auditory system is exquisitely sensitive to
simultaneous onsets in different frequency regions, and to coherent modulation in
both frequency and amplitude. Objects in the world change slowly relative to the
rapid vibrations of sound waves, so two sound components proximate in time and
related in some aspect (pitch, loudness, spectral content, etc.) are likely to have
been produced by the same source. By this mechanism, a sequence of phonemes
may be heard as a sentence unit, or a sequence of notes produced by a musical
instrument may be heard as a melodic phrase.

The proximity constraint leads to tbil-plus-new heuristic'lf you can possibly

interpret any part of a current group of acoustic components as a continuation of
a sound that just occurred, do so” (Bregman, 1990, p. 222). After portions of the
auditory scene have been accounted for by “old” sounds, whatever is left can be
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interpreted as belonging to a “new” sound or sounds. This happens at two levels,
including both short-term prediction based on a sound’s local properties and
longer-term building of auditorgtreams

The importance of knowledge

The constraints and strategies described so far do not depend on the particular
contents of the auditory scene or on the listener’s world knowledge, but the kinds
of sounds in a mixture and the listener’s past experience do greatly affect his per-
ception. To account for this, Bregman introduces the concegahefmatapr

learned patterns, which interact with the more general strategies to explain the
auditory scene.

Perhaps the most compelling illustrations of the importance of world knowledge
are Warren'phonemic restoratioexamples (Warren, 1970; 1999). When a brief
portion of speech sound from a recorded sentence is completely erased and
replaced by an extraneous sound (e.g., a cough), listeners earnestly believe that
they have heard the missing sound—indeed, they do not realize that anything is
amiss. The effect applies not only to speech sounds, but also to any sound with
which the listener has experience (one musical example is the restoration of notes
from a melody played on a piano (Sasaki, 1980)). The effect depends on the abil-
ity of the extraneous sound meask,or obscure, the neural representation of the
expected but missing sound:

“If there is contextual evidence that a sound may be present at a given time, and
if the peripheral units stimulated by a louder sound include those which would
be stimulated by the anticipated fainter sound, then the fainter sound may be
heard as present. [...] But the truly masked signal is no more, and any restora-
tion must be considered a recreation or perceptual synthesis of the contextually
appropriate sound.” (Warren et al., 1972)

The ability to infer the presence of masked sounds can be partly explained by
short-term prediction based on properties of the preceding sound components, or
by interpolation between components preceding and following the interrupting
sound. This, however, does not explain the ability to infer entire speech pho-
nemes as demonstrated by Warren’s examples. Clearly, high-level contextual
knowledge—even, in the case of phonemic restorasiemanticknowledge—is

used, in what Helmholtz would have called “unconscious inference” (Helmholtz,
1954). It is not clear how important these effects are to everday listening situa-
tions, but we must be careful not to underestimate their significance.

Computational auditory scene analysis

Over the last decade, several researchers have attempted to build computational
frameworks that perform auditory scene analysis; the resulting field has been
calledcomputational auditory scene analy§BASA). Typically, CASA research
projects have involved implementation of some small subset of the strategies sug-
gested by Bregman, often in a manner functionally consistent with the early
stages of the human auditory periphery (as they are currently understood).
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Ellis (1996) describes several of these systems, with references to their original
presentation in the dissertations of Cooke (1993), Brown (1992), and Mellinger
(1991), and a paper by Ellis (1994), as instances of a single structural framework.
According to his analysis, the overall structure can be broken into four main sec-
tions that proceed in sequence (illustrated in Figure 2):

1. Front-end: All of the systems employ a filter-bank to break the acoustic sig-
nal into different frequency bands. In the human auditory periphery, this
function is performed in the cochlea, and this organization by frequency
region is preserved at higher levels of the auditory system. Each system
includes further processing intended to reveal particular acoustic properties,
or “cues.” For example, an “onset map” might be generated to facilitate later
grouping by common onset.

2. Basic representation:In this second stage, the output of the front-end,
including the cue detectors, is organized into discrete elements, the “atoms”
which make up auditory objects. Typical elements include “tracks,” repre-
senting stable sinusoids that may correspond to harmonic partials, and
“onsets,” representing abrupt rises in energy that may correspond to the start
of a new sound.

3. Grouping algorithm: In the third stage, a subset of Bregman’s strategies is
employed to group elements (from the basic representation) that correspond
to coherent auditory objects. For example, “tracks” with simple frequency
relationships may form a group corresponding to a harmonic sound.

4. Output assessment / resynthesidn the final stage, the group representa-
tions from the third stage are converted into a form suitable to the goals of
the system. In some cases, these are acoustic waveforms corresponding to
the “separated” auditory objects.

These early CASA systems suffer from several critical limitations, attributed (by
the respective authors, as well as by Ellis) to many factors, including: inadequate
cues, inextensible algorithms, rigid evidence integration, and inability to handle
obscured (masked) data.

Ellis attempted to address these limitations by introducing short-term prediction,
based on the statistical properties of low-level sound objects (noise clouds, tran-
sients, and quasi-periodic tonaéft9, to infer masked or obscured information
(Ellis, 1996). His approach, callgalediction-driven computational auditory

scene analysifPDCASA), is remarkably successful at grouping low-level time-
frequency energy into perceptually salient objects—for example, car horns and
slamming doors in a complex, noisy street scene. In a limited test on a few exam-
ples, the PDCASA system exhibited good correspondence to human responses
regarding the number of objects in the scene (but not their identities). The
PDCASA system infers the properties of masked sounds to a small degree, but it
is a long way from solving problems like phonemic restoration.

These CASA systems have been constructed with little concern for the actual
contents of the auditory scene. However,kimelsof sounds in the mixture, and
the listener’s past experience with similar sounds, can have an enormous effect
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on how an auditory scene is perceived by a human listener. The research pre-
sented in this dissertation is a framework for representing and exploiting knowl-
edge about sound sources. Although the framework presented here does not
constitute a CASA system, it is intended to be integrated with one. By recogniz-
ing the source of a sound, a CASA system would be better equipped to infer the
sound’s masked properties. Sound-source recognition is an essential yet largely
overlooked component of auditory scene analysis.

Front-end Basic Grouping Output/
— A —~ Representation Algorithm Resynthesis
"cue" maps
common-
> periodic period
) modulation {3 object objects mask
soun formation .
cochlea ||| frequency P —|_> grouping |- resynthesis f—3»
—> > o . ynthesis
model transition »| algorithm
onset/
> offset
peripheral channels

FIGURE 2. Overview of processing flow in CASA architectures, after Ellis (1996).

2.2 Evaluating sound-source recognition systems

Although many sound-source recognition systems have been constructed, it is
often very difficult to be objective in evaluating the success of a computational
system at recognizing sounds. The performance of an individual system is often
qguantified by its creator as a percentage of “correct” responses in some kind of
test scenario, but the scope of the test—and, indeed, the scope of the system—is
not often expressed.

There are several dimensions along which systems differ in competence, and
although they are not easy to quantify, they should be considered carefully when
comparing the abilities of different systems. The following criteria are presented
in roughly descending order of importance.

A sound-source recognition system should:

1. Exhibit generalization. Different instances of the same kind of sound
should be recognized as similar. For example, a system that learns to recog-
nize musical instruments should be able to do so in a way that does not
depend on the particular human performer or the particular acoustic environ-
ment. Though they may differ in quality, a clarinet played by a student in a
dormitory is as much a clarinet as one played by Richard Stoltzman in Bos-
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ton Symphony Hall. The ideal degree of perceived similarity may be con-
text-dependent. For example, in an office it may be important to recognize
which particular telephone is ringing, whereas in a home it is sufficient to
recognize that it is the telephone, and not the doorbell, that is producing
sound. In the first situation, a system trained to recognize one particular tele-
phone may suffice, but in the second, it would be more useful for the system
to recognize thelassof sounds telephones make, independent of any partic-
ular telephone.

Handle real-world complexity. Too often, psychoacoustic experiments
employ simple stimuli that have little relation to sounds that occur in the
environment. As a result, many computational listening systems are tested
only with simple stimuli, such as additive synthesis tones, sine waves, bursts
of white noise, sounds recorded in an anechoic chamber, and so forth. If
these systems are tested on ecological signals—signals that actually occur in
the real world—it is quickly discovered that the system cannot handle the
additional complexity, noise, temporal characteristics, etc. Many theories
can be made to work on “laboratory sounds” or in thought experiments, but
most fail if tested in real-world scenarios. In a real-world environment,
sounds are rarely heard in isolation, and acoustic reflections and reverbera-
tion nearly always affect the sound waves arriving at a microphone or ear-
drum. Systems limited to recognizing isolated sources or sound with very
little reverberation can be useful—as are, for example, current commercial
speech recognition systems—but these limitations must be considered when
comparing systems.

Be scalable The world contains a vast array of sound-producing objects,
and it is hard to pin down even the order of magnitude of the number of dif-
ferent sounds mature human listeners can recognize. In contrast, a typical
sound-recognition system may be trained on only a few kinds of sounds—
perhaps a fewensof sound classes. To evaluate a system with such limited
knowledge, it is necessary to considert¢benpetence of the approacis—

the systentapableof learning to recognize additional sounds, and how
would such expansion affect its performance? Different sounds may have
different salient characteristics. It may be important to consider whether a
system’s repertoire déature detectorsan be expanded when additional
acoustic properties become important.

Exhibit graceful degradation. As the level of ambient noise, the degree of
reverberation, or the number of competing sound sources increases, human
sound-source recognition performance gradually worsens. In contrast, many
machine systems stop working altogether when a certain level of degrada-
tion, abiguity, or obscurity is reached. In realistic scenarios, these complicat-
ing factors obscure portions of the “target” sound. In order to continue
functioning successfully, a system must have a strategy for handling what
has been called the “missing feature problem;” it must be able to recognize
the whole from a portion.

Employ a flexible learning strategy.Machine systems that learn are often
classified by whether their learningsapervisecr unsupervisedn the
former case, an omniscient trainer specifiesctegoryof each training
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example at the time of training; in the latter, the system must discover the
categories itself. This division is in itself artificial, however; human listeners
make use of both “labeled” and “unlabeled” data as they learn. Many
machine systems do all of their learning in a large batch, and then remain
fixed as they operate. In contrast, human listeners learn continually, intro-
ducing new categories as necessary and refining classification criteria over
time as new examples of previously learned categories are encountered.

6. Operate in real-time (in principle). One of the defining characteristics of
biological listeners is that they interact with their environment on the same
time scale as the sounds they attend to. In contrast, many computational sys-
tems rely on having pre-selected segments of sound presented for analysis.
For example, some “music analysis” systems require that the entire piece of
music be presented at once. One of the essential aspects of music, however,
is that it takes place over time, setting up expectations in the listener and then
either satisfying them or invoking surprise. Requiring an artificial system to
operate in real-time is too limiting, yet systems should not require human
intervention in the form of segmentation into chunks to be processed. To be
considered #stener,a system should kreal-time in principle.lt should
analyze the acoustic waveform sequentially through time, as it would arrive
at a microphone or eardrum.

These six criteria must be considered before comparing the quantitative perfor-
mance of different systems. Other criteria, which do not bear directly on perfor-
mance, may also be worth considering. For example, two systems that perform
equally well on some task and have similar ratings on the foregoing criteria may
still be compared on the basis of complexity: all other things being equal, the
simplersystem is better. This simplicity can be in the form of reduced memory
size or processing requirements, or in how easy it is to understand how the sys-
tem works.

Further, if the goal of building a machine listening system is not to achieve a par-
ticular level of competence on a given tasit rather to gain insight into the
workings of a human or animal listener, it is important to consider the similarity
between the biological system and the model. In his influential work on models
of the human visual system, David Marr identified three conceptual levels at
which information-processing systems can be understood (Marr, 1982). The first,
and most abstract, is tikemputational theorywhere questions afhatthe sys-

tem does andrhyare considered. At the second level, y@resentatiorand
algorithmare considered, and the forms of the system’s input and output, along
with a method of proceeding from one to the other, are detailed. At the third and
most concrete level, the particutzrdware implementatiors considered. The

three levels are loosely related, and systems may be compared at any or all of
them. The approach presented here, and its relation to the human auditory sys-
tem, will be considered in Chapter 4.

A final criteria, one that in many cases shoutd be used to evaluate machine
listening systems, is an ability teproducethe sounds it hears. Recognition often
requires much less information than reproduction, and although high-fidelity
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2.3

reproduction may be a useful feature, it is in no way a requirement for good rec-
ognition performance. However, if sound-source recognition is to be used as part
of a CASA system, it is important to be able to use source identity to infer the
masked acoustic properties of the sound at some level of representation (though
most likely not at the waveform level).

As a final note, it is important to keep in mind the semantic differences among
the wordsclassification identification andrecognition In this thesisrecogni-

tion describes a process of gathering information and making inferences, and
classificationinvolves the assigment of a category lald#ntificationis used to
describe recognition tasks in which the “allowed” category choices are not pre-
specified. In Chapters 4 and S:egognitionmodel will be described. In Chapter
6, it will be tested owrlassificationtasks. Readers interested in the subtle differ-
ences between the words may find Sayre’s (1965) account to be of interest.

Human sound-source recognition

Humans can identify many events and objects by sound alone. Our sound-recog-
nition abilities are either innate or learned very early in development, and we are
unable to introspect about how they work. This is an example of what Minsky
calls theamnesia of infancy'In general, we're least aware of what our minds do
best” (Minsky, 1986, p. 29). Recognizing objects in the environment is an essen-
tial survival skill, and nearly all vertebrates recognize sounds (Popper & Fay,
1997). In spite of this, and perhaps because of their introspective opacity, the pro-
cesses underlying sound-source recognition have not been studied in depth.
Much of what we know has been learned indirectly, from psychophysical experi-
ments aimed at narrower phenomena. The discussion in this section draws from
two recent, complementary, reviews of such research (Handel, 1995; McAdams,
1993).

If a particular sound source generated the same sound wave every time, recogni-
tion would be easy—we could simply (at least in principle) memorize every
sound and match incoming sound waves to stored patterns in memory. In reality,
there is enormous variability in the acoustic waves produced by any given sound
source at different times. This variation is due in part to the complexity of the
environment—for example, a room’s detailed acoustic response changes with the
movement of any object, with changes in air circulation, and even with shifts in
humidity! Natural sounds—that is, sounds not produced by human artifacts—
vary even more from instance to instance because the physical process of sound
production is never the same twice.

The listener must abstract away from the raw acoustic signal in order to discover
the identity of a sound event. Although there is much variability in the acoustic
signal, there are oftenvariants—things that do not change from instance to
instance—in the sound-production process. For example, the kind of excitation—
the way that energy is injected into the physical system, for example by banging,
blowing, or scraping—affects the acoustic signal in many ways, both subtle and
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obvious. The material properties and geometry of the vibrating body impose con-
straints in a similar but complementary way; for example, they affect the fre-
guency spectrum, onset and offset transients, and transitions between sounds. By
using features that are influenced by these production invariants, it should be pos-
sible to work backward to the invariants themselves, and from there to sound
event identity. Both Handel and McAdams suggest that inference based on the
detection of invariants is the most likely basis for human sound-source recogni-
tion. It is important, however, to look more deeply than “trivial” invariants, such

as sound-source identity, that entirely beg the question.

Because excitation and resonance properties simultaneously influence the prop-
erties of the sound wave, there are many potential acoustic features to be used for
recognition. As a consequence, there is no one predominant cue, separate cues
are not entirely independent, and the cues a listener actually uses are highly
dependent on the context. Particularly when multiple sounds overlap, it will be
difficult to know in advance which cues will be available—therefore, the lis-
tener’s recognition strategy must be flexible.

McAdams describes recognition as a range of phenomena:

“Recognition means that what is currently being heard corresponds in some way
to something that has been heard in the past.... Recognition may be accompa-
nied by a more or less strong sense of familiarity, by realizing the identity of the
source (e.g., a car horn), and often by an understanding of what the source being
heard signifies to the listener in his or her current situation, thereby leading to
some appropriate action.” (McAdams, 1993, p. 147)

His conception of the recognition process, in abstract form, is shown in Figure 3.
(Note the similarities with Figure 2.) McAdams suggests that the process is
largely sequential: the sound wave is changed, by transduction, into a representa-
tion where auditory grouping can take place. Grouped elements are analyzed in
terms of some set of features, which are then used as the basis of the recognition
process. Although McAdams suggests that recognition is subsequent to the
grouping processes of auditory scene analysis, he leaves room for the possibility
of feedback from higher, post-recognition processes—this feedback loop is
clearly necessary to account for phenomena such as phonemic restoration.

lexicon of
A| names
sensory auditory feature aud. lexicon i
transduction grouping > analysis > matching : = recognition
Y meaning/
A A significance

FIGURE 3. Overview of the stages of auditory processing for sound source recognition, after

McAdams (1993).
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Psychological studies have shown that human object recognition—in all sensory
modalities—occurs at multiple levels of abstraction. Minsky terms tlegsé

bands and suggests that one or more intermediate levels of abstraction are privi-
leged in recognition (Minsky, 1986). To paraphrase his words, beyond a certain
level of detail, increasingly detailed memories of previously observed objects are
increasingly difficult to match to new situations. Above a certain degree of
abstraction, descriptions are not detailed enough to be useful—they do not pro-
vide any discriminating information.

This idea is similar to Roschisasic leveRosch, 1978; Rosch et al., 1976). Her
research suggests that the kinds of objects in the world form hierarchies in the
mind and that there is a privileged level—the “basic” level—where recognition
initially takes place. The basic level is where the most information can be gained
(the best predictions or inferences can be made) with the least effort. Basic
objects can be shown “to be the first categorization made during perception of
the environment, to be the earliest categories sorted and earliest named by chil-
dren, and to be the categories most codable, most coded, and most necessary in
language” (Rosch et al., 1976). To take an example from audition, a sound heard
while driving a car might be recognized as a “bad engine noise” before being
classified as a misfiring spark plug.

Minsky suggests that objects may be organized into multiple hierarchies that
classify them in different ways. The particular hierarchy used in a given situation
may depend on the context, as may the particular level that is privileged. These
may depend on the set of features currently available from the sensory input and
on the current goals of the perceiver. These shifts of level and of hierarchy hap-
pen very quickly and are mostly inaccessible to introspection.

We should not neglect the feedback mechanisms suggested by McAdams’s pro-
posed architecture and their importance in thinking about auditory scene analy-
sis. Some high-level influences are obvious. Every human listener is exquisitely
sensitive to hearing his or her name, even in complex, noisy environments. There
is a great deal of anecdotal evidence that multilingual speakers can understand
speech in their over-learned native language relatively easily in adverse environ-
ments—they need a higher signal-to-noise ratio to understand speech in their sec-
ondary languages.

More subtly, we use what we know about a particular sound source to fill gaps in
the available sensory data. As in Warren’s auditory restoration phenomena, we
fill in details with default assumptions based on our expectations. This process is
entirely inaccessible to our consciousness; we are not aware that we are doing it,
and we believe that we are hearing more detail than is actually there to be heard.
Our perception is a blending of information from sensations and expectations.
Indeed, the feedback loops in McAdams’s architecture are essential.

Human listeners outpace machine systems on every criterion considered in Sec-
tion 2.2. We are able to recognize instances from a very large number of general
classes, in real-world acoustic conditions and under wide ranges of complexity
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2.4

arising from mixtures of simultaneous sounds. Human recognition degrades
gracefully as conditions worsen. Our learning is extremely flexible—we can find
structure in the world without being given a label for every object, and we learn
continually, adding new object classes throughout our lives. In addition to such
“unsupervised” learning, we can learn new classes by instruction—"“Can you
hear that unusual sound in the mix? It's a digeridoo.” And in many cases, we
need only a few examples—sometimes only one—to learn a new category
(Sayre, 1965). To top it off, our brains work in real-time, and not just in principle.

Machine sound-source recognition

24.1

Many systems have been built to recognize sounds in different domains. To name
a few, systems have been constructed to keep track of when particular advertise-
ments are played on a television or radio station, to discriminate speech sounds
from music, to identify talkers on a telephone, and to recognize musical instru-
ments in a recording. In this section, sound-source recognition systems from sev-
eral domains will be considered and evaluated in light of the criteria proposed in
Section 2.2. Only those machine-listening systems whose goal is to recognize
sound sources from airborne sound waves will be presented. Automatic speech
recognition systems, where the goal is to recoventbssageather than the

identity of the talker will not be considered.

Recognition within micro-domains

Several systems have been constructed to recognize examples from very small
classes of sounds. A typical example of such a system is one constructed to rec-
ognize different kinds of motor vehicles from the engine and road noise they pro-
duce (Nooralahiyan et al., 1998). First, a human-selected segment of sound
waveform is coded by a linear prediction algorithm (LPC). Then, the LPC coeffi-
cients are presented to a time delay neural network (TDNN) that classifies the
source of the sound waveform as belonging to one of four categories (roughly,
trucks, sedans, motorcycles, and vans).

The authors performed two studies: one with sounds recorded carefully in iso-
lated conditions, to evaluate the propriety of the feature set; and one with sounds
recorded on a city street, to evaluate the system in more realistic conditions. In
both cases, supervised learning was used. For the city street case, the system was
trained with 450 sounds and tested with 150 independent sounds. The system'’s
performance was substantially above chance, with correct classification of 96%

of the training samples and 84% of the test samples. The TDNN has apparently
found some kind of regularity in the features that enables classification, but as is
typical of much connectionist research, no attempt was made to discover exactly
which aspects of the features were salient.

Examples of systems with similar scopes include non-connectionist approaches
to recognition of songs in movie soundtracks (Hawley, 1993; Pfeiffer et al.,
1996).
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There are a few examples of “implicit” recognition systems constructed by
researchers who were investigating the sound-recognition abilities of humans.
For example, while attempting to understand how people recognize the sex of a
person by listening to his/her footsteps, Li et al. (1991) identified a set of acoustic
properties that correlate with human judgments of walker sex. They used princi-
pal-components analysis (PCA) to reduce the dimensionality of the feature space
and constructed a discriminator that correlated strongly with human judgments
(r=0.82,p<0.05). Another example is a study on human judgments of mallet
hardness from the sounds of struck metal pans (Freed, 1990).

Micro-domain recognition systems vary greatly in their ability to generalize from
training samples. This variability can stem from a choice of analysis features that
does not adequately capture the structure of the sound class, or from a too-narrow
range of training examples. Some systems are limited to recognizing pristine
recordings of isolated sounds, but others adapt well to real-world noise. None,
however, are equipped to deal with mixtures of sounds.

Most micro-domain systems employ techniques from statistical pattern-recogni-
tion (e.g., neural networks or maximum-likelihood classifiers) within a super-

vised learning framework. As with nearly all artificial sound source recognition
systems, the sound samples used to train and test these systems are pre-selected
(and even pre-segmented, thereby eliminating real-time applications) by human
operators. Most often, the systems are not given a “don’t know” option for cases
when a sound sample falls outside their domain of knowledge. It is uncertain
whether micro-domain approaches can scale to larger numbers of classes, not
only because their range of feature-detectors may be too small, but also because
their recognition frameworks are relatively inflexible.

Recognition of broad sound classes

A typical example of recognizing examples from broad sound classes is speech/
music discrimination, which has applications in automatic speech recognition
and soundtrack segmentation, for example. There are many examples of such
systems (e.g., Spina & Zue, 1996; Scheirer & Slaney, 1997; Foote, 1997; Han et
al., 1998; Minami et al., 1998), but the system described by Scheirer and Slaney
appears to be the most general and the best able to handle real-world complexity.

Scheirer and Slaney considered 13 features and extensively tested four different
multidimensional classification frameworks with various feature combinations.

An extensive corpus of training and test data was recorded from FM radio sta-
tions in the San Francisco Bay area, covering a variety of content styles and noise
levels. Several twenty-minute sets of data were recorded, each consisting of 80
hand-labeled, fifteen-second samples.

In each classifier, learning was supervised, using 90% of the samples in a set for
training, and reserving 10% for testing (never splitting a 15-second sample). The
best classifier, which used only 3 of the 13 features, had 5.8% classification error
on a frame-by-frame basis, and the error rate dropped to 1.4% by integrating sev-
eral frames (over 2.4 seconds). All of the classifiers tested were capable of real-
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time performance in principle, and the best classifier was able to run in real-time
in software on a workstation. As is true in most domains where appropriate fea-
tures are selected, the particular classification technique did not affect perfor-
mance—several different algorithms gave rise to similar performance levels.

At least one system has been built that expands the range of allowable categories
beyond music and speech in a sound-retrieval application (Wold et al., 1996). It
allows a human user to specify an arbitrary class of sounds by providing a small
number of examples. The system uses a feature vector made up of perceptually
motivated acoustic properties (for example, correlates of loudness, pitch, bright-
ness, bandwidth, and harmonicity, as well as their variation over time) to form a
Gaussian model for the sound class. It then uses the Mahalanobis distance (which
takes into account the relative ranges of the various features, and also inter-fea-
ture correlation) to retrieve similar sound examples from a database of record-
ings.

It is difficult to evaluate the performance of a system on such a subjective task,
but the authors give several examples of intuitively reasonable classification
based on categories such as laughter, female speech, and telephone touch-tones.
The approach seems appropriate for general, high-level classes, but because it
uses only gross statistical sound properties, it may not be able to make fine class
distinctions (e.g., particular human talkers or musical instruments) without con-
siderable additional front-end complexity.

Like the micro-domain examples, broad-class systems such as these employ sta-
tistical pattern-recognition techniques within a supervised learning paradigm. In
some cases, they have demonstrably generalized from their training examples
and can recognize new examples drawn from the classes they have learned. The
systems described above operate on real-world recordings, using surface proper-
ties of sound mixtures rather than features of isolated sounds—indeed, ignoring
the fact that the sounds are typically mixtures. It is difficult to judge the scalabil-
ity of these systems. The features used in the speech/music discrimination sys-
tems are specifically tuned to the particular task; Scheirer and Slaney even point
out that the features do not seem to be good for classifying musical genre. The
sound-retrieval system seems to be more flexible, but quantitative test results
have not been published. This is emblematic of the vast quality differences
between evaluation processes. Extensive, quantitative cross-validation, as per-
formed by Scheirer and Slaney, is necessary for honest system evaluation, but too
often it is sidestepped.

Recognition of human talkers

Many systems have been built to identify human talkers (Mammone et al., 1996
gives an overview of several different approaches). Most employ statistical pat-
tern-recognition techniques within a supervised-learning framework, using input
features motivated by consideration of human perception. The research described
by Reynolds (1995) is typical of the scope of such systems.
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Reynolds’s system, like many others, uses mel-frequency cepstral coefficients
(MFCC) as input features. These coefficients, in this case based on 20 ms win-
dows of the acoustic signal, are thought to represent perceptually salient aspects
of human vocal-tract resonancéarnanty; the frequencies and bandwidths of
these resonances are known to be important for talker identification by humans
(Brown, 1981). Given a recorded utterance, the system forms a probabilistic
model based on a mixture of Gaussian distributions. During training, these mod-
els are stored in memory. To recognize a novel utterance, the system finds the
model that is most likely to have produced the observed features.

The performance of the system depends on the noise characteristics of the signal,
and on the number of learned models fibpulation sizg With pristine record-

ings, performance is nearly perfect on population sizes up to at least 630 talkers
(based on experiments with the TIMIT database). Under varying acoustic condi-
tions (for example, using telephone handsets during testing that differ from those
used in training), performance smoothly degrades as the population size
increases; on the Switchboard database, correct classification rates decreased
from 94% to 83% as the population size grew from 10 to 113 talkers.

Systems constructed to date have relied on only a subset of the acoustic proper-
ties human listeners use for talker identification. Approaches that use only low-
order cepstral coefficients do not have access to information about the fundamen-
tal frequency of the speaker’s voice, which is known to be an important cue for
human listeners (Brown, 1981; van Dommelen, 1990). Speech rhythm, which is
also a salient cue for humans (van Dommelen, 1990), has not been used in sys-
tems built to date.

Talker identification systems suffer from lack of generality—they do not work

well when acoustic conditions vary from those used in training. From that per-
spective, they do not handle real-world complexity adequately. Also, they recog-
nize only utterances from isolated talkers; they can not deal with mixtures of
sounds. The approaches used in these systems scale reasonably, to much larger
numbers of sound classes than systems in the other domains considered so far,
but performance suffers as the population size grows.

Recognition of environmental sounds

Although few systems have been built to recognize specific sound sources other
than human talkers or musical instruments, two such systems are worthy of men-
tion. The Sound Understanding Testbed (SUT) recognizes instances of specific
household and environmental sounds (Klassner, 1996), and Saint-Arnaud’s sys-
tem recognizes sound textures (Saint-Arnaud, 1995).

SUT was constructed as a trial application for the Integrated Processing and
Understanding of Signals (IPUS) blackboard architecture, which implements a
simultaneous search for an explanation of a signal and for an appropriate front-
end configuration for analyzing it (Klassner, 1996). SUT operates in an audio
analog of the “blocks world” of vision Al. Whereas early Al systems performed
visual scene analysis in highly constrained environments, SUT performs auditory
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scene analysis on mixtures of sounds from a small library of sources. The IPUS
architecture and the knowledge base in SUT are constructed to be very clever
about applying signal-processing domain knowledge to identify distortions aris-
ing from particular settings of the front-end signal-processing network and to
adapt to them.

SUT employs several levels of feature abstraction, based in large part on sinusoi-
dal-analysis techniques. Representations begin with the spectrogram and inten-
sity envelope, and continue through “peaks” representing narrow-band portions
of the spectrum, “contours” made up of groups of peaks with similar frequencies,
to “micro-streams” made up of sequences of contours, and finally to “streams”
and “sources.”

SUT has a library of 40 sounds that it can recognize. Each sound model (consist-
ing, for example of several “streams”) was derived by hand from at least five
instances of each sound. Each model represents a particular instance of a sound
source rather than a general class (e.g., the sound of one viola note rather than the
class of all viola sounds). The collection of models is eclectic, including two par-
ticular alarm clocks (one analog bell-and-ringer style and one electronic), a bell,
a bicycle bell, a bugle call, a burglar alarm, a car engine, a car horn, a chicken
cluck, a “chime,” a clap, a clock chime, a clock tick, a cuckoo clock, a doorbell
chime, a door creak, a fire engine bell, a firehouse alarm, a foghorn, a set of foot-
steps, a glass clink, a gong, a hairdryer, a door knock, an oven buzzer, an owl
hoot, a pistol shot, a police siren, an electric razor, two smoke alarms, a telephone
dial, a telephone ring, a telephone dial tone, a triangle strike, a truck motor, a
vending machine hum, a viola note, and the wind.

SUT was tested on mixtures constructed by placing four independent sounds
from the library randomly in a five second recording. Two conditions were tested.
In one, SUT was given a minimal library consisting of just the sound sources
actually present in the recording; in the second, all 40 models were provided. The
system’s task was to identify which sounds occurred and when. A correct identi-
fication was credited when SUT chose the right model and estimated a time range
that overlapped the actual time of sounding. In the first scenario, the system iden-
tified 61% of the sounds correctly; in the second, the recognition rate dropped
slightly to 59%. No information has been reported about the kinds of mistakes
that were made (for example, whether one telephone was confused with the
other).

Because of the limited available information, it is difficult to evaluate SUT’s per-
formance as a recognition system. Based on the simplicity of the sound models
and the limited range of training data, it is likely that SUT can only recognize the
particular sound instances it was trained with, rather than the general classes
those sounds represent. In the evaluation process, real world complexity was lim-
ited to artificially-produced mixtures of sounds. Although SUT’s success on such
mixtures is praiseworthy, it should not be taken as a prediction of performance on
naturally occurring sound mixtures. Learning in SUT takes place only in the form
of hand-coded source models, and it is not clear whether the range of models
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could be expanded while maintaining the current performance level. On the other
hand, SUT is the first system to attack the auditory scene analysis problem with
extensive world-knowledge, and as such, it is a step in the right direction.

Saint-Arnaud explored a range of little-studied sounds that he teextedes
(Saint-Arnaud, 1995). He likens sound textures to wallpaper: they may have local
structure and randomness, but on a large scale the structure and randomness must
be consistent. Examples of sound textures include bubbling water, the noise of a
photocopier, and a large number of whispering voices. Saint-Arnaud collected a
set of sample textures and performed a psychophysical experiment to determine
whether humans perceived textures as members of high-level classes. Indeed, he
found that people classify sound textures by the kind of source, such as water,
voices, or machines, and by acoustic characteristics, such as periodicity or noisi-
ness.

After studying human responses, Saint-Arnaud attempted to build a computer
classifier that might match them. He used a cluster-based probability model on
the patterns of energy outputs of a 21-band constant-Q filter bank to form models
for segments from 12 recordings of different sound textures. Using a custom
“dissimilarity” metric, the system compared models derived from test samples to
stored models from the training samples, assigning the test sample the high-level
class of the closest training sample. Fifteen samples were tested, including addi-
tional segments from the 12 training sounds. Three of the test samples were mis-
classified. Saint-Arnaud warns against drawing any general conclusions from this
small example, but suggests that the results are encouraging.

Recognition of musical instruments

Several musical instrument recognition systems have been constructed during the
last thirty years, with varying approaches, scopes, and levels of performance.
Most of these have operated on recordings of single, isolated tones (either synthe-
sized or natural), but the most recent have employed musical phrases recorded
from commercial compact discs.

De Poli and his colleagues constructed a series of Kohonen Self-Organizing-Map
(SOM) neural networks using inputs based on isolated tones (Cosi et al.,
1994a,b,c; De Poli & Prandoni, 1997; De Poli & Tonella, 1993). In each case,

one tone per instrument was used (with up to 40 instruments in a given experi-
ment), with all tones performed at the same pitch. Various features of the tones
(most often MFCC coefficients) were used as inputs to the SOM, in some cases
after the dimensionality of the feature space was reduced with principal compo-
nents analysis. The authors claim that the neural networks can be used for classi-
fication, but in no case do they demonstrate classification of independent test
data.

In a project of similar scope, Feiten and Giinzel (1994) trained a Kohonen SOM
with spectral features from 98 tones produced by a Roland SoundCanvas synthe-
sizer. They authors claim that the network can be used for retrieval applications,
but no evaluable results are provided.
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Kaminskyj and Materka (1995) compared the classification abilities of a feed-
forward neural network and a k-nearest neighbor classifier, both trained with fea-
tures of the amplitude envelopes of isolated instrument tones. Both classifiers
achieved nearly 98% correct classification of tones produced by four instruments
(guitar, piano, marimba, and accordion) over a one-octave pitch range. Although
this performance appears to be excellent, both the training and test data were
recorded from the same instruments, performed by the same players in the same
acoustic environment. Also, the four instruments chosen have very distinctive
acoustic properties, so it is unlikely that the demonstrated performance would
carry over to additional instruments or even to independent test data.

Langmead (Langmead, 1995a,b) trained a neural network using several instru-
ment-tone features based on sinusoidal analysis. He writes “the trained network
has shown success in timbre recognition” (Langmead, 1995a), however, no
details are provided.

At least two authors have applied traditional pattern-recognition techniques to the
isolated-tone classification problem. Bourne (1972) trained a Bayesian classifier
with perceptually-motivated features, including the overall spectrum and the rela-
tive onset times of different harmonics, extracted from 60 clarinet, French horn,
and trumpet tones. Fifteen tones were used to test the system (8 of which were
not used in training), and the system correctly classified all but one (approxi-
mately 93% correct classification). More recently, Fujinaga (1998) trained a k-
nearest neighbor classifier with features extracted from 1338 spectral slices rep-
resenting 23 instruments playing a range of pitches. Using leave-one-out cross-
validation with a genetic algorithm to identify good feature combinations, the
system reached a recognition rate of approximately 50%.

In an unpublished report, Casey (1996) describes a novel recognition framework
based on a “distal learning” technique. Using a commercial waveguide synthe-
sizer to produce isolated tones, he trained a neural network to distinguish
between two synthesized instruments (brass and single-reed) and to recover their
synthesizer control parameters. His approach can be viewed as modeling the
dynamics of the sound source, and as such may be thought of as a variant of the
motor theory of speech perception. Although “recognition” results were not
guantified as such, the low “outcome error” reported by Casey demonstrates the
success of the approach in the limited tests.

Several authors working on CASA research have built systems that can be con-
sidered as instrument recognizers. Brown and Cooke (1994) built a system that
used similarity of “brightness” and onset asynchrony to group sequences of notes
from synthesized brass/clarinet duets. Segregation was successful on 9 out of 10
notes in a short example, but the instruments were not recogrézse

Kashino and his colleagues have constructed a series of systems to perform poly-
phonic pitch tracking on simple music. Their earliest system, using harmonic
mistuning and onset asynchrony, correctly recognized the source of 42 flute and
cembalo notes played by a sampling synthesizer (Kashino & Tanaka, 1992).
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Later systems, using more features, were able to identify the sources of notes
produced by clarinet, flute, piano, trumpet, and violin in “random chords” (Kash-
ino et al., 1995; Kashino & Tanaka, 1993). The authors used an unusual evalua-
tion metric, but reported intriguing results. Their most recent systems, using
adaptive templates and contextual information, transcribed recordings of a trio
made up of violin, flute, and piano (Kashino & Murase, 1997; 1998). When the
pitch of each tone was provided, the system identified the source of 88.5% of the
tones in a test recording. An auxiliary report suggested the use of a hierarchy of
sound models—a “sound ontology”—to enable recognition of a larger range of
sound sources, but no new recognition results were reported (Nakatani et al.,
1997).

Until very recently, there were no published reports of musical instrument recog-
nition systems that could operate on realistic musical recordings, but three such
systems have been described in the last two years. In all three cases, the authors
applied techniques commonly used in talker-identification and speech recogni-
tion.

Brown (1997a,b; 1999) has described a two-way classifier that distinguishes
oboe from saxophone recordings. A Gaussian mixture model based on constant-
Q cepstral coefficients was trained for each instrument, using approximately one
minute of music each. On independent, noisy samples from commercial record-
ings, the system classified 94% of test samples correctly. Brown has extended
this work with a four-way classifier that distinguishes among oboe, saxophone,
flute, and clarinet (Brown, 1998b,c), getting “roughly 84%" correct classification
on independent test data (Brown, 1998a, personal communication).

Dubnov and Rodet (1998) used a vector-quantizer based on MFCC features as a
front-end to a statistical clustering algorithm. The system was trained with 18
short excerpts from as many instruments. No classification results were reported,
but the vector-quantizer does appear to have captured something about the
“space” of instrument sounds. Although there is not enough detail in the paper to
evaluate the results, the approach seems promising.

Marques (1999) constructed a set of 9-way classifiers (categories were bagpipes,
clarinet, flute, harpsichord, organ, piano, trombone, violin, and “other”) using
several different feature sets and classifier architectures. The classifiers were
trained with recordings of solo instruments from commercial compact discs and
“non-professional” studio recordings, and were tested with independent material
taken from additional compact discs. The best classifiers used MFCC features,
correctly classifying approximately 72% of the test data. Performance dropped to
approximately 45% when the system was tested with “non-professional” record-
ings ! suggesting that the classifier has not generalized in the same way as human

1. The “non-professional’ recordings were a subset of the student recordings described in
Chapter 6. They were made in a non-reverberant space (the control room of a recording
studio) with a high-quality cardioid microphone placed approximately one meter in
front of the musician. (I traded recordings with Marques on one occasion.)
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listeners (who do not have difficulty recognizing the instruments in the “non-pro-
fessional” recordings, as will be demonstrated in Chapter 6).

Perhaps the biggest problem in evaluating musical-instrument recognition sys-
tems is that very few systems have been extensively evaluated with independent
test data. Until such testing is done, one must not assume that these systems have
demonstrated any meaningful generality of performance.

2.5 Conclusions and challenges for the future
Human listeners outpace machine systems on every criterion considered in Sec-
tion 2.2. The recognition machinery in the human brain is well suited—much
more so than any artificial machinery we know how to build—to the complex
acoustic environments we inhabit. Currently, we can build artificial systems that
can recognize many different sound sources under laboratory conditions or a very
small set of sources under more relaxed conditions. Figure 4 (next page) posi-
tions recognition systems from the domains considered in Section 2.4 on these
two critical axes. The challenge that faces us is to build systems that can recog-
nize more classes of sound sources with increased generality and under condi-
tions of real-world complexity. The framework described in the following
chapters extends the range of artificial systems, reducing the gap between
humans and machines.
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FIGURE 4. Comparison of human and machine abilities. Humans are much better able to

recognize—across the board—general classes of sounds than are the current
state-of-the-art in machine systems, particularly as the number of sound-source

classes under consideration grows beyond three or four.

Conclusions and challenges for the future
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cuoie 3 RECOQNIZING Musical instruments

The most difficult tasks in building a successful information-processing system
are discovering the constraints underlying the problem domain and determining
which features arising from the constraints are best adapted to the task at hand.
As David Marr writes:

“[Flinding such constraints is a true discovery—the knowledge is of permanent
value, it can be accumulated and built upon, and it is in a deep sense what makes
this field of investigation into a science” (Marr, 1982, p. 104)

For this thesis, | chose the goal of recognizing musical instruments in large part
because so much prior research had been done to uncover the constraints and fea-
tures exploited by human listeners. In no other area of hearing research—with the
possible exception of speech—have the relevant acoustics and psychoacoustics
been studied in such depth. Much is known about musical instrument sounds,
particularly those sounds produced by traditional Western orchestral instruments,
so it is with these sound sources that the rest of this dissertation is primarily con-
cerned.

This chapter has four sections. First, we will consider human abilities on the task
of recognizing Western orchestral instruments. Second, relevant research in
musical acoustics, psychophysics, and analysis-by-synthesis will be considered.
Much of this research can be unified within a framework based on the excitation
and resonance structures of the instruments. In light of the unified structural
framework, a summary of Chapters 2 and 3 will be presented, culminating with a
partial list of acoustic features relevant to musical instrument recognition.
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3.1 Human recognition abilities

Recognizing musical instruments is a basic component of listening to many kinds
of music, and it is considered to be a natural and easy task for many people. For
example, Robert Erickson writes:

“Anyone can recognize familiar instruments, even without conscious thought,
and people are able to do it with much less effort than they require for recogniz-
ing intervals, harmonies, or scales.” (Erickson, 1975, p. 9)

Unfortunately, this common perception is not entirely accurate. In spite of the
wide range of research effort in musical acoustics (which will be considered in
Section 3.2), very few researchers have tested how reliably people can identify
musical instruments. And nearly all of the published research has used rather
unnatural testing conditions, asking subjects to identify instruments from single,
isolated tones with little or no contextual information. This contrasts starkly with
natural listening situations, where melodic phrases consisting of multiple notes
are typically heard. Although the studies provide only limited information about
natural listening contexts, several general results have been suggested.

It is easier to identify the source of an isolated tone when the attack transient—
the tone’s onset—is present. According to Kendall (1986), Stumpf noted this as
early as 1910 (Stumpf, 1926). This result has been confirmed many times (e.g.,
Eagleson & Eagleson, 1947; Berger, 1964; Saldanha & Corso, 1964; Thayer,
1972; Volodin, 1972; Elliott, 1975; Dillon, 1981) but has been rejected by Ken-
dall (1986), who did not find such an effect.

Some instruments are more easily identified than others, although different stud-
ies have revealed different orderings, and the results appear to be strongly depen-
dent on the context provided by the experiment. In a study with tones from nine
instruments (violin, alto horn, trumpet, piccolo, flute, clarinet, saxophone, bells,
and cymbals) playing isolated tones at middle-C (approximately 261 Hz), violin,
trumpet, and bells were easiest to identify, and alto horn, piccolo, and flute were
most difficult (Eagleson & Eagleson, 1947). Saldanha and Corso (1964) tested 20
trained musicians with isolated tones from ten instruments (clarinet, oboe, flute,
alto saxophone, French horn, trumpet, trombone, violin, cello, and bassoon) at
three pitches (C4, F4, and A4; approximately 261 Hz, 349 Hz, and 440 Hz
respectively). They found that the clarinet was easiest to identify (84% correct
identifications), followed by oboe (75%) and flute (61%). Violin (19%), cello

(9%), and bassoon (9%) were the most difficult. Berger (1964) tested university
band performers with tones from ten instruments (flute, oboe, clarinet, tenor sax-
ophone, alto saxophone, cornet, trumpet, French horn, trombone, and baritone)
playing at 349 Hz (F4). He found that the oboe was easiest to identify and that the
flute and trumpet were the most difficult.

Several authors noticed particular patterns in the mistakes made by subjects.
Saldanha and Corso (1964) found that subjects commonly confused bassoon with
saxophone; oboe with English horn; trumpet with cornet, saxophone, and English
horn; and trombone with French horn, saxophone, and trumpet. Berger (1964)
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noted confusions between alto and tenor saxophone; cornet and trumpet; and
French horn, baritone, and trombone. A series of experiments in Melville Clark’s
laboratory at MIT provided compelling evidence that the most common confu-
sions occur between instruments in the séan@ly, and often in tight family sub-
groups. For example, Robertson (1961) found evidence for a coherent brass fam-
ily and sub-families for violin and viola (strings); cello and double bass (strings);
and oboe and English horn (double reeds). Schlossberg (1960) additionally found
sub-families for trombone and trumpet (brass); and French horn and trombone
(brass). Milner (1963) found that musicians make fewer between-family confu-
sions than do non-musicians.

Most studies have found that some people are much better than others at identify-
ing musical instruments. As just stated, Milner (1963) found that musicians make
fewer between-family confusions than do non-musicians. Kendall (1986) found
that university music-majors performed better than non-majors. However, the
“superiority” of trained musicians is not absolute. Eagleson and Eagleson (1947)
found that musicians did not perform statistically better than non-musicians in
their experiment. Indeed, their best-performing subject had never played a musi-
cal instrument. However, instrument identification is a skill that must be devel-
oped. In agreement with this view, Saldanha and Corso (1964) noted that their
subjects performed significantly better with practice at their identification task.

Several other results, with only limited supporting evidence, are also of interest.
Saldanha and Corso (1964) found that identification performance depends on the
pitch of the isolated tone in question; their subjects performed better at F4 (349
Hz) than at C4 (261 Hz) or A4 (440 Hz). The presence of vibrato (roughly, sinu-
soidal pitch modulation with a frequency near 6 Hz and a depth on the order of
1%) makes identification easier (Robertson, 1961; Saldanha & Corso, 1964).
Several authors have suggested that note-to-note transitions may be important
cues for identification (e.g., Milner, 1963; Saldanha & Corso, 1964). According

to Kendall (1986, p. 189):

“Campbell and Heller (1979; 1978) identified a third category of transient, the
legato transient, existent between two sounding tones. Using six instruments
playing a major third (F to A), they found that signals containing transients
allowed more accurate identification of instrument type than those without,
except for 20-msec attack transients.”

Actual performance levels vary a great deal between studies. Eagleson and
Eagleson (1947) report correct-identification percentages between 35-57% on a
free-response task. As mentioned above, Saldanha and Corso’s (1964) results
depended strongly on the instrument tested, from 9% for cello and bassoon (near
chance on their 10-way forced-choice task) to 84% for clarinet. Strong’s (1967)
subjects correctly identified 85% of the test samples on an 8-way forced-choice
task (94% when within-family confusions were tolerated). Berger's (1964) sub-
jects correctly identified 59% of the test samples (88%, tolerating within-family
confusions) on a 10-way forced-choice task. Kendall's (1986) subjects, on a 3-
way forced-choice task, correctly recognized 84% of the test samples.
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3.2

In a groundbreaking study, Kendall (1986) questioned the applicability of these
isolated-tone studies to realistic listening situations. Because isolated tones are
such unusual, unnatural sounds, experiments using them do not necessarily lead
to any useful conclusions about sound-source recognition. To test his ideas, Ken-
dall compared his subjects’ ability to recognize musical-instrument sounds in
several situations, ranging from rather unnatural isolated tones with truncated
onsets and offsets to phrases recorded from performances of folk songs (intended
to represent “natural” musical signals). Intermediate conditions tested recogni-
tion of phrases with attack- and note-to-note transients removed, and with steady-
state components removed (leavorgy the transients).

The results showed that transients are neither sufficient nor necessary for recog-
nizing instruments from musical phrases. In contrast, the “steady-state” is both
necessary and sufficient for recognizing trumpet and violin from phrases, and
sufficient but not necessary for recognizing clarinet from phrases. In isolated-
tone conditions, “transient-only” stimuli were equally recognizable as “normal’
and “steady-state only” stimuli. Kendall's subjects performed significantly better
in whole-phrase contexts than with isolated tones. Music majors correctly catego-
rized 95% of the phrase stimuli (non-majors scored 74%). On unaltered isolated
tones, music majors scored 58% (non-majors scored 50%).

My interpretation of Kendall's results is cautious. His test recordings included
examples from only three instruments (clarinet, violin, and trumpet), each from a
different family, and his experiments used a 3-way forced-choice paradigm. It is
clear, however, that instrument identification is easier in whole-phrase contexts
than with isolated tones, and it is likely that transients, both in the attack and in
note-to-note transitions, convey less information than the quasi-steady-state in
whole-phrase contexts.

Two recent studies are worthy of mention. Crummer (1994) measured event-
related potentials (a gross electrical measurement of brain activity) in subjects
performing a musical recognition task. His results demonstrate that expert musi-
cians perform such tasks with less effort than do non-musicians. This highlights
the importance of learning in sound-source recognition. In a series of recent
experiments, Sandell and his colleagues (e.g., Sandell & Chronopoulos, 1996;
1997) have demonstrated that listeners learn to distinguish similar musical instru-
ments (for example, oboe and English horn) better when trained with multiple
notes—at different pitches—than when trained with one note at a time. When
trained with notes from a limited pitch range, listeners trained in multiple-note
contexts generalize better to new, out-of-register, notes than do listeners trained
with single tones.

Musical instrument sound: acoustics and perception

Over the last century-and-a-half, the sounds produced by Western musical instru-
ments, and their perception by human listeners, have been studied in great depth,
beginning with the pioneering work of Helmholtz and Seebeck and leading to the
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latest issue of th®usic PerceptionMusical instrument sounds have been stud-

ied from three complementary perspectives: through musical acoustics, through
psychophysical experimentation, and throaghlysis-by-synthesighere are no
clear-cut boundaries between these perspectives—researchers often work in more
than one area—so the following discussion draws liberally from all three.

Readers interested in more material on these subjects are in luck—there are thou-
sands of relevant journal articles and books. Books by Fletcher and Rossing
(1998) and Benade (1990) summarize the acoustics of musical instruments rather
well, and often in great depth. Classic texts on the human perception of musical
sound include those by Helmholtz (1954) and Plomp (1976); a book and chapter
(1995) by Handel bring the early work up to date. Publications in analysis-by-
synthesis are more scattered. Risset and Wessel (1982) is a classic. Road’s tome,
The Computer Music TutorigRoads, 1996), is an extensive annotated biblio-
graphical history of musical synthesis techniques.

An aside on “timbre”

Much of the psychophysical research on musical sound falls under the rubric
“timbre.” Timbre is a nebulous word for a perceptual quality (as opposed to a
physical quantity) in addition to loudness, pitch, and duration. Debate over the
term continues even today (e.g., Houtsma, 1997), though the closest thing to an
accepted definition has not changed in decades:

“[Timbre is] that attribute of auditory sensation in terms of which a listener can
judge that two sounds similarly presented and having the same loudness and
pitch are dissimilar....[T]imbre depends primarily upon the spectrum of the
stimulus, but it also depends upon the waveform, the sound pressure, the fre-
guency location of the spectrum, and the temporal characteristics of the stimu-
lus” (American Standards Association, 1960, p. 45)

Unfortunately the word has no useful scientific meaning. It is, as Bregman (1990)
notes, a wastebasket category—a holistic word, analog@pptarancen

vision. It means different things to different people in different contexts, and it
encompasses many different features and qualities—indeed, as early as 1890,
Seebeck listed at least 20 semantic scales relevant to it (Plomp, 1976), and Helm-
holtz’s translator, A. J. Ellis, hated the way the word had come to be used. He
wrote:

“Timbre properly a kettledrum, then a helmet, then the coat of arms surmounted
with a helmet, then the official stamp bearing that coat of arms (now used in
France for a postage label), and then the mark which declared a thing to be what
it pretends to be, Burns’s ‘guinea’s stamp,’ is a foreign word, often odiously mis-
pronounced, and not worth preserving.” (Helmholtz, 1954, p. 24)

Although the word timbre appears in the abstract of this dissertation, in the pre-
vious two paragraphs, and briefly in the conclusions of Chapter 7, it is not used
anywhere else in this dissertation. It is empty of scientific meaning, and should
be expunged from the vocabulary of hearing science.
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3.2.2 The magnitude spectrum

The modern history of musical-sound research begins in the eénlgzetﬂury

with Fourier's theorem (Fourier, 1822), which proved—among other things—
that any periodic signal can be expressed as a sum of sinusoids whose frequen-
cies are integer multiples of a fundamental (whose frequency is the inverse of the
signal’'s period). Ohm, better known for his contributions to the theory of electric-
ity, observed that the human ear performs a kind of frequency analysis and con-
cluded that it analyzes sound waves in terms of sinusoids—a Fourier spectrum
(Helmholtz, 1954). Helmholtz, the great German scientist (and an endless source
of quotations for hearing researchers), expre§ied’s lawas an analysis of

sound “into a sum of simple pendular vibrations” (Helmholtz, 1954, p. 33). He
proposed a high-level sound taxonomy, dividing sounds into “noises” and “musi-
cal tones” (which were defined to be periodic). According to his theory, musical
tones are perceived in terms of the magnitudes of their Fourier spectrum compo-
nents—as opposed to their phases, which he believed to be irrelevant:

“The quality of the musical portion of a compound tone depends solely on the
number and relative strengths of its partial simple tones, and in no respect to
their differences of phase.” (Helmholtz, 1954, p. 126)

Since Helmholtz, there has been a figurative tug-of-war between proponents of
his “spectral theory” of musical sound and researchers who recognized the
importance of sound’s temporal propertidgalysis-by-synthesigsearch, by

trying to discover methods for synthesizing realistic sounds, has revealed several
critical limitations of purely spectral theories. Clark demonstrated that recordings
played in reverse—which have the same magnitude spectra as their normal coun-
terparts—make sound-source identification very difficult. Synthesis based on
Fourier spectra, with no account of phase, does not produce realistic sounds, in
part because the onset properties of the sound are not captured (Clark et al.,
1963). Although most musical instruments produce spectra that are nearly har-
monic—that is, the frequencies of their components (measured in small time
windows) are accurately modeled by integer multiples of a fundamental—devia-
tions from strict harmonicity are critical to the sounds produced by some instru-
ments. For example, components of piano tones below middle-C (261 Hz) must
be inharmonic to sound piano-like (Fletcher et al., 1962). In fact, all freely vibrat-
ing strings (e.g., plucked, struck, or released from bowing) and bells produce
inharmonic spectra, and inharmonicity is important to the attack of many instru-
ment sounds (Freedman, 1967; Grey & Moorer, 1977). Without erratic frequency
behavior during a note’s attack, synthesized pianos sound as if they have ham-
mers made of putty (Moorer & Grey, 1977).

So Helmholtz’s theory is correct as far as it goes: the relative phases of the com-
ponents of a purely periodic sound matter little to perception. However, as soon
as musical tone varies over time—for example, by turning on or off—temporal
properties become relevant. In the real world, there are no purely periodic
sounds, and an instrument’s magnitude spectrum is but one of its facets.

A further amendment to Helmholtz's theory is that not all frequency components
of complex sounds are created equal. The mammalian ear is constructed in such a
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way that, for quasi-periodic sounds, only the components with the lowest fre-
guencies—up to about 6 or 7 times the fundamental frequency—are represented
separately by the auditory periphery (Plomp, 1976). Components with higher fre-
guencies are represented in tandem with neighboring components. It has been
demonstrated that these high-frequency components are perceived as groups—
with group rather than individual properties (Charbonneau, 1981). In addition,
some aspects of the magnitude spectrum of a quasi-periodic sound may be more
salient than are others. The spectral centroid, for example, appears to be more
salient than the high-frequency roll-off rate and the overall smoothness of the
spectral shape, at least by dint of the number of studies that have revealed it to be
important. And the non-periodic, noisy, portions of the sound may also be per-
ceptually salient, though they have not been studied in nearly as much depth
(however, see Serra (1989) for an influential attempt to model them for synthesis
purposes).

The dimensions of sound

A great deal of research effort has been devoted to revealing the underlying per-
ceptual dimensions of sound. The primary dimensions—pitch, loudness, and
duration—are relatively obvious, but their perceptual complexity is not. Addi-
tional dimensions are less obvious, and the tacit assumption that it even makes
sense to talk about perceptual “dimensions,” as if they could be varied indepen-
dently, is questionable if not outright incorrect.

Pitch is an essential property of many kinds of musical sound and a salient per-
ceptual attribute of many non-musical sounds, including talking human voices
and animal vocalizations. It is defined by the American National Standards Insti-
tute (ANSI, 1973, as cited by Houtsma, 1997, p. 105) as “that attribute of audi-
tory sensation in terms of which sounds may be ordered on a scale extending
from high to low”. The pitch of a sound can be defined operationally as the fre-
guency of the sinusoid that it “best matches.” As a scale, pitch is monotonically
related to scale of sinusoid frequencies. This aspect of pitch is relatecptrithe
odicity of the sound waveform, and in this limited senseptteh frequencys

just the inverse of the waveform’s repetition period.

Pitch is not, however, a unidimensional scale (Shepard, 1982). There are at least
threepitch attributesthat complicate a simple definition by periodicity. First, not

all pitches with the same fundamental period are equivalent; sounds may differ in
degree of “pitchiness,” from harmonic complexes that evoke a strong, rather
unambiguous pitch sensation to bands of noise whose pitch strength varies
inversely with bandwidth. A second kind of variation, termiadh height, sharp-
nessor as | will refer to itprightnessis related to the spectral content—a peri-
odic sound becomdwighter as its high-frequency partials become stronger
relative to its low-frequency partials—rather than the fundamental period. A third
aspectpitch chromagcomplicates matters further. Traditional Western music
divides the octave (a doubling in pitch period) into twelve logarithmically spaced
steps, which make up the chromatic scale. Pitch periods related by a power-of-
two ratio have the same chroma and are functionally equivalent (the musicologi-
cal term isoctave equivalengeén many musical settings.

Musical instrument sound: acoustics and perception 45



Among these aspects, pitch period and chroma are most important for music-the-
oretical purposes such as defining melodic fragments. Brightness and its relation
to pitch period are crucial for sound-source identification because they encode
information about the physical sound source. The pitch period encodes the vibra-
tion frequency of the source excitation, and brightness is affected both by the fre-
guency content of the source excitation lfiggmonic richnegsand by the

resonant properties of the vibrating body, which may enhance or weaken various
portions of the spectrum.

The pitch of real-world sounds is not static; it varies over time, either in the rela-
tively discrete steps between pitch chroma or continuously, with vibrato (periodic
modulation) or jitter (random modulation).

Another primary perceptual dimension of sounbbiginessdefined by ANSI as

“that intensive attribute of auditory sensation in terms of which sounds may be
ordered on a scale extending from soft to loud” (quoted by Houtsma, 1997, p.
105). Although loudness is not as complex as pitch, it is by no means simple, and
many models have been proposed for estimating the loudness of a sound based
on its waveform. The loudness of a sound source depends on the acoustic energy
it produces at the position of the listener, on the duration of the sound (for rela-
tively short sounds, loudness increases with duration), and on the frequency con-
tent of the sound’s spectrum (Moore, 1989). A simple but effective first-order
model relates loudness to the sum of the energy in the frequency regions termed
critical bands(Moore, 1989).

The third primary dimension of sound, duration, has not been studied as exten-
sively as pitch and loudness. Humans are better at comparing the durations of
short sounds (on the order of 0.5-10 seconds) than of longer sounds. Although
sound duration may play a role in sound-source recognition, to my knowledge
such an influence has not been explored experimentally, except to note how much
of a signal is required for recognition of various qualities. For example, humans
require 2-3 cycles of a periodic sound to identify its octave, and several more to
recognize its pitch chroma (Robinson & Patterson, 1995).

Researchers have long been interested in identifying perceptual dimensions of
sound in addition to pitch, loudness, and duration. Multidimensional scaling
(MDS) is a method for finding underlying perceptual/conceptual dimensions of a
collection of stimuli, if such structure exists. MDS techniques have been exten-
sively applied to the perception of isolated musical times (a partial list includes:
Plomp et al., 1967; Plomp, 1970; Wedin & Goude, 1972; Grey, 1975; 1977,
1978; Gordon & Grey, 1978; Grey & Gordon, 1978; Wessel, 1983; Krumhansil,
1989; Kendall & Carterette, 1991; Krumhansl & lverson, 1992; McAdams &
Cunible, 1992; Iverson & Krumhansl, 1993; Hajda et al., 1994; Kendall et al.,
1994; McAdams et al., 1995). A recent review chapter (Hajda et al., 1997) pro-
vides an excellent critical overview of these and other related investigations.

A typical musical MDS study begins with a collection of 8-25 isolated tones,
with differences of pitch, loudness, and duration minimized. Subjects are asked
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to rate either the similarity or dissimilarity of each pair of tones. These judgments
are collected, and a computer program finds a low-dimensional arrangement of
the stimuli (each stimulus occupies a point in the space) that best accommodates
the dissimilarity ratings (viewing dissimilarity as analogous to distance in the
space). If the set of stimuli has an underlying dimensional structure, the dimen-
sions of the arrangement uncovered by MDS can often be interpreted in terms of
acoustic/perceptual/conceptual attributes or categories.

Hajda et al. (1997) interpret the results of the various musical MDS studies as
highly inconsistent. The “space” recovered by the MDS algorithms depends
strongly on the particular set of stimuli used, which implies that the subjects’ cri-
teria for similarity are context-dependent. Only the average spectral centroid,
which correlates strongly with subjects’ ratings of brightness, is consistently
found to be a principal dimension. Other dimensions have been interpreted as
related to the attack rise-time, spectral irregularity, and instrument family.

Even if studies of the similarity of pairs of tones led to a consistent set of dimen-
sions that could be interpreted in terms of simple acoustic/perceptual properties,
the “space” implied by such dimensions would be of questionable relevance to
sound-source recognition. The assumption that sounds occupy positions in a per-
ceptual space with a uniform distance metric has not been justified, and the inter-
pretations of MDS results often beg the question.

Rather than seek a set of dimensions to describe sounds, my approach is to find a
set of perceptually relevant acoustic attributes that yield information about source
identity. In particular, these attributes are indicative of the production invariants

of the source, and it is these invariants that underly sound-source recognition.
Such attributes may be continuous- or discrete-valued, and there is no reason to
expect that any two attributes will be independent, statistically or otherwise.

As mentioned above, brightness—as estimated by the spectral centroid—is con-
sistently found to be a salient sound attribute, one that strongly mediates the per-
ceived similarity between pairs of sounds. Beauchamp found that many musical
instruments exhibit a nearly monotonic relationship between intensity (indicating
loudness) and spectral centroid (Beauchamp, 1982; Beauchamp, 1993). In most
cases, louder sounds have a higher concentration of high-frequency energy and
are thereby brighter. Beauchamp suggests that matching the intensity and spectral
centroid of a synthesized sound—as a function of time—to a recorded original
sound, goes a long way toward creatinggavincing resynthesis (i.e., one that is
judged by listeners to be similar to the original).

Resonances

In Section 2.3, | stated that the geometry and material properties of a source’s
vibrating body impose constraints on the acoustic waveform produced by the
source. The vibrating body can be viewed assanatorcoupled to the source’s
means of excitation. In this section, a simple physical resonator will be consid-
ered, and some of its properties will be developed (the discussion is adapted from
the presentation of Fletcher and Rossing (1998)). The intuitions gained by this
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exercise are necessary to appreciate the discussion of the (often more complex)
resonant properties of orchestral instruments presented in the next section.

Consider a mas#/, connected by an ideal spring and damper to a fixed surface,
as shown in Figure 5. The forces acting on the mass, arising from the restoring
force of the springK = -Kx, whereK is the spring constant ards the mass’s
position), from the dampeF (= -Ry, whereR is the damping constant ands the
mass’s velocity), and from an external fof(t§, impose an acceleration on the
mass (from Newton’s second law of motiéns Ma, whereF is the force ana

is the mass’s acceleration). In combination they yield the equation

2
dx dx
MZ=Z2 +R=+Kx = f(t). 1
gz TR HKX (t) @
Substituting
R K
= d = = 2
a oM andwy A/& )
we have
2
d_x+2q%+ngzm_ 3)
d'[2 dt M

If there is no external force (i.€(f) = 0), the equation has solutions of the form
Ae ' cogwgt + @) @)
where

Wy = Jwp—a’ ®)

is the natural, or free-vibration, frequency of the system.
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FIGURE 5. A simple physical resonator, consisting of a mass M attached to a fixed surface by
a spring (spring constant K) and a damper (damping coefficient R). An external
force, f(t), acts on the mass, whose position is notated x(t). The resonator’s
properties are discussed in the text.

When an external driving force of frequenoys applied, the steady-state

response of the system (which is linear) will be at the same frequency, so we can
replacex(t) in Equation 3 withAexp{wt). Taking the appropriate derivatives and
rearranging slightly, we have

F

j wt 2 . 2
A (- +jw2a +wy) = Y

(6)
This equation has a solution given by

Fe“/M

x(t) = Ad“" = _
2 2, .
Wy — W +jw2a

@)

Thus, the amplitude of vibration depends of the driving frequeangytt{e natural
frequency of the undamped systesg) and the dampingo(.

Figure 6 illustrates the frequency response of the system for various vatues of
Defining the value as the ratio of the system’s natural frequency to the —3 dB
bandwidth of the frequency response (or, equivaleatfiza), we see that as the
damping decreases, the frequency response narrows, increadihgfttiee reso-
nator.
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FIGURE 6.

The effect of damping (hence, Q) on the transfer function of the resonator. As the
damping decreases, the Q increases, and the frequency response narrows.

Damping also plays an important role in the time-evolution of the resonator’s
response to real-world external forces, which are not always easy to express as
sums of infinite-extent sinusoids. The response to a transient can be characterized
as ainging at the system'’s natural frequency, which decays at a rate that depends
on theQ of the resonator (in facf) can be equivalently defined, for the simple
example used here, agl/2, whereT is the time required for the impulse-

response of the resonator to decay by a factoredf The response to a gated
sinusoid (e.g., turned on &t 0) is a combination of the transient response and

the steady-state response, which rhagitagainst each other, causing various
degrees of apparent complexity as the driving frequency varies. When the driving
frequency is exactly equal to the resonator’s natural frequency, the system’s out-
put will grow from zero, approaching the steady-state amplitude with the time
constanfl used to define th@ of the system. Figure 7 illustrates the response of
the simple resonator to gated sinuoids of different frequencies, for different
values.

The behavior of real-world resonant systems is generally more complicated than
that of the simple oscillator presented above, but the intuitions developed by its
consideration are useful for understanding more complicated systems. In the next
section, the effects of resonances on the sounds of orchestral instruments will be
considered, on a family-by-family basis.
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FIGURE 7.

3.3

The response of the simple resonator to gated sinusoids at three different
frequencies (relative to the resonant frequency), and for three different resonator
Qvalues.

Instrument families

33.1

The non-percussive orchestral instruments are commonly divided intdahmee
ilies: the brass, the strings, and the woodwinds. Although this division is largely
due to the historical development of the instruments (e.g., flutes, now made of
metal, were originally made of wood and are still considered members of the
woodwind family), commonly confused instrument pairs (e.g., violin and viola;
oboe and English horn; trombone and French horn) nearly always occur within a
particular family (see Section 3.1). It is possible to use instrument geometry,
materials of construction, and playing method to construct a single taxonomy of
musical instruments (a good example is given by von Hornbostel & Sachs, 1961),
and commonly-confused instruments will usually occupy neighboring taxonomic
positions. In this section, the traditional families will be considered in turn.

Within each family, the acoustic and perceptual properties of the perceptual “con-
fusion groups” will be presented.

The brass instruments

Of the three broad families, the brass family has the simplest acoustic structure.
The family includes the cornet, trumpet, fluegel horn, trombone, French horn,
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baritone, euphonium, and tuba. Each instrument consists, in its barest essence, of
a long hard-walled tube (often made of brass) with a flaring bell at one end.

The player makes sound by blowing into a mouthpiece affixed in the narrow end
of the tube. The player’s tensed lips allow puffs of air into the tube, which travel
the tube’s length and partly reflect off the impedance mismatch caused by the
bell. This reflection allows standing waves to build at near-integer multiples of a
frequency corresponding to the speed of sound divided by twice the tube’s length.
The modes do not occur exactly at integer multiples because the bell reflects low
frequencies sooner than high, making the effective length of the tube frequency-
dependent (Benade, 1990). The player can vary the pitch by changing his lip ten-
sion, which changes the particular vibration mode that is excited (trumpet players
commonly excite one of the first eight modes; French horn players can excite
modes as high as the"flﬁ or by changing the length of the tube (either by
depressing valves or moving a slide) (Roederer, 1973).

The instrument provides feedback to the player in the form of the bell reflection
arriving back at the mouthpiece, but it can take several round trips for the stand-
ing waves to build up (Benade, 1990; Rossing, 1990). During this time—which
depends on the tube length, not the pitch—the instrument is not stable, and for
the high modes, many pitch periods can elapse before a stable oscillation is set
up. This effect can cause the instrument’s pitch to wander during the attack; the
pitch has been observed to scoop up from below and to oscillate around the target
value (Luce, 1963; Risset, 1966). The very best players minimize this effect
through extremely precise control of lip tension. Instability at onset may also be
the cause of “blips”"—a term used by Luce (1963) to describe small, inharmonic
bursts of energy—preceding the tonal part of a note. Luce observed blips in tones
produced by all of the brass instruments, most commonly at their lowest pitches.

The internal spectrum of a brass instrument varies with the air pressure at the
player’s lips. At very low amplitudes, the pressure wave is nearly sinusoidal, but
at increasing amplitudes, it becomes more pulse-like. Figure 8 shows, in sche-
matic form, how the spectrum broadens with increasing pressure. The standing-
wave modes are indicated by filled circles, and they are connected by lines for
clarity. In the steady-state, the puffs of air are injected periodically, so the internal
spectrum is harmonic even though the resonance modes of the tube are not.
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FIGURE 8. The internal spectrum of a brass instrument, for a range of air-pressure levels,
after Benade (1990).

The bell reflects low-frequency energy more effectively than high, and this has
three important effects. During the onset of a note, the low-frequency modes
build up more rapidly than the high-frequency modes. This explains Luce’s
(1963) observation that the onsets of the partials are skewed, with low frequency
partials building up energy quickly, in close synchrony, and high-frequency par-
tials entering later. The second effect of the bell reflection is that the instrument’s
external spectrum—what is actually heard by a listener—is a high-pass version
of the internal spectrum. The transformation function is sketched in Figure 9, and
the resulting external spectrum is shown in Figure 10 (again, with the harmonic
modes indicated by filled circles). The final effect is that, because the bell’'s radi-
ation pattern is more directional at high frequencies, the actual projected spec-
trum varies with the angle between the bell’'s axis and the listener’s position. The
general result, however, is a single broad resonance, whose center frequency is
more-or-less fixed by the bell's lowpass cutoff frequency.

As described above, the instruments of the brass family have much in common.
The differences are primarily of scale: the large instruments have lower cutoff
frequencies and pitch ranges. Measured values for the center-frequency, low- and
high-frequency rolloff slopes (from Strong & Clark, 1967), and approximate

onset times (from Luce, 1963), for four particular brass instruments are shown in
Table 1. These values may vary from instrument to instrument and from player to
player, but are representative according the authors.
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FIGURE 9. Schematic of the bell transformation function for a trumpet, after Benade (1990).
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FIGURE 10. The external spectrum of a brass instrument, for a range of air-pressure levels,
after Benade (1990).
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cutoff low-frequency high-frequency Amplitude Waveform

Instrument frequency rolloff rolloff onset onset

(Hz) (dB/octave) (dB/octave) (ms) (ms)
Trumpet 1150 6 10-20 100 25
French horn 500 10 20 40 30
Trombone 475 8-18 50 35
Tuba 275 ? 10-20 75 90

TABLE 1. Characteristics of several brass instruments. Spectral data are from Strong &

3.3.2

Clark (1967); onset data are from Luce (1963).

A final complication in the analysis of brass instruments is that some are com-
monly played with devices calledutesnserted into the bell. Several varieties of
mutes are used with the cornet, trumpet, fluegel horn, and trombone. Each intro-
duces a set of acoustic resonances and anti-resonances, generally above 1 kHz,
which give the instrument’s tone unique qualities (Fletcher & Rossing, 1998). In
addition, French horn players often insert a hand into the bell to mute high-fre-
guency components (Rossing, 1990).

The string instruments

The common bowed-string instruments, in order of increasing size, are the violin,
viola, cello, and double bass. Each string instrument consists of an ornate
wooden body with an extended neck. The strings (usually numbering four) are
stretched along the neck, over a fingerboard, attached at one end to the body (by
way of thebridge), and at the other to tuning pegs (which control the string ten-
sion). When the strings vibrate, coupling through the bridge causes the body—
and the air mass contained within—to vibrate, which in turn projects sound into
the air. The performer sets a string in motion by plucking it or by dragging a bow
(usually consisting of stretched horse hair on a wooden frame) across it.

When bowed, the string “sticks” to the bow for brief periods, moving in syn-
chrony with the bow’s motion and then suddenly snapping back. This causes the
string’s motion to resemble a sawtooth pattern (Benade, 1990; Mathews et al.,
1966). In the steady-state, the waveform is approximately periodic (the period
depends on the length between the bridge and the player’s finger on the finger-
board, along with the tension and mass of the string) and thus has a harmonic
spectrum. The exact shape of the waveform—hence the frequency content of the
spectrum—depends on the pressure of the bow against the string and on the
bow’s position relative to the bridge (bowing nearer the bridge or with increased
pressure increases the proportion of high frequencies in the spectrum, making the
sound brighter). To a first approximation, the strength ofth@artial relative to

the first is 1h (Benade, 1990; Rossing, 1990). There may, however, be partials
with near-zero strength if the bow position mutes them.
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Itis, however, somewhat misleading to speak of a steady-state for a bowed string.
The complexity of the interaction between the bow and string causes the length
of each “sawtooth” to vary from cycle to cycle, creating a great deal of frequency
jitter (Benade, 1990), which is coherent among the various partials (Brown,
1996). The attack and release of a bowed tone are particularly complex. The bow
may scrape the string during the attack, creating substantial noise, and the spec-
trum is generally not quite harmonic (Beauchamp, 1974; Luce, 1963). For exam-
ple, the low partials start very sharp when the string is excited vigorously
(Benade, 1990).

The spectrum of a plucked string is never harmonic. Because of dispersion in the
string (that is, waves of different frequencies travel at different speeds along the
string), the high-frequency partials are somewhat sharp relative to the low-fre-
guency partials (Fletcher, 1964; Roederer, 1973). As in the case of bowing, the
spectrum of the plucked string depends on the plucking position (Roederer,
1973); the spectrum will be brighter for positions nearer the bridge, and some
partials may be muted, having near-zero strengths.

The bridge is the main connection between the vibrating string (which does not
move enough air by itself to be audible in the context of an orchestra) and the
instrument’s body (which does). The bridge introduces broad resonances to the
instrument’s spectrum; for the violin these occur near 3 kHz and 6 kHz (Rossing,
1990). Players sometimes attacimateto the bridge, which increases the

bridge’s effective mass and lowers the resonance frequencies, creating a some-
what darker tone.

A string instrument’s body—with its ornate geometry—has many different
modes of vibration, both of the air inside and of the body’s wood plates. These
vibration modes introduce a large number of narrow (Riphesonances, at dif-
ferent frequencies, between the vibration spectrum of the strings and that of the
air around the instrument. The low-frequency resonances (e.qg., the first “air” and
“wood” resonances) are tuned carefully in high-quality instruments, but details of
the high-frequency resonances vary tremendously from instrument to instrument
(and even change over time as the instrument is played and the wood ages or is
strained (Hutchins, 1998)). Analysis-by-synthesis research (e.g., Mathews et al.,
1966; Risset & Wessel, 1982) has demonstrated that convincing bowed-string
sounds can be synthesized by passingnagdéctrum (with some zeroed partials)
through a filter with a large number of narrow resonances in roughly the correct
frequency regions, without paying attention to the details of resonance place-
ment.

To a first approximation, the complex resonance structure of a string-instrument’s
body causes the spectrum of any particular note to be less regular than the simple
1/n rolloff of the bowed string. With frequency jitter, or the commonly used fre-
guency modulation calledbrato (in which the player modulates the effective

string length—hence the pitch—by rocking a finger back and forth on the finger-
board), the position of each harmonic partial in relationship to the body reso-
nances changes over time. This interaction creates complex patterns of amplitude
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modulation (Risset & Wessel, 1982). The amplitude modulation of each partial
varies at the same rate as the frequency modulation, but can be in different direc-
tions for different partials, depending on their particular relationships to nearby
resonances (Fletcher & Sanders, 1967) and different depths (as much as 15 dB,
according to Fletcher & Rossing, 1998).

The body resonances also affect the attack and release of each note. The rate of
energy buildup or decay of a particular partial is related to the effe@tife

nearby resonances, and this causes the attack and release rates of the different
partials to vary with partial number and pitch (Beauchamp, 1974). The attack
rates of isolated string tones are generally much slower than those of the other
orchestral instruments. Indeed, it can take a large fraction of a second for a string
tone to reach “steady state;” in contrast, brass tones generally reach steady state
in less than 100 ms. The overall attack time appears to vary greatly from instru-
ment to instrument, possibly from player to player, and perhaps even from note to
note. Some representative values, measured by Luce (1963), are shown in Table
2.

nsument | TTE[SUIRS 0 s | Tine e 0 e
Violin 100 200
Viola 40 100
Cello 120 350
Double bass 80 100

TABLE 2.

Attack times for the bowed string instruments, as measured by Luce (1963).

The violin is, perhaps, the “king” of the orchestra; it is the most-engineered,
most-studied, and most-uniformly-constructed member of the string family. The
open strings of a violin are typically tuned in fifths, to the pitches G3, D4, A4,

and E5 (196 Hz, 290 Hz, 440 Hz, and 660 Hz), and the first air and wood reso-
nances of a high-quality violin’s body are tuned to correspond to the pitches of
the open middle strings (approximately 290 Hz and 440 Hz respectively)
(Benade, 1990). As stated above, the upper body resonances vary greatly from
instrument to instrument, but there is usually a broad maximum near 3 kHz that is
due to the bridge resonance. Figure 11 depicts the resonance modes of the violin.

The viola is somewhat larger than the violin, but the change in body size is not in
scale with the change in pitch range; the open strings of a viola are tuned a musi-
cal fifth below those of a violin (C3, G3, D4, A4, or 130 Hz, 196 Hz, 290 Hz, and
440 Hz), but the first air and wood resonances are relatively more flat (230 Hz
and 350 Hz, or D-flat-3 and F4), falling slightly above the frequencies of the low-
est two strings (Benade, 1990). Violas are not made as uniformly as violins, so
the string-to-resonance relationships vary more (Benade, 1990). The viola’s prin-
cipal bridge resonance is close to 2 kHz, causing the upper body resonances to
form a maximum there.
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FIGURE 11.

3.3.3

The resonance modes of a violin, after Benade (1990). The first air and wood
modes (indicated by A and W) are typically tuned to particular frequencies. The
upper modes are much more complex and vary greately from instrument to
instrument (hence are indicated by a dashed line showing the general trend). The
broad maximum near 3 kHz is due to the bridge resonance.

The dimensions of the cello are about twice those of the viola. Its strings are
tuned one octave below the viola, to C2, G2, D3, and A3 (65 Hz, 98 Hz, 145 Hz,
and 220 Hz), and its first air and wood resonances are typically near 125 Hz and
175 Hz respectively. Benade reports that the cello often exhibits a deep notch in
its resonance structure near 1500 Hz.

The dimensions of the double bass are about twice those of the cello. The strings
are tuned in fourths, to E1, A1, D2, and G2 (41 Hz, 55 Hz, 73 Hz, and 98 Hz),
and some instruments have a fifth string. The first air and wood resonances of the
bass occur at approximately 60 Hz and 98 Hz respectively, and the bridge reso-
nance frequency is approximately 400 Hz.

The string instruments form a very tight perceptual family. Several of the experi-
ments reviewed in Section 3.1 demonstrated listeners’ inability to reliably distin-
guish the four instruments by sound alone; each is commonly confused with its
neighbors in scale. The violin and viola, because they are closest in pitch and
scale, are the most difficult to distinguish. The limited available evidence sug-
gests that listeners are very good at determining whether or not an instrument is a
member of the string family, but that once that determination is made, they use
relatively unreliable criteria such as pitch range or overall brightness to, in effect,
guess the particular instrument. Experienced musicians make use of highly cog-
nitive cues—such as recognizing particular pieces or playing techniques—to
make much better decisions when given access to an entire phrase.

The woodwind instruments

The woodwind family is much less homogenous than the brass or strings. It is
made up of several distinct subgroups, both acoustically and perceptually: the

58

Instrument families



double-reeds, the single-reed clarinets, the flutes (or “air” reeds), and the remain-
ing single-reeds, the saxophones.

Although the various sub-families have distinct properties, each woodwind
instrument has several properties common to the family as a whole. Woodwinds
produce sound by creating standing waves in a tube, whose effective length is
altered by selectively opening or closing tone-holes. As with the brass instru-
ments, the player caverblowto change the pitch, by selecting a set of vibration
modes with higher frequencies (Roederer, 1973); in contrast to the brass instru-
ments, woodwinds often hawegister keyswhich when depressed open small
tone-holes that diminish the strength of the tube’s lowest vibration mode, easing
register-to-register transitions (Fletcher & Rossing, 1998). The open tone-holes
of a woodwind instrument impose a low-pass characteristic on the instrument’s
spectrum, and the cutoff frequency—which varies surprisingly little across the
pitch range of the instrument—is essential to the tone of the particular instrument
(it alone can determine whether an instrument is suitable for a soloist or for an
ensemble performer). As Benade (1990) writes:

“[S]pecifying the cutoff frequency for a woodwind instrument is tantamount to
describing almost the whole of its musical personality.”

Finally, the woodwinds—with the exception of the flutes—tend to have the most
rapid attack transients of the three major families. In the rest of this section, the
perceptual/acoustic subdivisions of the woodwind family will be considered in
turn.

The double-reed subfamily consists of, in order of increasing size, the oboe,
English horn, bassoon, and contrabassoon. Each instrument’s body consists of a
conical tube, and the performer creates sound by forcing air through a sandwich
of two reeds, which is attached to the tube at one end. The conical tube supports
vibration modes at integer multiples of the frequency corresponding to the tube’s
effective length, which is altered by opening or closing tone holes. The double-
reeds are commonly played with vibrato.

The oboe typically has two resonances—a strong one near 1 kHz and a weaker,
more variable one near 3 kHz (Rossing, 1990; Strong, 1963)—separated by an
anti-resonance near 2 kHz (Strong, 1963). Luce (1963) measured one oboe, find-
ing that it takes very little time for the attack transient waveform to stabilize in
shape (15 ms) and amplitude (20 ms), and noting that the fundamental (the first
partial) appears first.

The English horn is, to a first approximation, a larger oboe, but its properties are
not as consistent as those of its smaller sibling (Luce, 1963). It typically has a
prominent resonance near 600 Hz and a weaker resonance near 1900 Hz (Strong,
1963), separated by an anti-resonance between 1300 Hz (Strong, 1963) and 1600
Hz (Luce, 1963). Above the resonances, the instrument’s spectrum rolls off
abruptly, at approximately 20 dB per octave (Strong, 1963). Luce’s (1963) mea-
surements suggest that the instrument’s waveform stabilizes in 30 ms and reaches
a stable amplitude in 50 ms during the attack.
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The bassoon is much larger than the oboe and English horn. It has a tone-hole
cutoff frequency near 375 Hz (Benade, 1990) and a prominent resonance
between 440-494 Hz (Rossing, 1990). The bassoon’s spectrum rolls off rapidly
above the primary resonances, and there may be a minor anti-resonance near 850
Hz (Luce, 1963). Luce’s attack measurements suggest waveshape and amplitude
stabilization times of 30 ms and 40 ms respectively. As a final note, the bassoon

is unique among the members of the orchestra in that the first partial of its tones
(the fundamental frequency) is very weak—perhaps because its tube is so long
that it must be folded to be playable. The contrabassoon is—to a first approxima-
tion—similar to a bassoon whose dimensions are doubled.

The clarinets are a singular sub-class of the orchestral instruments. A clarinet has
a single-reed mouthpiece attached to a cylindrical tube that, to a first approxima-
tion, supports vibration modes onlyadd multiples of the fundamental corre-
sponding tadwicethe tube’s length. There are several different sized members of
the clarinet group; the B-flat and A (tenor) clarinets and the bass clarinet are most
commonly used in the orchestra.

The B-flat and A clarinets are nearly identical. Players alternate between them
for ease of playing particular musical keys rather than for reasons of tone quality.
The clarinet’s spectrum is limited by the tone-hole cutoff, which varies from
1200-1600 Hz depending on the instrument (Benade, 1990) and the 5 kHz limita-
tion of reed vibration (Luce, 1963). Two registers separated by a musical twelfth
(again because of the cylindrical tube closed at one end—the first two registers of
other woodwinds are separated by an octave) cover most of the clarinet’s range.
The relative strengths of the odd and even partials depend on their frequencies
and the playing register. They are shown in schematic in Figure 12. Above the
cutoff frequency (approximately 3 kHz for a B-flat clarinet), the odd and even
partials are of similar strength; below the cutoff, the odd-numbered partials are
stronger (the difference is exaggerated in the upper register). Luce observed
waveform and amplitude attack times of 40 ms and 60 ms, and noted that the fun-
damental partial appears first; the upper partials are delayed by 5-10 cycles and
then rise very rapidly (Luce, 1963).
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FIGURE 12. Schematic of the clarinet's spectrum, after Strong (1963). Above the cutoff
frequency, the odd and even partials behave similarly. Below the cutoff, the even-
numbered partials are suppressed relative to the odd-numbered partials. The
effect depends on the instrument’s playing register.

The flute family, or “air reeds,” consist of (in order of increasing size) the pic-
colo, flute, alto flute, and bass flute. Of these, only the piccolo and flute are com-
monly used in orchestras. The flute player excites the instrument’s tube by
projecting a flow of air across a metal edge at one end. The resulting turbulent,
noisy signal excites the tube at dips in its acoustic impedance (Benade, 1990).
The common flute has an overall resonant maximum near 600 Hz, with a high-
frequency rolloff from 10-30 dB per octave (Strong, 1963). It has a very slow,
smooth attack (Luce observed rise times in the neighborhood of 160 ms), com-
monly followed by strong periodic amplitude modulation—calietnolo—at
frequencies like those used in double-reed or string vibrato. At pitches above 500
Hz, the flute’s spectrum is dominated by the fundamental frequency, and above
880 Hz, the waveform is nearly sinusoidal (Luce, 1963).

The piccolo is essentially a very small flute, and it shares many of the flute’s
properties. Luce measured waveform and amplitude attack times of 25 ms and
100 ms respectively, but observed that the attack gets much longer at high pitches
(Luce, 1963). At pitches above 1 kHz, the piccolo’s waveform is nearly sinusoi-
dal.

The last sub-class of woodwind instruments is the saxophones, which are used
only in modern orchestral music and have been studied in less depth than the
other orchestral instruments. There are several different sized saxophones,
including the soprano, alto, tenor, and baritone. The saxophone is a single-reed
instrument with a conical bore. Rossing (1990) notes that the saxophone spec-
trum has few high harmonics, and Freedman (1967) observed that inharmonicity
is important for the bite of its attack, but further details are hard to come by.
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3.4 Summary

This chapter examined musical instrument recognition from two perspectives.
First, human instrument-recognition abilities were considered and quantified for
the common orchestral instruments. Second, the sounds produced by the instru-
ments of the orchestra were examined in order to discover the features upon
which the human recognition process might operate. This section summarizes the
relevant findings within a unified framework.

There is a common belief that people can become very good at identifying musi-
cal instruments from sound alone, but this conventional wisdom is flawed. The
evidence presented in Section 3.1 suggests that people can become very good at
recognizingclasseof instruments with similar excitation and resonance proper-
ties. These classes correspond closely to the traditional instrument families, with
the exception of the woodwind family, which comprises several distinct sub-
groups. Distinctions between members of the same class—e.g., violin and viola,
oboe and English horn, or trombone and French horn—are made much less reli-
ably.

Based on this evidence, it is plausible that the process of musical instrument rec-
ognition in humans is taxonomic—that classification occurs first at a level corre-
sponding to instrument sub-families (perhaps: strings, brass, double-reeds,
clarinets, flutes, and saxophones) and progresses to the level of particular instru-
ment classes (e.g., trombone, violin, etc.). Although | have not presented objec-
tive proof of this structure, it is highly consistent with the structure of human
perception in other domains, as demonstrated by Rosch and her colleagues
(Rosch, 1978; Rosch et al., 1976) and summarized in Section 2.3. In the next two
chapters, a system based on this taxonomic structure will be described, and its
performance will be demonstrated to be similar in many aspects to that of
humans.

One of the core theses of this dissertation is that many sound sources—and, in
particular, the orchestral instruments—are identified through recognition of their
resonant properties. The construction of musical instruments and the physics of
sound production place strong constraints on musical sounds—constraints that
measurably and perceptually affect the acoustic signal. This viewpoint illumi-
nates many of the experimental results. For example, in an isolated-tone context,
the attack transient may be a more salient cue for identification than the steady-
state spectrum precisely because the rise-times of the various partials reveal more
about the resonance structure (in particular, the effe@igkresonances in dif-

ferent frequency regions) than do their asymptotic values. If, however, the steady-
state portion is performed with vibrato, the amplitude modulations of the partials
(induced by the frequency modulation as they interact with the resonances of the
vibrating body) reveal the resonant structure, and human recognition perfor-
mance improves.

There are many properties of the waveforms produced by musical instruments
that reveal information about the excitation and resonance structure of the instru-
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ments. As suggested above, different properties are salient in different contexts.
To date, machine systems have not taken advantage of this; as described in Sec-
tion 2.4, nearly all “instrument recognition” systems have operated on isolated
tones (and, crucially, have not demonstrated any kind of performer-independent
generalization). The most intriguing systems are those that operate on musical
phrases rather than isolated tones. Such systems have had good success at distin-
guishing among a small number of instrument categories by using cepstral coeffi-
cients calculated on small time windows. The cepstral data are used in such a way
that they capture information about the short-term spectral shape of the sound
wave, while discarding information about its variation over time. Many of the

cues known to be important for humans are not represented, including pitch,
vibrato, FM induced AM, and the rise times of the harmonic partials.

The sound of a musical instrument is often thought of as multidimensional.
Although there are several sound properties that apply to many sounds (e.g.,
pitch, loudness, brightness), there is no evidence that there is a simple, multidi-
mensional space underlying perception or recognition. In contrast, the myriad
cues used by listeners vary from source to source and are better described as col-
lections of features—some discrete, some continuous.

The perceptually salient features of sounds produced by orchestral instruments
include:

* Pitch: The periodicity pitch of a sound yields information about the size of
the sound source. Typically, smaller sources produce higher-pitched sound;
larger sources produce lower pitches. Variations in pitch are also sources of
information. The degree of random variation reveals information about the
stability of the source excitation and the strength of its coupling to the reso-
nant body. For example, brass instruments, which have relatively weak exci-
tation-resonance coupling, exhibit wide pitch “wobble” at onset; similarly,
the unstable interaction between bow and string causes the tones of string
instruments to have a high degree of pjitter. The relationships of pitch to
other sound properties are also important. For example, the wide pitch varia-
tions ofvibrato cause an instrument’'s harmonic partials to interact with the
resonant modes of the instrument, producing amplitude modulations, and
these provide a wealth of information about the instrument’s resonant struc-
ture.

* Loudness The intensity of an instrument’s sound interacts with other sound
properties, producing salient cudsemolo(that is, sinusoidal variation of
loudness) often accompanieibrato, and the relative strengths of pitahd
loudness variation may be salient. For example, flutes typically produce
much stronger tremolo than strings or double-reeds.

* Attack transient: When listening to an isolated musical tone, listeners use
information contained in the attack transient to identify the tone’s source.
The rise-times—both absolute and relative—of the harmonic partials reveal
information about the center-frequency @af resonances in the sound
source. The low-amplitude “blips” preceding the tonal portions of some
tones—particularly those produced by brass instruments—may also contain
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useful information. Finally, it is possible that the non-harmonic, noisy, por-
tions of the attack contain information that may be used to aid identification,
but I am not aware of any demonstration of their use by human listeners.

* Spectral envelope Several features of the relative strengths of a musical
tone’s harmonic partials reveal information about the identity of the tone’s
source. For example, the spectrum can reveal the center-frequencies of
prominent resonances and the presence of zeros in the source-excitation. The
relative strength of the odd and even partials can be indicative of the cylin-
drical tube (closed at one end) used in clarinets, and the irregularity of the
spectrum can indicate a complex resonant structure as found in string instru-
ments.

* Inharmonicity : Deviations from strictly integer-related partial frequencies
are common in freely-vibrating strings, bells, and in the attacks of some
instruments (saxophones, for instance).

The relative importance of these various features has not been studied in much
depth, and typically, little is known about the ways in which they are extracted

and represented by the human auditory system. The next chapter describes a set
of signal-processing techniques and a series of representations at various levels of
abstraction for many of the features described above, along with demonstrations
of their extraction from recordings of orchestral instruments.
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CHAPTER 4

4.1

Representation

Chapter 2 examined human sound-source recognition and compared several
kinds of artificial recognition systems to the human system, highlighting their
many limitations. Chapter 3 examined human abilities on a particular recognition
task—identifying orchestral musical instruments from the sounds they produce—
and described a set of acoustic features that could form the substrate of human
recognition abilities in this small domain. This chapter builds on the insights
gained from the previous two chapters. A series of signal-processing transforma-
tions are described, which convert an audio recording through a serégsesf
sentationdntended to highlight the salient features of orchestral instrument
sounds.

Overview

A classic example of an artificial perceptual system is David Marr's model of
early vision! He used a series of increasingly abstract representations to describe
visual scenes, starting with a raw image and culminating in an object description
that could be matched against templates stored in memory. In his words:

“A representation is a formal system for making explicit certain entities or types
of information, together with a specification of how the system does this. And |

1. The analogy between Marr’s work and the system described in this dissertation is loose.
| subscribe to the broad aspects of his modeling philosophy, but the system described
here is not intended to be an auditory analog of his vision system. Marr explicitly
decries the importance of high-level knowledge in perception, and | view this as a criti-
cal limitation of his work.
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41.1

shall call the result of using a representation to describe a given edésgap-

tion of the entity in that representation....[T]here is a tradeoff; any particular
representation makes certain information explicit at the expense of information
that is pushed into the background and may be quite hard to recover.” (Marr,
1982, p. 20-21)

At each successive level in Marr's representation, the perceptually salient aspects
of the image are more explicitly represented. At the first level, the raw image is
transformed into a so-called “primal sketch,” which makes intensity changes
(some of which correspond to edges of objects) explicit, noting their geographi-
cal distribution and organization. At the second level, called the “2 ¥-D sketch,”
the orientation and rough depthsafrfacesare represented, making particular

note of contours and discontinuities. Finally, the 2 %-D sketch is transformed into
a 3-D model representation that describes the shapes and spatial organization of
objects in the scene from an object-centered viewpoint (because recognition
demands a representation that does not depend much on the perceiver’s view-
point). These transformations are performed as a sequence of relatively simple
stages because “it is almost certainly impossible in only one step” (Marr, 1982, p.
36).

Mid-level representation

Marr’s intermediate representations are examples of what have been teidned
levelrepresentationén the artificial intelligence literature. Referencing Marr’s
work, Ellis and Rosenthal (1995) provide a set of desiderata for auditory mid-
level representations:

1. Sound source separationAs a signal is transformed through a set of repre-
sentations, representational elements should correspond more and more to
single sound sources or events. This feature is necessary to enable reasoning
about individual components in an auditory scene.

2. Invertibility : The series of representational transformations should be
invertible. Ellis and Rosenthal make too strong a demand in this case, requir-
ing that “the regenerated sound be perceptually equivalent to the original”.
Although such a property may be desirable from a practical engineering
standpoint, it is not necessary for many applications. As long as all perceptu-
ally equivalent sounds map into the same description in the representation,
an ability to regenerate an acoustic signal is not necessary. However, it
should be possible to use information contained in a particular representation
to reason about the contents of lower-level representations (and this require-
ment, which bears little relation to resynthgsis se may be necessary for
disentangling mixtures of sounds).

3. Component reduction At each successive level of representation, the num-
ber of objects in the representation should diminish and the meaningfulness
of each should grow.

4. Abstract salience of attributes At each re-representation, the features
made explicit should grow closer to the desired end result, which in many
cases will be the perceptually salient aspects of the signal.
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5. Physiological plausibility: Given the goal of understanding the operation of
the human auditory system, it is desirable for representational transforma-
tions to match those used by the brain. Of course, this is only important inso-
far as it serves the goals of the research, as discussed in Section 2.2.

Of these desiderata, the third and fourth are the most relevant to the current work.
In addition, | would add that it is important for the representation to be robust
with respect to sound-scene complexity (e.g., noise, the presence of multiple
simultaneous sound sources, etc.). Although it is unreasonable to expect that the
descriptions of the independent sources in an auditory scene be identical to their
descriptions when heard in isolation, the system as a whole should be able to rea-
son about noisy or obscured observations and their effect in the representation.
Ellis’s prediction-driven architecture does this well for its relatively low-level
descriptions of noise beds, transients, and quasi-periodic signals, but it is not
obvious how to identify and specify appropriate constraints for higher level
descriptions.

Marr’s low-level representations are symbolic, beginning at the level of the pri-
mal sketch, and this has some desirable effects. Transformation into symbols can
ease some of the difficulty associated with noisy, incomplete data (Dawant &
Jansen, 1991) and can be used to suppress unnecessary detail (Milios & Nawab,
1992). These features can lead to more robust analysis and decreased storage
requirements, but it is important not to discard information that will be needed to
resolve discrepancies arising at higher levels.

Features and classification

As was pointed out in Section 2.3, recognition systems cannot operate by memo-
rizing every instance of every object that is to be recognized. Object identifica-
tion is a pattern-recognition problem, and it is worthwhile to consider some of the
general properties of pattern-recognition systems. Pattern-recognition systems
(see, for example, Duda et al., 1997) operate by measuring a set of features from
a representation of an object and then employing a classification function (usu-
ally learned during a training period) to make a classification decision. The clas-
sification function operates in a multidimensional space formed by the features.
With an infinite number of “training” examples (i.e., for which the system is told
the correct classification of each object), the classification function improves as
additional features are added to the system. In realistic contexts, however, the
number of training examples is limited, and the increased number of feature
dimensions makes it increasingly difficult to find a good classification function
because the “classification space” grows exponentially with the number of
dimensions. This creates a kind a paradox, where it is both better and worse to
have a large number of features.

One solution to the number-of-features paradox is to empéigfeatures. By
computing a large number of first-order features directly from the representation
and then combining them intelligently into a smaller group of second-order fea-
tures, the recognition engine can employ a small number of features that contain
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information equivalent to the larger set. If the problem is structured well, it may
be possible to construct the system so that it does not matter if a particular subset
of first-order features is missing (or is too noisy) in a particular sample—and that
is an important feature because the particular set of features that is available will
depend on the context. With this approach, the goal of the representational engine
should be to generate a feature set that is as small as possible, yet still enables
robust recognition.

The approach taken here is to avoid using classification algorithms that employ a
large number of features at once. Instead, by using multiple classifiers, each oper-
ating on a small number of features, with some kind of voting scheme to combine
their classifications, the curse of dimensionality can be alleviated. However, this
approach may not take full advantage of the statistical relationships (e.g., correla-
tions) between features, which given enough training data could be better
exploited in the full-dimensional classification space.

The representational scheme used here is constructed of several different levels,
as depicted in Figure 13, and is structurally similar to the one proposed by
McAdams (Figure 3 on page 27). The following briefly describes the various
components, each of which is described in more detail in the remainder of this
chapter:

* Raw signat The acoustic pressure waveform measured by a microphone
represents the acoustic signal reaching the eardrum of the listener. For ease
of analysis, it is stored in a data file.

* Front-end: The first stage of signal processing consists of a filterbank
whose outputs are half-wave rectified, lightly smoothed, and then analyzed
by short-term autocorrelation to make periodicity—the primary basis of
pitch—explicit.

* Weft: The second stage of processing identifies stable periodicities in the
signal that are likely to correspond to musical tones. Each periodicity is rep-
resented as a pitch-track and a corresponding time-varying spectral enve-
lope.

* Note properties A large number of features are extracted from the weft rep-
resentation, corresponding to the properties we know affect human percep-
tion.

e Source model The note properties are accumulated over time to form a
model of the sound source’s excitation and resonance structure.

* Model hierarchy: The sound’s excitation/resonance model is compared to
members of a hierarchically arranged set of stored reference models. The
sound is “recognized” as an instance of the class represented by the model
that matches most closely. (The recognition process is described in Chapter
5).
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FIGURE 13. The representational/signal-processing scheme used here. The front-end consists

4.2

of a fixed signal-processing network implemented in three stages. The mid-level
representation makes explicit the many acoustic features known to be
perceptually salient for human listeners. Recognition is based on a compact
excitation/resonance model that integrates the many acoustic features into a
simplified, abstract form. The feedback loops have not yet been integrated into the
model.

The front end

The first representational transformation is implemented by a fixed signal-pro-
cessing network called the front-end. It consists of three sub-stages that culmi-
nate in a three-dimensional representation called the correlogram, as shown in
Figure 14. The implementation described here is modeled after the one described
by Ellis (1996); differences between the two implementations are minor and will
be described as they arise.

The sound-pressure wave itself is represented by a sequence of 16-bit fixed-point
samples, recorded at 32,000 samples per second of sound (Ellis used a 22.05 kHz
sampling rate). This representation is capable of coding vibration frequencies up
to 16 kHz (the Nyquist rate, or “folding” frequency), so the sound wave is filtered
before sampling to remove any higher frequencies. This bandwidth is sufficient

to recreate a high-quality audio signal (better than FM radio broadcasts but not as
good as compact discs). Many orchestral musical instruments produce frequency
spectra that continue beyond 16 kHz (indeed, above 80 kHz in some cases!),
though the spectra of most non-percussive instruments roll off well below 16 kHz
(Boyk, 1997). The signals sampled at 32 kHz are quite sufficient for humans to
recognize the instruments, as demonstrated by the experiment described in Chap-
ter 6.
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stages, modeling the frequency analysis performed by the cochlea, the nonlinear
transduction of the inner hair cells, and a higher-level periodicity-based
representation.

Bandpass filterbank

The first stage of signal processing consists of a fixed array of linear bandpass fil-
ters that model the frequency analysis performed bgdhklea The cochlea is a
bony, coiled, fluid-filled structure with two small openings covered by flexible
membranes. At one end, a chain of tiny bonesd$isécle$ attaches one of the
flexible membranes (called tlowal windowy to the eardrum (called thgmpanic
membrang When pressure variations (sound waves) reach the ear, they travel
down the ear canal and cause the tympanic membrane to vibrate; the vibrations
are transmitted across the ossicles to the oval window, where vibrations are trans-
ferred to the cochlear fluid. The cochlea’s interior is separated into two main
compartments by a set of flexible tissues that includebdligar membrane
Vibrations travel the length of the basilar membrane, with high frequencies trav-
eling further than low.

Any small region of the basilar membrane can be modeled as a bandpass filter
(von Békésy, 1960), and although there are nonlinearities involved in the physio-
logical chain to this point, they appear to be of secondary importance in relation
to the bandpass frequency analysis, which is preserved at higher levels of the
neural processing chain (Pickles, 1988). It is assumed that the breakup of the
acoustic signal into various frequency bands is the primary function of the
cochlea; at the very least, it is fair to say that we do not yet understand how the
nonlinearities at the level of the cochlea help the hearing process.

The bandpass filter model | use is based on the one proposed by Patterson and his
colleagues, which in turn is modeled after neurophysiological and psychophysi-
cal data (Patterson & Holdsworth, 1990; Patterson & Moore, 1986). The software
implementation is modeled after Slaney’s (1993). Each bandpass filter is imple-
mented by four cascaded second-order filter sections, which realifd@de&

filter with a “gammatone” impulse response (an example, for a filter with a 1 kHz
center frequency, is shown in Figure 15). The bandwidth of each filter is set to
match theequivalent rectangular bandwid(feRB) of the cochlear tuning curve
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at the corresponding frequency, as modeled by Moore and Glasberg (1983). The
filter Qs, as a function of center frequency, are nearly constant (approximately
9.3) over much of the relevant frequency range. At low frequencies, the filters are
somewhat broader (they have smafderalues). For ease of implementation, the
center frequencies are spaced evenly on a logarithmic scale, with six filters per
octave, ranging from 31.25 Hz to nearly 16 kHz (in Ellis's implementation, cen-
ter frequencies covered a smaller range, from 100 Hz to just over 10 kHz). This
provides a significant overlap between adjacent filters (particularly at the lowest
center frequencies), as shown in Figure 16.

Figures 17 and 18 depict the impulse responses themselves, illustrating their sim-
ilarity on a logarithmic time scale. This similarity, which implies that the impulse
responses are approximately time-scaled versions of a single function (in this
case, the gammatone), is characteristiwafelettransformations. The time-

scale approximation is most accurate in the upper octaves. As is evident from
Figure 17 the “center of mass” of the impulse responses varies with center fre-
guency over a range of approximately 20 ms. This variation, cgibegh delay,

is compensated in the current implementation by the introduction of a pure delay
element at the output of each filter. This compensation has no physiological (or
even computational) justification, and it has no effect on recognition perfor-
mance; it merely makes the representations at this and higher levels easier to
“read” by a human observer.

To better illustrate the effect of this first representational transformation, consider
a simple sawtooth waveform, beginningtat (L0 ms) and repeating at 125
cycles/second (see top panel of Figure 19). An infinitely repeating sawtooth wave
has a discrete Fourier spectrum with each component proportional to the inverse
of its component number. When played through a loudspeaker, the waveform
generates a buzzing sound with a pitch corresponding to the fundamental fre-
qguency of 125 Hz.

Figure 19 illustrates the response of the cochlear filter bank to the sawtooth
waveform without group-delay compensation; Figure 20 shows the same
responseavith compensation. In the main panels, the output of every second filter
channel is depicted as a function of time and amplitude. The left panels illustrate
the root-mean-squared (RMS) energy in each channel, as a function of center fre-
guency, in alignment with the waveforms in the main panel. The upper panels
display the waveform to illustrate the mis-alignment of the amplitude-modulation
peaks across frequency (highlighted by an overlaid dotted line showing the varia-
tion of group-delay as a function of center frequency).
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Impulse responses of nine cochlea bandpass filters (one filter is shown per

octave). Their amplitudes have been normalized to a uniform scale for display
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uniform scale for display purposes. Note the similarity of structure that is
characteristic of a wavelet filterbank.
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42.2

4.2.3

Inner hair cell transduction

The basilar membrane contains theer hair cells which act as transducers,
converting the motion of the membrane in the cochlear fluid into electrical
impulses. The inner hair cells have tiny embedded heilia)(that bend when

the basilar membrane moves relative to the cochlear fluid, and the cells emit elec-
trical spikes with a probability that depends on the degree of deflection.

There are two properties of the inner hair cells that have particularly important
effects on the signals transmitted to higher levels. First, the cells respond only to
cilia deflection in one direction, and this introduces a half-wave rectification
stage to the signal-processing chain. Second, at low frequencies, the hair cells
tend to fire at a particular phase of the signal—a process gl lockingAs

the frequency of the input signal increases, phase locking begins to run out at
about 1.5 kHz and disappears by 5 kHz, but in the absence of lockindfiteethe
structureof the waveform, the hair cells lock to the signal's amplitude envelope.
This effect is simulated in the current implementation by a light smoothing oper-
ation (convolution with a 0.25 ms raised-cosine fundjiowhich has little effect

at low frequencies, but, in combination with the half-wave rectification, produces
a reasonable envelope function at high frequencies.

Figure 21 shows the response of several cochlear filter channels after half-wave
rectification and light smoothing. Several much more complex models of inner
hair cell function have been developed (for example, several are compared in
Hewitt & Meddis, 1991) that are more faithful to the nonlinear properties of
mammalian inner hair cells, but the simple model described here was chosen for
two reasons. First, as with the cochlear filters, we do not know what benefit addi-
tional nonlinearities bring to the hearing process. Second, the current implemen-
tation has the desirable property of preserving the relative energy levels in the
various cochlear filters. Because the energy levels in the cochlear channels (and
their variation over time) greatly affect human perception, it is desirable for
intensity to be easily recoverable from the representation.

Pitch analysis

Pitch is one of the most important attributes of orchestral instrument sounds, and
its relations to other acoustic properties form much of the basis of human sound-
source recognition. In addition, pitch is thought to be one of the primary cues for
auditory scene analysis. It is therefore desirable for pitch to be explicitly repre-
sented in any computational auditory scene analysis or sound-source recognition
system. The third stage of the front end does exactly that.

1. Ellis used a 1.0 ms window, but | found that it removed too much fine structure in the 2-
5 kHz region. The rather shorter window used here (0.25 ms) may instézmisbert.
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FIGURE 21.

Responses of nine cochlea bandpass filters (one filter is shown per octave) to the
125 Hz sawtooth signal after half-wave rectification and light smoothing intended
to model inner hair cell transduction. The output amplitudes have been normalized
to a uniform scale for display purposes.

An approximately periodic signal will, in each cochlear filter output, produce an
approximately periodic sighal—with the same period as the full-bandwidth sig-
nal. This across-channel similarity of periodicity is the usual basis of human
pitch perception. Autocorrelation is one of the conceptually simplest signal-pro-
cessing techniques for discovering such periodicity in a signal. By multiplying
the signal with delayed (time-shifted) versions of itself and measuring the aver-
age energy as a function of delay lag, it is possible to identify the underlying
period of the signal. J. C. R. Licklider (1951) proposed such a mechanism, oper-
ating in parallel on the outputs of cochlear filters, as a possible basis for human
pitch perception. Equation 8 is the usual definition of autocorrelation, with the
integration ranging over the entire signal.

[

R(T) = J’x(t)x(t—r)dt (8)

—00

In practice, it is impossible—and undesirable—to integrate over the whole sig-
nal. Pitch can vary over time, so the autocorrelation shouldenéng, or
short-timeoperation applied to the signal. The representation that results will
have three dimensions: cochlear position (corresponding to frequency), autocor-
relation lag (corresponding to pitch period), and time, as shown in Figure 22.
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A short-time operation implies some sort of averaging window, which can be
applied in one of two ways. The usual approach is to apply the window first,
before autocorrelation, as shown in Equations 9 and 10. Defining a window func-
tion w(t), we have

Xu(t to) = x(Hw(t—1to) ©)
Rex, (T to) = J’xw(t, to) X, (t—T, to)dt (10)

These calculations can be implemented efficiently, using FFT operations to per-
form the autocorrelation in the frequency domain. Such an approach was
described by Slaney and his colleagues (Duda et al., 1990; Slaney & Lyon, 1990;
Slaney & Lyon, 1993) with reference to Licklider’s original proposal. Meddis

and Hewitt (1991a; 1991b) used a correlogram of this sort to model human pitch
perception. They formedsummary autocorrelatioby summing the contribu-

tions of each cochlear channel at each autocorrelation lag and identified the larg-
est peak, which corresponds to the pitch period. With this model, they
successfully demonstrated correlates of “the missing fundamental, ambiguous
pitch, the pitch of interrupted noise, the existence region, and the dominance
region for pitch” (Meddis & Hewitt, 1991a). A similar approach has been applied
to the outputs of actual inner hair cells in a cat, using pooled inter-spike-interval
histograms—which are very similar to autocorrelations—with similar results
(Cariani & Delgutte, 1996a; 1996b). This style of correlogram processing was
also used in two of the first computational auditory scene analysis systems
(Brown, 1992; Mellinger, 1991).

The three dimensional correlogram volume
(frequency x lag x time)

frequency

A correlogram slice at a particular time
reveals the short-time autocorrelations
of every channel at that time, arranged
as rows (frequency x lag)

lag
(pitch)

time
The zero-lag face of a correlogram

is the time-frequency intensity envelope
of the sound (frequency x time)

FIGURE 22. lllustration of the correlogram volume, after Ellis (1996).
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sound
pressure
wave

The “window-first” technique, and in particular its implementation with FFT-

based autocorrelation, has several drawbacks. First, the length of the window lim-
its the range of lags that can be calculated. Second, FFT-based methods usually
sample the lag axis at uniform intervals on a linear scale. A logarithmically sam-
pled lag axis makes more sense from a perceptual standpoint because human sen-
sitivity to fundamental frequency differences is roughly constant on a logarithmic
frequency scale (Moore, 1989). Defining a running autocorrelation by separating
the window function from the multiplication of the signal with its delayed ver-

sion, as shown in Equations 11 and 12, it is possible to sample any lag without
regard to the window length.

Runod T to) = J’w2<t—to)x<t)x<t—r)dt 1)
RusodT) = [X(OX(t=1)10W(~t) (12)

The portion of the correlogram corresponding to each cochlear filter can then be
calculated using a tapped delay line, multiplying its output by the original signal,
and smoothing (windowing) the output. A block diagram of the complete opera-
tion is shown in Figure 23. In the current implementation, fractional delay filters
(Laakso et al., 1996) are used to calculate the delay line outputs, and the smooth-
ing (window) filter consists of two cascaded one-pole lowpass filters, each with a
10 ms time constant (Ellis used a single, 25 ms, one-pole lowpass).

-
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FIGURE 23. Block diagram of the calculation of the correlogram, after Ellis (1996).
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4.3

There is a minor complication that arises from the logarithmic sampling. The
bandwidth of a signal’s autocorrelation function is equal to that of the signal
itself, and in order to avoid aliasing (under-sampling the signal), it should be
sampled at a rate at least greater than twice the highest frequency in the original
signal. Therefore we must filter the signal so that it does not contain any frequen-
cies higher than half the local sampling rate of the lag axis. This is accomplished
by introducing another lowpass filter, prior to the delay line. In practice, this filter
is combined with the “light smoothing” filter in the inner hair cell model, and
separate tapped delay lines are used for various regions of the lag axis. This
implementation is much more computationally expensive than the FFT-based
version; however, it is well suited to parallel processing architectures.

The examples presented in this dissertation sample the lag axis at 150 lags from
0.33 ms to 33 ms, corresponding to fundamental frequencies from 30-3000 Hz
(approximately the full range for musical pitch). This spacing includes approxi-
mately 23 lags per octave (nearly 2 per musical semitone), in contrast with Ellis’s
48 (4 per semitone, for fundamental frequencies from 40-1280 Hz). A denser
sampling would be desirable, but the current density was chosen as a compromise
favoring computational speed and storage requirements over a more detailed rep-
resentation. In practice, it is possible to interpolate between neighboring cells of
the correlogram, so the limited sample density on the lag axis does not cause
problems for higher levels of representation. The time axis is sampled at 2 ms
intervals. This is a somewhat finer resolution than Ellis’s 5 ms sampling, adopted
mainly to improve visualization of instrument-tone onsets during later analysis.

The weft

The correlogram contains a great deal of information about the acoustic signal
that it represents, but it is unwieldy. With 150 lags and 54 filter channels per slice
and 500 time slices per second, it is a more than 125-fold expansion of the origi-
nal sampled acoustic waveform (this calculation assumes 16-bit samples; with
32- or 64-bit floating-point samples, the growth increases). The weft representa-
tion addresses this drawback.

Theweftis a novel representation for quasi-periodic, pitched sounds, which was
proposed by Ellis and Rosenthal (1995) (and refined by Ellis (1996), from which
this presentation is adapted) to address the limitations of traditional sine-wave
models. The name comes from a weaving term for a parallel set of threads run-
ning through a woven fabric. A quasi-periodic input waveform creates vertical
“spines” in the lag-frequency plane (e.g., Figure 24a) that change slowly as a
function of time, and the values measured along the spines correspond to the
energy associated with the given lag (here, we may say pitch period). Traced
along time, these spines form a weft, as shown in Figure 24b. Because a periodic
waveform with period T is also periodic at integer multiples of T, the spine pat-
tern is repeated at multiples of the pitch period (correspondisigbtdharmonics

of the pitch frequency). Only one wetft is needed to represent the entire set of sub-
harmonics; indeed, a single weft—stored ge@od trackand a corresponding
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FIGURE 24. The weft calculation. (a) A correlogram slice during a violin tone performed with a
pitch near 500 Hz. Note the vertical structure present at the pitch frequency/
period, indicated by the vertical white line, and at its subharmonics/harmonics.
The cross-hatch marks indicate the approximate frequency regions of the first six
harmonic partials. (b) Spines are accumulated over time. The period track is given
by the spine position; the smooth spectrum is given by the energy along the spine
as a function of frequency.
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smooth spectrumis-sufficient to represent the harmonic portion of any quasi-
periodic signal.

The weft can be viewed as a source-filter model, with the period track controlling
a quasi-periodic impulse generator whose output is modulated by a time-varying
filter controlled by the smooth spectrum, and this model can be used to resynthe-
size portions of the acoustic waveform. Taking this view, we can express the
guasi-periodic impulse excitation as

e(t) = Zé(t—ti) (13)
with
oy -y
t = atrggl’adr = ZHDE (14)
o u
wherep(1) is the period track. The output signal can be expressed as
Xw(t) = [e(T)*hy,(T:)](1), (15)

whereh,,(t;t) is the time-varying impulse response of the filter corresponding to
the smooth spectrum. The task of weft-analysis is to reqgveandh,,(t;t)

(usually thought of in the frequency domaintHggw;t)). This decomposition is
not unique, but it is the simplest to define and is relatively simple to compute.

Ellis (1996) describes a complicated algorithm for recovering the period track
and smooth spectrum of multiple, overlapping wefts from the correlogram vol-
ume, even when the quasi-periodic portions of the acoustic signal are “corrupted”
by wide-band and transient noise. Readers interested in the processing details
should consult his excellent presentation. However, most of the details of the weft
extraction algorithm are unnecessary for the discussion here. The signals used in
this work are simpler than those used by Ellis, and my implementation simplifies
Ellis’s algorithm in several ways.

With the assumption that the input signal contains only one source of quasi-peri-
odic vibration, it is relatively simple to recover the period of vibration given a
single time-slice of the correlogram volume. The most commonly used method
(and the one used by Ellis) is to integrate over the cochlear position dimension to
create asummary autocorrelatianT he pitch of the signal—at that time—is then
given by the lag exhibiting the largest peak. As mentioned earlier, this simple
method, with minor variations, has been used as a model of human pitch percep-
tion with good results on a wide range of examples (Meddis & Hewitt, 1991a;
1991b). The principle weakness of the summary-autocorrelation approach is that
it is prone to (sub)harmonic errors—that is, it occasionally generates pitch esti-
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mates that differ from human pitch judgments, most often by an octave, because
the “wrong” peak is chosen accidentally.

The approach taken here is more complex, but more robust for signals generated
by orchestral instruments. Rather than find peaks in a summary of the correlo-
gram slice, the current implementation searches for sets of local maxima at the
same pitch period across a range of cochlear channels. Each such collection of
maxima is considered in turn, and the one that best explains the entire correlo-
gram image is selected. The selection is based on two simple heuristics, and is an
exercise in rule-based programming. First, if the total energy (the sum of the val-
ues at the maxima) of a set is much smaller (by some threshold) than that of
another set, the weaker set is discarded. Second if the pitch periods of two sets
with similar total energy is related by an integer ratio, the set with the larger pitch
period is discarded.

After the pitch period is determined, a cross-section is taken of the correlogram
slice, recording the energy at the pitch period as a function of cochlear position.
This is a first-order approximation to temooth spectrurat the time corre-
sponding to the correlogram slice. Ellis makes several refinements to this mea-
surement. First, he uses the local peak-to-trough energy ratio in the correlogram
slice to estimate the energy of locally wide-band noise in the channel. He then
subtracts the result from the smooth spectrum. Second, he uses non-negative
least-squares (NNLS) inversion to account for the overlap of the filter channels.
These refinements are not used in the current implementation, in part because
they are computationally expensive (NNLS is an iterative procedure). Also, the
wide-band noise components in the recordings used to train and test the system
were relatively small, so the refinements would not change the computed repre-
sentation drastically.

Although the smooth spectrum computed in this way does not correspond exactly
to the time-varyingpectral envelopef the instruments analyzed, it is a reason-
able approximation. It has several desirable qualities from a perceptual-modeling
viewpoint. For example, the spectral envelope is computed with a local resolution
corresponding to the bandwidth of the appropriate cochlear channels. This means
that the first 4-6 harmonic partials of a quasi-periodic safrahy pitchare
resolvedand can be analyzed individually. Higher harmonics are represented as
overlapping groups within so-calleditical bands Human listeners perceive

only thegroup propertief partials above roughly thd'6and this limitation is
inherent in the representation at this level.

The recordings used to test the current implementation are of solo instruments
playing musical phrases and isolated notes. A single weft very naturally repre-
sents an isolated note, and as long as a phrase is played one-note-at-a-time, a sin-
gle weft can represent it. However, since it will be useful to analyze properties of
single notes within phrases (e.g., for their attack properties), the period track is
segmented into regions corresponding to relatively stable pitch periods. Each seg-
ment forms a separate weft, usually corresponding to a single note. This segmen-
tation stage is not strictly necessary, and it may create problems for some musical
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4.4

signals, such as a soprano singing with extremely exaggerated vibrato or a jazz
trombone played with pitch glides. It also does not correspond strictly to my view
of music perception, in which a rapid sequence of notes may be heard as a single
entity rather than as a series of separate entities. Segmentation is adopted here
only because it simplifies certain parts of the next stage of representation, at least
conceptually.

The weft elements do not contain information about any non-periodic compo-
nents of the input signal. This means that, for example, bow, breath, and valve
noises are not represented at this level. Although such components would be
needed to fully explain human sound-source recognition abilities, they are not
necessary to account for a great deal of the human experimental data, as will be
demonstrated in Chapter 6.

Note properties / source models

In the next representational stage, perceptually salient features are measured
from the weft representation and accumulated over time to form a model of a
sound source as it is heard. Because the weft is already made up of perceptually
salient components, feature extraction is generally very simple and is accom-
plished with heuristic signal-processing techniques. In this section, feature
extraction is illustrated with example tones produced by six instruments (repre-
senting classes with distinct excitation and resonance properties). Short segments
of the period tracks and smooth spectra for six sample tones, performed respec-
tively by violin, trumpet, oboe, clarinet, flute, and alto saxophone, are shown in
Figure 25. In examples where information is integrated over multiple notes,
recordings of chromatic scales are used for illustrative purposes.

The features extracted from the weft representation are of two types. Some are
direct measurements on a physically meaningful scale, such as a ratio of ener-
gies; others are pseudo-binary indicator features, representing the presence or
absence of a particular attribute. Not every feature is applicable to every sound
source, and, in particular, some features are hierarchically dependent on others.
For example, although it might make sense to define the “vibrato depth” of a non-
vibrato note to be zero, the relative strength of amplitude- to frequency modula-
tion (a ratio) has no meaningful definition in the absence of vibrato.

The representation at this level consists fvthme(Minsky, 1974) for each sound
source, or sound-source category, with each frame contairsliogfar each fea-

ture. Because each sound source may have a different set of applicable features,
the set of slots may vary from one frame instantiation to another. In Chapter 5,
examples will be given ahethodsattached to particular slots, and of default slot
values inherited from parent nodes. For now, the frames may be thought of as fea-
ture lists, temporarily ignoring the more powerful attributes of the representation.
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FIGURE 25. Period tracks and smooth spectra for example tones produced by (a) violin, (b)
trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto saxophone. In each case, the
main panel shows the smooth spectrum as a function of time (abscissa) and
cochlear frequency (ordinate); energy level is indicated by intensity, ranging from
low (white) to high (black) over a range of 75 dB. The lower panel displays the
period track, expressed deviation in cents from 440 Hz (a logarithmic scale, with
100 cents equivalent to a musical semitone, or a frequency/period ratio of 21/19).
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Rather than storing the feature values themselves, statistical summaries of the
feature values are accumulated as sounds produced by a particular source are
heard. In general, observations of each feature are assumed to have been gener-
ated by a process with a Gaussian distribution, for which the sample mean and
standard deviation amufficient statistic§Duda et al., 1997). Along with these
values, the number of samples used in their calculation is recorded, so that statis-
tics from multiple source models may be pooled later on.

Because instruments may behave differently in different portions of their pitch
range, many of the feature statistics are accumulated separately as a function of
pitch or frequency range. It will be obvious from the presentation when this is the
case. Table 3 lists the features considered in this chapter.

Spectral centroid (and relative spectral centroid)

Average relative spectrum

Spectral Average relative spectrum by partial #

Features High-frequency rolloff rate and cutoff frequency

Spectral irregularity and # of “zeros”

Relative energy in odd and even partials

Pitch range

Tremolo: absolute strength and relative (to vibrato)
strength and phase

Pitch, Vibrato, | Centroid modulation: absolute strength and relative to
and Tremolo | Vibrato) strength and phase

Features Individual harmonic amplitude modulation: absolute
strength and relative (to vibrato) strength and phase

(pitch “wobble™)
(pitch jitter)
Relative onset time by partial frequency

“Rise likelihood” by frequency and post-onset time

ek, [@oren
(Explicit onset skew)
(Rise rates)
(Inharmonicity)
Other (Note-to-note transitions)

Possibilities | (Explicit identification of resonances)

(“Cognitive” cues)

TABLE 3.

Features considered in this chapter. Features in parentheses have not been
implemented.
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4.4.1 Spectral features

As discussed in Chapter 3, the harmonic spectrum contains a great deal of infor-
mation about the sound source, possibly including, for example, the center-fre-
guencies of prominent resonances and the presence of zeros in the source-
excitation. Relatively weak strength of even partials can be indicative of the
cylindrical air column (closed at one end) used in clarinets, and overall irregular-
ity of the spectrum may be indicative of the complexity of a sound source’s reso-
nance structure. These features and others are readily computed from the weft
representation.

Thespectral centroids a simple feature that correlates strongly with the per-
ceivedbrightnessf a sound. It is trivially calculated from the smooth spectrum

of the weft representation by computing the first moment of the energy as a func-
tion of frequency, using the cochlear-channel indexas a log-frequency axis:

Z KE,
C= . (16)
25
Here,E(Kk) is the energy in cochlear chankellThe result may be converted to a

frequency scale by the following transformation:

!k—Bl!
f = 1000x 2 °© a7

This equation is based on the current implementation, for which the center fre-
guency of channel 31 is 1000 Hz (the 1/6 factor arises because there are six
cochlear channels per octave). It is worth noting that these measures are not
invariant with respect to overall coloration of the audio signal.

Because the relationship between pitch and brightness is important to the percep-
tion of musical sounds, threlative spectral centroidcalculated as the ratio of

the spectral centroid to the pitch, is a useful feature. Using the period track from
the weft representation, the relative centroid can be calculated by multiplying the
spectral centroid (on a frequency scale) by the pitch period (in seconds). This is
equivalent to dividing by the pitch frequency. The calculation can also be per-
formed by converting the pitch frequency into its equivalent filter-channel index
and then subtracting the result from the spectral centroid expressed the same way
(this is due to the trivial equivalence of subtraction of logarithms to division). The
mean spectral centroid and relative spectral centroid—estimated as a function of
pitch from recordings of chromatic scales—are shown for the six instruments in
Figures 26 and 27.
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FIGURE 26.

Average spectral centroid as a function of pitch, estimated from chromatic scales
performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto
saxophone. The abscissa is the pitch frequency, and the ordinate is the spectral
centroid, expressed as a frequency. In each case, the solid line indicates the
mean value for tones at that pitch, and the dotted lines indicate bounds of one

standard deviation.
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FIGURE 27.

Average relative spectral centroid as a function of pitch, estimated from chromatic
scales performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f)
alto saxophone. The abscissa is pitch frequency, and the ordinate is the relative

spectral centroid, expressed as a ratio of spectral centroid frequency to pitch

frequency. In each case, the solid line indicates the mean value for tones at that
pitch, and the dotted lines indicate bounds of one standard deviation.
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The period track and smooth spectrum of the weft representation can used to esti-
mate the relative strengths of the harmonic partials comprising a musical tone.
Given the pitch frequency, it is straightforward to identify the filter-bank chan-

nels that are dominated by each of the first six harmonic patrtials, simply by com-
paring their center frequencies to the expected frequencies of each partial (which
are just integer multiples of the pitch frequency). The energy levels in those chan-
nels are taken as estimates of the energy levels of the corresponding partials. Esti-
mates are made in the same way for partials abovéltheith the caveat that

more than one partial influences the energy in any given cochlear channel. For
each region of pitch-period stability in the weft’s period track (usually corre-
sponding to a single musical tone), the maximum energy for each resolved partial
(or channel containing unresolved partials) is determined. The results are shown
in Figure 28 for single tones produced by the six instruments. The harmonic
spectrum is normalized by its maximum value, andatrerage relative spectrum

is accumulated as a function of frequency, with three separate estimates calcu-
lated: one from the first three odd-numbered partials, one from the first three
even-numbered patrtials, and one from the entire spectrum. The average relative
spectra of the six instruments (based on all partials, except for the clarinet, for
which both the odd and even estimates are displayed) are shown Figure 29.

In addition, the relative levels of the first six partials are stored as a function of
pitch. This representation highlights the reduced strength of the first partial in
double-reed instruments, the reduced even partials in the clarinets, and the simple
formant structure of the brass instruments. Figure 30 shows the strength of the
first six partials as a function of pitch frequency for the six instruments.

Several subsidiary features are also computed from the harmonic spectra mea-
sured from individual notes. For example, the average difference between the
energy of a partial and its two neighbors is computed as a local measure of spec-
tral irregularity and accumulated both as a function of frequency and of partial
number. Partials with particularly low energy levels relative to their neighbors are
noted, as they may correspond to zeros of the excitation spectrum. Alternatively,
they may be due to a suppression of “even” harmonics in a cylindrical vibrating
air column (as in the clarinet), or to suppression of the first partial (as in the bas-
soon). In addition, a line is fit to the high-frequency roll-off of the spectrum (in

dB energy versus log frequency). The slope of the line (in dB/octave) is recorded
as the high-frequency roll-off rate, and the frequency at which the line crosses the
maximum energy level of the spectrum is recorded as an estimate of the spec-
trum'’s cut-off frequency. Both the roll-off slope and cut-off frequency are accu-
mulated as functions of pitch frequency.
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FIGURE 28. The maximum values of the harmonic spectra for isolated tones performed by (a)

violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto saxophone. In each
case, the energies of the first six partials are estimated independently. Above the
sixth, energy is measured by cochlear channel rather than by partial number
because multiple partials mix in each cochlear channel. The abscissa is
frequency; the ordinate, relative energy (in dB). The frequencies of the first 20
partials are indicated by vertical lines (dotted lines, above the sixth partial).
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FIGURE 29. The average relative spectra measured from chromatic scales performed by (a)
violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto saxophone. In each
case, the solid line results from an average over all harmonics, and the dashed
lines indicate bounds of one standard deviation. The abscissa is frequency; the
ordinate, relative energy (in dB). In each case, the solid line indicates the mean
value for partials at that frequency, and the dotted lines indicate bounds of one
standard deviation. In panel (d), the relative spectra computed using the low odd-
and even-numbered partials are shown because they differ significantly (compare
to Figure 12 on page 61).
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FIGURE 30. Average strength of the first six partials as a function of pitch frequency, measured
from chromatic scales performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet,
(e) flute, and (f) alto saxophone.
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4.4.2 Pitch, vibrato, and tremolo features

As described in Section 4.3, the pitch of a sound is made explicit by the weft,
which represents it as a function of time. Pitch is a useful feature on its own for
ruling out sound-source hypotheses during the recognition process, but it
becomes even more useful when considered in combination with other features.
In Section 4.4.1, pitch was used as the abscissa in many of the feature representa-
tions. In this section, the pitch range of a sound-source is represented explicitly,
along with the effects of the source’s resonance structure when the performer
applies a periodic pitch variation (vibrato). Other features that may have an affect
on human recognition, including pitch “wobble” during the attack of brass tones
and random variations, {itter, have not yet been included in the framework
described here, although they may readily be computed from the weft representa-
tion. For now, they are postponed as obvious future developments to the current
system.

The pitch range of a sound source is represented by a histogram of 1/6-octave
bands. The value in each histogram bin is simply the period of time for which
sounds in the corresponding pitch-frequency range have been observed. The
maximum value of a histogram bin is limited to ten secondagdérocthreshold
representing “sufficient” evidence that the sound source can produce sounds in
that pitch range. Histograms accumulated for chromatic scales performed by the
six instruments are shown in Figure 31.

As described in Chapter 3, vibrato is a performance technique whereby a player
imposes a nearly periodic pitch variation—with a period in the neighborhood of 6
Hz—on the steady-state pitch frequency of the note being played. In order to
detect this variation, the period track of the weft representation is converted to
pitch frequency, and a short-time discrete Fourier transform is computed over the
modulation frequency range from 2-15 Hz, using a 400 ms Hamming window
and a 50 ms hop size. If the spectrum exhibits a peak in the 4-8 Hz range, the
peak’'s amplitude (in cents) and phase are recorded, along with the relative time
(measured in hops). Using the smooth spectrum component of the weft, the same
process is applied to the spectral centroid (expressdthimel3, the total

energy (expressed in dB), and to the energy of each of the first six harmonic par-
tials.

These first-order features are then organized into several second-order features.
The modulation strength of the total energy is termedréraolo strengthThe

mean and variance of its amplitude (in dB) is recorded as a function of pitch, as is
its amplitude relative to the vibrato strength (expressed in dB/cent). The phase of
the amplitude modulation is compared to that of the frequency modulation, and
the probability of the two being out of phase is recorded. Similarly, the absolute
and relative strength of the spectral centroid modulation is recorded as a function
of pitch, along with the probability of being out of phase with the frequency mod-
ulation. Finally, the absolute and relative modulation strengths and phase for each
of the first six partials is recorded as a function of partial number and of fre-
guency (compiled across all six).
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FIGURE 31.

Pitch range histograms, in 1/6-octave bins, measured from chromatic scales
performed by (a) violin, (b) trumpet, (c) oboe, (d) clarinet, (e) flute, and (f) alto
saxophone. The abscissa is pitch frequency; the ordinate, time (in seconds; each
bin is limited to 10 seconds as described in the text).
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Figure 32 shows the pitch, energy, and centroid waveform for a sample violin
tone, along with the amplitude waveforms for the first six partials. (Note that the
ordinates have been scaled so that each waveform occupies approximately the
same space on the page.) Figures 33-35 show the various vibrato/tremolo features
accumulated from chromatic scales played by the example instruments.
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FIGURE 33.

The effect of vibrato on the harmonic partials, mesaured by amplitude modulation
strength as a function of partial frequency. Data for trumpet, clarinet, and alto
saxophone have been omitted because their chromatic scales were not performed
with vibrato.
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FIGURE 34.

The effect of vibrato on the overall energy and spectral centroid. Data for trumpet,
clarinet, and alto saxophone have been omitted because their chromatic scales
were not performed with vibrato.
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4.4.3 Attack transient properties

It is evident from the available human perceptual data (see Chapter 3) that the
attack transient of an isolated musical tone played on an orchestral instrument
contains crucial information for identifying the particular instrument that gener-
ated the tone. It is not clear, however, which aspects of the attack transient pro-
vide the essential information. Indeed, it is not even clear how to define when the
“transient” ends and the “steady-state” begins. The literature is at best equivocal
on these issues. It has been suggested that the relative onset times of the harmonic
partials are important features, as are their attack rates (perhaps measured in dB/
ms). Little has been written, however, about how to measure these properties
from recordings of real instruments, and | am aware of no published descriptions
of techniques for measuring these properties from recordings made in reverberant
environments such as concert halls.

The techniques described here are necessarily tentative. They were inspired by
visual inspection of the weft representations of tones from the McGill University
Master Samples collection (Opolko & Wapnick, 1987), and they work reasonably
well on the very cleanly recorded tones in that collection. The techniques have
not, however, been adequately tested on a broad data set. | include them here
because they may serve as a useful starting point for other researchers who might
replace them with better techniques.

The signal-processing techniques underlying the attack-transient characterization
performed here were inspired by methods for visual edge detection (Marr, 1982).
The insight is that a sharp rise in acoustic energy corresponding to an attack or
onset is analogous to a change in light intensity corresponding to an edge in an
image. The algorithm begins by measuring the slope and curvature of an energy
signal expressed as a function of time. These are computed ussgftieard
technique (Schloss, 1985), which fits a regression line to local segments of the
signal using a minimum mean-square error criterion, and records its slope as a
function of time. This operation is less susceptible to noise than approximations
based on simple differences (Schloss, 1985). After the slope is computed, the
technique is reapplied to compute the curvature. Estimates are calculated using
seven different regression-line lengths foale3, ranging exponentially from 5

ms to 250 ms. The short windows are suitable for characterizing very rapid
changes, the long windows for slower changes.

When the slope and curvature estimates are complete, the system identifies
neighboring (in scale) zero crossings (of the curvature) that correspond to posi-
tive slopes. The positions of these zero crossings correspond to times at which the
local energy rise rate is at a maximum. For percussive sounds, these times corre-
spond very closely to theerceptual attack timef the sound (Gordon, 1984).

Each set of adjacent zero-crossings is termeskaThe slope curve (at the
appropriate scale) is examined at the time of each rise, and the time range sur-
rounding the rise-time for which the slope is greater than 50% of the slope at the
rise-time is called thése region A regression line is fit to the energy signal in

this region, and its slope and total energy change is noted along with the time
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4.5

index of the rise. When rises occur in close temporal proximity across a range of
cochlear filter channels, their average time index is termedtthek time

The effect of these manipulations is to fit simple linear segments to the energy
curve in the regions where the energy level is increasing substantially. The com-
plexity of the algorithm seems to be necessary to make reliable measurements of
changes that occur on different time scales (for example, a plucked string may
reach full amplitude in 5 ms, whereas a bowed string might require 500 ms—a
difference of two orders of magnitude).

Four time windows (0-50 ms, 50-100 ms, 100-200 ms, and 200-400 ms) are
examined for additional rises after each attack. The probability of a rise occurring
(the “rise likelihood”) is estimated for each filter channel and each time window
by pooling over all attacks. The motivation for this measurement comes from the
observation that, for example, energy in partials produced by bowed-string
instruments rises irregularly in both time and frequency, but energy in partials
produced by brass instruments rises more predictably (earlier at low frequencies,
later at high frequencies).

Finally, therelative onset timés computed for each partial by selecting the last-
occurring (within the 200 ms window) rise from the appropriate filter channel,
calculating the time index at which the regression line reaches within 3 dB of its
maximum, and subtracting the attack time. The mean and standard deviation of
the relative onset time is estimated for each filter channel by pooling over all
attacks.

It is to be stressed that these techniques are tentative. Attack-transient character-

ization has received frustratingly little attention in the acoustics and synthesis lit-
erature. This has the potential to be a fertile area for future research.

The model hierarchy

The recognition system’s knowledge base is a taxonomic hierarchy of source
models of the type described in Section 4.4. In the current implementation, the
taxonomy is specified in advance, rather than being acquired during training. Fig-
ure 35 shows an example taxonomy. The taxonomy has three levels. At the top-
most level is a single category, labeled “All instruments.” At the lowest level are
the individual instrument classes. At the middle level, the instruments are assem-
bled into family groups based on their common excitation and resonance struc-
tures. Thus, the pizzicato (plucked) strings are separated from the bowed strings,
and the muted brass instruments are separated from the non-muted brass instru-
ments. The woodwinds are divided into the flute, clarinet, double-reed and saxo-
phone subgroups, in accordance with the discussion in Section 3.3.3 on page 58.

In the experiments performed in Chapter 6, each training sample is labeled with
the name of the appropriate bottom-level (leaf) node of the taxonomy. During
training, feature values are accumulated (as described in Section 4.4) at the
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appropriate leaf node arad all of its ancestorsBy this method, thdouble-reed
node, for example, accumulates feature data frombale English horn bas-
soon,andcontrabassoorsamples.

Alternately, it is possible to train only the leaf nodes and then to combine their
accumulated feature distributions appropriately to train the more abstract nodes
of the taxonomy. This method can be used to facilitate the comparison of many

different taxonomies.
Violin
- . Viola
Pizzicato strings < cello
Double bass
Violin
Bowed strings Viola
Cello

Double bass

C trumpet

Bach trumpet
Alto trombone
Tenor trombone
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FIGURE 35. Taxonomy used in Computer experiment #3 (Section 6.5) to test the recognition
system.
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CHAPTER 5

5.1

Recognition

As described in Chapter 1, recognition is a process of gathering information
about an object in the environment so as to be able to predict or more reliably
infer its behavior or properties. Recognition was described as a process of catego-
rization at multiple levels of abstraction, typically beginning at some intermedi-
ate level and becoming more specific (or general) according to the needs of the
perceiver. Chapter 4 showed how an audio signal could be transformed through a
series of representations into a high-level sound-source model. In this chapter,
methods for categorization using sound-source modgim&stypesare devel-

oped, and a computational model of the recognition process is presented.

Overview and goals

The recognition framework described here is an amalgam of several different
techniques, with conceptual ties to taxonomic Bayesian belief networks (Pearl,
1988), decision trees (Breiman et al., 1984), spreading activation (Maes, 1989),
and traditional search (Winston, 1992). This mélange is the result of an attempt to
satisfy a conflicting set of desiderata, derived in part from the evaluation criteria
described in Section 2.2:

* RobusthessA system based on the framework should perform well on clas-
sification and identification tasks, exhibiting generalization and handling
real-world complexity. It should be able to classify new examples of any par-
ticular class reliably, given sufficient exposure to other sound sources
belonging to that class. This performance should degrade gracefully as the
available sensory data degrades.
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* Extensibility: The framework should scale well from small to large sets of
object classes; adding new classes should not drastically alter the system’s
performance. It should also be possible to add new features to an object or
class description, or to add new discrimination functions for classification,
and these additions should improve the systems level of performance.

*  Flexibility : The framework should not be dependent upon features that may
not always be available. Its performance on classification tasks should
degrade gracefully as features are removed from consideration, or as the
quality of feature measurements decreasedfl@kibility criterion overlaps
therobustnesgriterion somewhat). The quality (and specificity) of classifi-
cation should vary directly with the effort expended by the system. If only a
rough classification at an abstract level is needed, then less effort should be
required than would be for a more detailed classification.

e Consistency The same basic algorithm should work well for a very brief
exposure to a sound source (e.g., a single musical tone produced by an
instrument), for extended exposure (an entire cadenza), and for the contin-
uum between the two extremes. Presumably, performance on classification
and identification tasks will improve as the degree of exposure increases.

The algorithm developed here is based on a taxonomic hierarchy of sound-source
classes. There is a substantial literature on tree-based classification algorithms,
but unfortunately there are as yet no deep theorems proving their optimality or
competence (Ripley, 1996). There are, however, several justifications for their
use. For example, there is evidence from psychology that humans use hierarchi-
cal structures during the recognition process (Rosch, 1978; Rosch et al., 1976).
Hierarchies are often good models for the structure of the world (Bobick & Rich-
ards, 1986; Bobick, 1987), and hierarchical methods can make better use of
sparse training data than their non-hierarchical counterparts (McCallum et al.,
1998). If during the recognition process, the perceiver can rule out, or prune,
branches of the hierarchy, the classes represented by those branches need never
be considered directly, and this can provide immense computational savings over
non-hierarchical methods; a system with fixed computing power can indirectly
consider a much larger set of possibilities than it could consider directly.

Like a decision-tree classifier, the algorithm described here begins at the root
node of a tree—at the top of the taxonomy—and makes decisions, traversing
from node to node as the classification is performed. There are, however, several
critical improvements that distinguish it from traditional decision trees (Breiman
et al., 1984). In a decision tree, only the leaf nodes are usually interpretable in
terms of coherent object classes, whereas each node of the taxonomic hierarchy
used here represents a meaningful grouping. In a decision tree, the process of
choosing one child node over another from a particular parent node is usually all-
or-nothing, and the decision is usually based on a single feature. Further, the set
of features used at each decision node is specified in advance (usually the fea-
tures are chosen during a training process). In contrast, the algorithm used here is
improvisational. It decides on the fly which features to use, based on the current
context, and it can be configured to employ a range of behaviors from greedy all-
or-nothing decisions to exploring the entire tree and testing every leaf node. The
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5.2

main drawback is that, in the current implementation, the taxonomy must be pre-
specified rather than learned from training data. In contrast, decision trees are
typically learned rather than prespecified.

Definitions and basic principles

In this section, we will ignore the taxonomy and first consider non-hierarchical
classification. To begin, we definecategorizationas a set of non-overlapping
categories that partitions a set of sound sources into non-overlapping groups.
Each category has a singletotype consisting of a sound-source model as
described in Section 4.5. (In general, each category could have multiple proto-
types with only minor extensions to the algorithms described here.) The goal of
the categorization process is to determine which category an unlabeled sound
source belongs to, based on measurements of its acoustic features.

The category prototype can be viewed as a generative probabilistic model for the
features of sounds produced by sound sources in that category. As described in
Chapter 4, the prototype ifmmewith aslotfor each feature. Most of the fea-
tures are assumed to arise from Gaussian processes, and each slot contains the
mean and variance of feature values observed from sound sources of the appro-
priate category. In addition, each slot has an assoatatgarisormethod

which is used to make probabilistic comparisons between models. In general, if
we are given a model corresponding to an unlabeled sound source, the compari-
son methods of each category prototype will calculate the log likelihood that the
feature values observed from the unlabeled sound source could have arisen from
each category. This is accomplished by using Bayes’ rule to invert the probabilis-
tic models, making theaive Bayesissumption that each feature is independent

of every other feature and of the feature’s context given the category identity.
Despite the fact that the independence assumption is strongly violated by the
actual data, the naive Bayes technique is very flexible and works well in many
situations (McCallum et al., 1998). The rest of this section describes the probabi-
listic basis of the algorithm in more detail.

Consider a set dfl categories and a single feature measurement from an unla-
beled sound sourdd. Each category has its own prototype, consisting of the
mean and standard deviation af@mally distributed feature. The probability of
observing a particular valug of featuref, given that it is observed from a mem-
ber of category, is given by

O 1(fp—m, )20
P(f, = fo|Cp) = —= exm—%—i-( — n)F) (18)
2o, U On,j

nj

wherem, ; ands, ; are the mean and standard deviation for the féature , given
membership in category We use Bayes'’ rule to invert this expression, yielding
the likelihood of membership in each category, given the feature observation:
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P(f; = fo| Cn)P(Cp)
N

S P = 1| CIP(CY
k=1

P(Cylf; =fo) = (19)

The denominator in Equation 19 is a normalizing factor that does not change

from category to category, and is thus often ignored in practice. When more than
one feature value is observed, their values are assumed to be independent of each
other (the naive Bayes assumption), and the likelihood values simply multiply.
Defining

Anj = P(f|Cp), (20)

the likelihood of class (ignoring the normalizing factor) is given by
An = P(C)| |- (21)
1

Because the product of likelihoods often results in very small valuks of | itis
more numerically stable to compute these values using logarithms:

lnj = IogP(Cn|fj) (22)

and

I, = zln,j+|OgP(Cn)' (23)
]

Once the likelihood has been calculated for each categony)akenum a poste-
riori estimate of the unlabeled source’s category is simply the category with the
largest probability value. The current implementation of the system described in
this chapter assumes that all categories are equally bketiori, so theP(C,,)

terms are ignored, and the result is i@ximum likelihoo@stimate of category
membership.

5.3 Taxonomic classification

Now consider a taxonomic hierarchy, as illustrated in Figure 36. We define the
structure to be a tree with a single root node, labg&liedthe figure. A node may

have any number of immediadescendenrchildren In the figure, nodé has

three children, labeleB, B, ,am} . If a node has more than one child, it is
called adecision nodelf it has none, it is calledlaaf node In this formulation,

each node represents a category. Nbdepresents the category that contains all
sound sources. Nodd&s B, ,aBg ,represent a partitioning of the sound
sources represented by nod@to three categories. Let the area labeled “Level

1” be acategorizationin the sense defined in Section 5.2. Each category may be
further subdivided into additional subcategories. In the figure, each of the catego-
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riesB; ,B, , andB; is divided into two subcategories, lab&ledCg; - , which
also make up a categorization, labeled “Level 2.” The division into subcategories
may continue indefinitely, or until each category contains only a single sound
source. Within this framework, eatdvelof the taxonomy represents a different
level of abstraction. In the figure, “Level 1" is more abstract than “Level 2.”

Level O 0
Level 1 @ @ @

Level2 @ @ @ @ @

FIGURE 36.

53.1

An example of a taxonomic hierarchy. Each node represents a class or category;
each level is a categorization. Other properties are discussed in the text.

The recognition process starts at the root of the taxonomy and makes a maximum
likelihood decision at each node (as described in Section 5.2), recursively step-
ping through decreasingly abstract levels of the hierarchy. Several variations of
this algorithm have been implemented, each with different strengths and weak-
nesses. In Chapter 6, several of these possibilities are tested and their perfor-
mance levels evaluated. The best approach in a particular scenario depends on
many factors, which will be discussed in Chapters 6 and 7.

Extension #1: Context-dependent feature selection

One of the biggest hurdles in constructing a successful pattern-recognition sys-
tem is dealing with insufficient training data. As the number of parameters in a
probabilistic model increase, so does the amount of training data required to esti-
mate the parameter values; with a fixed amount of training data, additional fea-
tures can cause the performance of a classifier to decrease. This is commonly
known as theurse of dimensionalitgr thebias-variance tradeoffTherrien,

1989). One approach to alleviating the difficulties associated with using a large
number of features is to select a small subset of the features that is best suited to
the task at hand. In a taxonomic classifier, usually there are a small number of
child categories to decide among at any particular node, and intuitively, we
expect that the best feature subset for classification will be different for each set
of categories. For example, although pitch range may be an excellent feature for
distinguishing between violin and double bass, it is not as good for distinguishing
between violin and viola.
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In the system constructed for this dissertation, several approaches for feature
selection were tested. First, we observe that the category prototypes of the chil-
dren of a node can be used directly to estimatedhenceof each feature. The
discriminability of two normal distributions with the same variance is given by

d = n11+n12, (24)

wherem; andm, are the means for the two distributions,cand  is their com-
mon standard deviation. The probability of error of a maximume-likelihood esti-
mator based on a single normal feature is monotonically related itosérseof

d', so atha’ value of a feature increases, so does its usefulness as a feature for
classification.

There are several different ways of calculating analogous measures when the
variances are not equal, such asrtheual informatioror theBhattacharya dis-
tance(Therrien, 1989), but a simpler approach was taken here, using the average
variance

d’ = u (25)

J(03 +03)/2

d" is taken to be thdiscriminating powenf a feature in the context of two cate-
gories. At each node in the hierarchy, the discriminating power of each feature
for each pair of child categories is computed and stored at the node.

A second observation is that as sounds are heard from a sound source whose cat-
egory is not known, some features may not be available at all, and some may be
measured more reliably than others. Intuitively, the system should favor the most
discriminating features that have been most reliably measured. It makes no sense
at all to think of making a decision based on only default feature values for which
there is no supporting evidence.

From these two observations, several algorithmic variations are possible. As
described above, the system computes the discriminating power of each feature
for each pair of nodes under consideration. These numbers are averaged, and the
result is taken to be tremlienceof the feature in the current context. Further, a
reliability estimate—a number between 0 and 1—is computed for each feature
based only on the model created for the sound source being recognized. The fea-
tures can then be ordered by the salience estimate, the reliability estimate, or the
product of the two. The features with the highest scores are the most likely to be
good discriminators, given the curreantext(defined to be the set of categories
currently under consideration). The system can then either choose some subset of
the features or can use all of the features, weighted by their discriminating power.
In the current implementation, this second option is accomplished by multiplying
the log likelihoods returned from the comparison methods by the salience, the
estimated reliability, or both. Thead hoccomputations have the effect of expo-
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5.3.2

5.3.3

5.4

nentiating the likelihood estimates and are not based on theoretical motivation.
Their practical usefulness will be evaluated in Chapter 6.

Extension #2: Rule-one-out

If some sort of feature selection is used in the system then the calculations of fea-
ture salience may depend strongly on the particular set of categories under con-
sideration. When more than two categories are being considered, it may be
possible to do better than just choosing a set of features and computing a maxi-
mume-likelihood estimate of category membership. The algorithm adopted here is
arule-one-outstrategy. Given a set &fcategories, the system identifies the most
salient features, computes the likelihood scores, and removes from consideration
the category with the least likelihood. After a category is ruled out in this manner,
the feature salience scores are recomputed in light of the new context and the
algorithm repeats. With this strategy, the classifier shifts the features during the
process, always choosing a suitable subset for the current context.

Extension #3: Beam search

One of the most significant drawbacks of hierarchical classifiers is that an error
made at one level cannot be fixed by choices made later at more specific levels. If
the classifier always chooses the maximum-likelihood category at each node, the
probability of a correct classification is equal to the product of correct-classifica-
tion probabilities at each node from the root of the tree to the leaf node corre-
sponding to the “correct” classification. This can be a serious problem because
the prototypes for the most abstract classes are necessarily the most vague, if
only because they comprise many different subcategories.

To deal with this problem, the system has been equipped Wi search
algorithm (Winston, 1992), which expands the tesbdes at each level of the
hierarchy until the leaf nodes are reached, at which time a final maximum-likeli-
hood decision is made. This alleviates the error-compounding problem of the
greedy branch-selection case. Team widthb, can be varied from one (greedy
branch-selection) to infinity (full search of the entire tree), trading classification
performance for computational expense. If the maximum-likelihood decisions
made at the most abstract nodes of the hierarchy are generally reliable, a beam
width value of two or three is a reasonable compromise.

Strengths of the approach

It is worth reflecting upon how well the algorithm described above is likely to
satisfy the desiderata listed at the beginning of this chapter. Unlike many pattern-
recognition techniques, the algorithm does not depend on a fixed set of features
for classification. Rather, it uses whatever information is available to make the
best decision it can. For this reason, the algorithm’s performance will degrade
gracefully—rather than failing altogether—when particular features are not avail-
able. The results of the experiments in Chapter 6 will show that, given a suitable
set of features and comparison functions, the system generalizes from a small
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number of training examples and can robustly classify previously unheard exam-
ples from learned sound-source classes. This satisfieskibhstnessriterion.

Systems based on the algorithm described above can easily be augmented with
new features and new sound-source classes. Adding a new feature requires only
the addition of a new slot (with its corresponding comparison function) to the
description of each affected sound-source class. This can take place after the sys-
tem has already been trained, and default slot values could—with only minor
extensions to the algorithm—be gradually replaced by sensory data as sounds are
recognized using other features. Adding a new sound-source class requires only
the creation of a class prototype and the introduction of appropriate links to par-
ent and child nodes. Again, this can take place after the system has already been
trained; the only overhead is that pair-wise feature-salience ratings will have to
calculated at the parent node, and some may have to be re-calculated at its ances-
tors. This satisfies thextensibilitycriterion.

Because the classification process operates in stages, traversing decision nodes
from the abstract to the specific, the algorithm scales well to very large numbers
of sound-source classes, as long as reliable classifications can be made at each
node. Consider, for example, a system WtHeaf” nodes, representing the par-
titioning of all sound sources into the most specific set of classes that could be
needed in the recognition procesa\lis very large, it would be prohibitively
expensive to directly compare an unlabeled sound-source model to every proto-
type in order to make a classification decision. If, however, each node of the hier-
archy hak children (on average), the greedy branch-selection algorithm requires
that onlyklog, N comparisons be made—a huge savings for large valués of

The main drawback is that classification errors in the greedy algorithm com-
pound; these are addressed by the beam search algorithm, which trades classifi-
cation performance for computational expense. The multi-stage classification
process is particularly advantageous, however, if fine-grained categorization is
not always necessary. Often, categorization at a more abstract level suffices for
the task at hand, and in such cases, even feweklitigyN comparisons need be
made. The degree of effort required to make a decision is directly related to the
logarithm of the number of categories that must be considered. This and the abil-
ity to choose appropriate features for a given context satisfiéletitslity crite-

rion.

The final desideratuntonsistencyis dependent on the implementation of the
feature comparison methods and their ability to estimate their expected utility,
given a particular set of sensory data. If the comparison functions are able to
accurately gauge their ability to discriminate among the children of a node, the
system will automatically choose the best features to make each particular deci-
sion, given the information at hand.
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5.5 An example of the recognition process

To illustrate the basic recognition algorithm and the effects of some of the exten-
sions described in the previous section, consider the simplified musical-instru-
ment taxonomy shown in Figure 37. In the example, the classifier is configured to
use context-dependent feature selection based on the adéesagminating
powergiven thecurrent contextwith the rule-one-out and beam search exten-
sions (the beam width is set to two) described in Section 5.3.

When a new, unclassified, recording of a sound source is presented to the system,
feature measurements are assembled into a frame representation. For example, an
isolated tone produced by playing a violin with vibrato might give rise to the set

of feature slots shown in Table 4.

5.5.1 Step one
The recognition process begins at the “All instruments” node. The current context
consists of the node’s children: the bowed string, brass, and double-reed groups,
as shown in Figure 38. The model computes discriminating-power measurements

based on the stored prototypes for these categories. The featured with values
greater than one are shown in Table 5.

) Violin
Bowed strings < Viola
_ C trumpet
All instrumen <
instruments Brass French horn
Double reeds <: Oboe
Bassoon

FIGURE 37. The simplified taxonomy used to illustrate the recognition process.

Bowed strings
All instruments Brass

Double reeds

FIGURE 38. The current context at the beginning of Step one. The categories under
consideration are Bowed strings, Brass, and Double reeds (shown in italics).
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Feature

Details

Pitch range

1 measurement (the note falls in one 1/6-
octave band)

Spectral centroid

1 measurement (at the pitch frequency)

Average relative spectrum by
harmonic number

6 measurements

High-frequency rolloff rate

1 measurement (at the pitch frequency)

High-frequency cutoff frequency

1 measurement (at the pitch frequency)

Spectral irregularity

5 measurements (in various frequency bal

Number of zeros

1 measurement (at the pitch frequency)

Tremolo: absolute and relative
strength and phase

1 measurement each (at the pitch frequenc]

Centroid modulation: absolute and
relative strength and phase

1 measurement each (at the pitch frequenc]

Individual harmonic AM: absolute
and relative strength and phase

6 measurements each (at frequencies of fir
Six partials)

Relative onset time by partial fre-
quency

6 measurements (at frequencies of first six
partials)

“Rise likelihood” by frequency and
post-onset time

30 measurements (in 10 frequency bands 4
3 post-onset time windows)

nd

TABLE 4. Features measured from an example violin tone.
Number of
Feature Average d" measurements
chosen
Relative onset time by partial frequency 3.514 5
Centroid modulation (relative phase) 2.395 1
Spectral irregularity 1.378 4
Ind|V|_duaI harmonic modulation 1.208 4
(relative phase)
Tremolo (relative strength) 1.177 1
Tremolo (relative phase) 1.175 1
Ind|V|_duaI harmonic modulation 1166 3
(relative strength)
TABLE 5. Features with d” values greater than one, given the current context at Step one.
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55.2

Considering that the stimulus is an isolated tone, it is not surprising that the most
salient features are related to the tone’s attack (relative onset time by patrtial fre-
guency), and to vibrato (centroid and tremolo features). As discussed in Chapter
3, bowed string attacks are much slower than brass or double-reed attacks. Also,
bowed-string instruments have much more complicated resonance structures than
the brass and double-reed instruments, and vibrato highlights this difference.

Log likelihood values for the three categories are computed based on the features
(weighted by thed” values). The double-reed category has the smallest likeli-
hood value and is ruled out.

Step two

At the beginning of Step two, there are two categories under consideration, the
bowed strings and brass groups. Because the beam width is set to two, these cate-
gories are expanded, and their children become the new context. The current con-
text therefore consists of the violin, viola, C trumpet, and French horn groups, as
shown in Figure 39. Features widlli ~ values greater than one are shown in Table
6.

As is evident from a comparison of Tables 5 and 6, the relative salience of the
various features has shifted considerably. The average discriminating power of
the relative onset time by partial frequency has been cut in half (but is still
salient), and the spectral centroid has become very salient, as has the spectral
irregularity (also evidenced by the number of zeros). As suggested by the discus-
sion in Chapter 3, the violin and viola have much more irregular spectra and
longer attacks than the C trumpet and French

; Violin
B trin < :
owed strings Viola
All instruments Brass < C trumpet
French horn

-Detblereeds—

FIGURE 39.

The current context at the beginning of Step two. The categories under
consideration are Violin, Viola, C trumpet, and French horn (shown in italics).
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Number of
Feature Average d" measurements
chosen
Centroid modulation (relative phase) 4.156 1
Centroid modulation (absolute strength) 3.992 1
Spectral centroid 3.352
Spectral irregularity 3.070
Number of zeros 2.505
Relative onset time by partial frequency 1.615 2
Centroid modulation (relative strength) 1.541 1
Ind|V|_duaI harmonic modulation 1385 4
(relative strength)
Tremolo (relative strength) 1.042 1
Rise I|keI|h90d by frequency and 1021 ”
post-onset time
Average relative spectrum by harmonic number 1.008 1

TABLE 6. Features with d” values greater than one, given the current context at Step two.
horn. The brass instruments tend to sound “brighter” than the string instruments
and thus have higher spectral centroid measurements.
Log likelihood values for the four categories are computed based on the features
(weighted by thed” values). C trumpet has the smallest likelihood value, and it
is ruled out.
5.5.3 Step three

At the beginning of Step three, the current context consists of the violin, viola,
and French horn groups, as shown in Figure 40. Featuresl{vith

than one are shown in Table 7.

values greater

. Violin
Bowed strings < Viola
All instruments Brass 1
French horn
-Betbte-reeds—

FIGURE 40. The current context at the beginning of Step three. The categories under
consideration are Violin, Viola, and French horn (shown in italics).
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Number of
Feature Average d" measurements
chosen
Spectral irregularity 1.993 4
Spectral centroid 1.320 1

TABLE 7.

554

Features with d” values greater than one, given the current context at Step three.

At Step three, only two features remain salient (and their discriminating power is
somewhat reduced). Likelihood values for the three categories are computed
based on the features (weighted by dfe  values). French horn has the smallest
likelihood value, and it is ruled out, thereby ruling out the brass category as well.

Step four

At the beginning of Step four, the current context consists of the violin and viola
groups, as shown in Figure 41. None of the features tftave  values greater than
one (the largest is 0.267, see Table 8), highlighting the difficulty of discriminat-
ing a violin from a viola based on only one isolated tone. The system computes
the likelihood values for the two categories (weighted bydthe  values). Viola
has the smaller likelihood and is ruled out. The sample is correctly classified as
violin.

. Violin
B < .
owed strings Viola
All instruments Brass— <
Frereh-hora—

-Betble-reeds—

FIGURE 41.

The current context at the beginning of Step four. The categories under
consideration are Violin and Viola (shown in italics).
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Number of

Feature Average d" measurements
chosen
Tremolo (relative strength) 0.267 1
oo s :
Centroid modulation (relative strength) 0.177 1
Spectral irregularity 0.169 4
e oo %" :
Spectral centroid 0.155
Number of zeros 0.134 1

TABLE 8. Features with the largest values of d", given the current context at Step four.
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cuarrer 6 EValuation

6.1

Chapters 4 and 5 presented the components of a sound-source recognition system
tailored to the recognition of solo monophonic orchestral musical instruments. In
this chapter, the system is tested on a variety of classification tasks, and its per-
formance is juxtaposed with that of human listeners and of other artificial sys-
tems.

The chapter has six sections. First, the sets of recordings used to train the recog-
nition system and to test both the system and human experimental subjects are
described. Second a human listening experiment designed to evaluate human
abilities at recognizing musical instruments is described. The next three sections
describe three experiments that test the recognition system under various condi-
tions. Finally, the results are related to previous research in musical instrument
recognition by both humans and machines.

A database of solo orchestral instrument recordings

Recordings for use during the evaluation process were obtained from three
sources: a commercial sample library, a number of commercial compact discs,
and a small set of recordings made especially for this project. An effort was made
to collect solo recordings of the 27 orchestral instruments in Table 9. Whenever
possible, multiple, independent recordings of performances by different artists
were gathered. In all, more than 1500 isolated tones and more than 2 %2 hours of
musical performance were assembled. All recordings were re-sampled to 32 kHz
using professional-quality software before presentation to either human or
machine.
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Violin Bassoon Trumpet

Viola Contrabassoon Cornet

Cello B-flat clarinet Fluegel horn
Double bass E-flat clarinet French horn
Flute Bass clarinet Alto trombone
Alto flute Soprano saxophone Tenor Trombone
Piccolo Alto saxophone Bass trombone
Oboe Tenor saxophone Euphonium
English horn Baritone saxophone Tuba

TABLE 9. The 27 orchestral instruments considered in this study.

The first source of recordings was the McGill University Master Samples
(MUMS) collection (Opolko & Wapnick, 1987). The collection consists of a

series of chromatic scales performed on a variety of musical instruments (over
most of their playing ranges) by professional musicians in a recording studio.
According to the producers, careful attention was paid to making recordings that
were “maximally representative” of the various instruments. For the studies pre-
sented in this chapter, a subset of the collection was used, consisting of chromatic
scales by the instruments shown in Table 10.

The second source of recordings was the MIT Music Library’s compact disc col-
lection (and a test CD produced by the European Broadcast Union). As is evident
from Table 11, which details the number of independent recordings and total
duration of the samples acquired for each instrument, it was much easier to find
solo recordings of some instruments than others. The recording quality varies
greatly from sample to sample, ranging from recordings made in modern studios
to decades-old recordings made in highly reverberant concert halls with high lev-
els of ambient noise.

To augment the collection of recordings described above, several student per-
formers were hired from within the MIT community. Samples were recorded
directly to DAT (at 48 kHz) in a converted studio control room, using a high-
quality cardioid microphone placed approximately 1 meter in front of the per-
former. These recordings are also catalogued in Table 11.
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Instrument Notes
Violin 4 scales: bowed w/vibrato, muted, martele, pizzica
Viola (see violin)
Cello (see violin)
Bass (see violin)
Flute 2 scales: normal and flutter-tongued
Alto flute 1 scale
Piccolo 2 scales: normal and flutter-tongued
Oboe 1 scale
English horn 1 scale
Bassoon 1 scale
Contrabassoon 1 scale
B-flat clarinet 1 scale
E-flat clarinet 1 scale
Bass clarinet 1 scale

Soprano saxophone

1 scale (partial range only)

Alto saxophone

1 scale (partial range only)

Tenor saxophone

1 scale (partial range only)

Baritone saxophone

1 scale (partial range only)

C trumpet

2 scales: normal, and with harmon mute (stem od

Bach trumpet

1 scale

French horn

2 scales: normal and (hand) muted

Alto trombone

1 scale

Tenor trombone

2 scales: normal and (straight) muted

Bass trombone

1 scale

Tuba

1 scale

TABLE 10.

Description of the MUMS samples (isolated tones) used in this study. Each
sample consists of a chromatic scale performed by a professional musician in a

recording studio.

A database of solo orchestral instrument recordings
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Number of
Instrument duTrggn (p€$;;Zr$;;ZI/ Notes
student)
Alto trombone 300 s 1/0
Bassoon 406 s 2/1 39 s (authentic/period instrument);
14 s; 353 s
Bass clarinet 9s 1/0
B-flat/A clarinet 1242 s 5/1 323 s; 139s; 300 s; 300 s; 15 s; 165 s
Cello 627 s 2/1 128s; 33 s; 466
Double bass 31ls 1/0
English horn 190 s 2/0 181s;9s
Euphonium 688 s 0/1
Flute 2147 s 7/1 669 s; 439s; 35s; 31 s; 300 s; 300 s;
19s;354 s
French horn 382s 2/1 250s;1155s; 17 s
Oboe 460 s 2/1 53 s (authentic/period instrument)
21s;386s
Piccolo 7s 1/0
Saxophone (type not known 14 s 1/0
Soprano saxophone 183 s 1/0
C Trumpet 454 s 2/2 64 s;13s; 224 s5; 153 s
Tenor trombone 299 s 2/0 289s;10s
Tuba 19s 1/0
Viola 452 s 3/1 555s;200s;24s; 173 s
Violin 1451 s 5/1 572s;95s;300s; 129 s; 30 s; 501 8

TABLE 11. Description of the recordings assembled from compact discs and from student
performers. The student recordings were made in the control room of a recording
studio (a space with very little reverberation); the professional recordings vary
greatly in the levels of ambient reverberation and noise. Source material ranged
from classical repertoire to 20th century art music and jazz.
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6.2

Testing human abilities

6.2.1

Although the experiments described in Section 3.1 reveal some of the quirks and
qualities of human instrument-recognition abilities, none of them employed a
wide range of natural stimuli. Only Kendall (1986) used melodic phrases, and his
stimuli were played on only three different instruments, each from a different
family. The results cited from the isolated-tone studies are difficult to interpret, in
part because of variations in experimental procedure (e.g., free-response versus
forced-choice) and range of stimuli. In order to fairly compare the performance
of an artificial system with that of human listeners, it is necessary to test human
subjects with experimental protocols equivalent to those used to test the artificial
system.

Experimental method

This section describes the method used in an experiment designed to test the abil-
ity of expert human listeners to recognize musical instruments. The experiment
was divided into two components. Like nearly all of the previous musical instru-
ment recognition experiments, the first component employed single isolated
musical tones as stimuli. The second component employed more ecologically rel-
evant stimuli consisting of ten second fragments of solo musical performances.

Fourteen human subjects participated in the experiment. Each had substantial
previous exposure to the instruments of the orchestra. At the time of the experi-
ment, subjects 1-9 were currently practicing an orchestral instrument or perform-
ing with orchestral ensembles (subjects 8 and 9 were vocalists). Subjects 10-11
had previously played in orchestras, but not in the last five years. Subjects 12-13
had never played in an orchestra but had substantial experience listening to
orchestral music. Subject 14 had never performed in an orchestra but had exten-
sive experience as a recording engineer for professional orchestras.

The experimental sessions were automated using a computer program written
especially for this task. The program presented the trials comprising each particu-
lar session in random order and recorded the subject’s responses in a data file.
Stimuli were played back from compact discs (over headphones) under the con-
trol of the program. Each experimental session took place in a quiet room, free
from interruption.

Every subject participated in two sessions, lasting approximately 30 minutes
each. The first session tested the subjects’ classification abilities with isolated
tones, the second with ten second segments of solo performance taken from com-
mercial recordings or specially recorded for this experiment. Each session was
divided into separate trials, with one recording (a tone or a solo segment) tested
on each trial (137 isolated tones and 102 solo segments were tested). On each
trial, the subject had the opportunity to listen to the test stimulus as many times as
desired. The subject was subsequently required to choose a response from a list
of 27 instrument names (reproduced in Table 9 on page 118). Each subject was
informed that stimuli might not be evenly distributed among the 27 categories,
and that he or she should use their best judgment on each trial individually rather
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than attempt to distribute responses uniformly. Prior to participation, each subject
confirmed having prior exposure to each of the 27 instruments in the response
list.

The recordings used in the first experiment were taken from the McGill Univer-
sity Master Samples collection (Opolko & Wapnick, 1987). Tones at ten different
pitches were used, and the set of instruments varied from pitch to pitch (in large
part because playing range varies from instrument to instrument, but also due to
quirks of the available set of recordings). The collection of pitches and instru-
ments is summarized in Table 12.

Pitch (Hz)

Number
of tones

Instruments

64.7 Hz

8

cello (vibrato; muted with vibrato; pizzicato), double bass (v; m; p), bassoon, tuba

91.4 Hz

12

cello (v; m; p), double bass (v; m; p), bassoon, French horn (normal; muted),
tenor trombone (normal; with mute), tuba

182.4 Hz

19

viola (v; m; p), cello (v; m; p), double bass (v; m; p), English horn, B-flat clarinet,
bassoon, trumpet (normal; with Harmon mute), French horn (normal; muted),
tenor trombone (normal; with mute), tuba

257.7Hz

23

violin (v; m), viola (v; m; p), cello (v; m; p), double bass (v; m; p), flute, oboe,
English horn, B-flat clarinet, bassoon, trumpet (normal; with Harmon mute),
“Bach” trumpet, French horn (normal; muted), tenor trombone (normal; with mute), tuba

347.6 Hz

21

violin (v; m), viola (m; p), cello (v; m; p), flute, oboe, English horn, B-flat clarinet,
trumpet (normal; with Harmon mute), “Bach” trumpet, French horn (normal; muted),
tenor trombone (normal; with mute), tuba

440.0 Hz

21

violin (open string; muted open string; fingered with vibrato, muted with vibrato),
viola (v), cello (v), flute, oboe, English horn, B-flat clarinet,

trumpet (normal; with Harmon mute), “Bach” trumpet, French horn (normal; muted),
tenor trombone (normal; with mute).

647.0 Hz

13

violin (os; mos; tv; mv), viola (v), cello (v), flute, piccolo, oboe, B-flat clarinet,
trumpet (normal; with Harmon mute), “Bach” trumpet

979.0 Hz

11

violin (v; m), viola (v; m), flute, piccolo, oboe, B-flat clarinet,
trumpet (normal; with Harmon mute), “Bach” trumpet

1383.0 Hz

violin (v; m), flute, oboe, “Bach” trumpet

2094.0 Hz

violin (v; m), flute, piccolo

TABLE 12.

List of isolated tones used in the first experiment, arranged by pitch.

The recordings used in the second experiment were of eclectic origin, as
described in Section 6.1. An attempt was made to present multiple recordings of
each instrument, as played by different performers. It was difficult, however, to
find examples of some instruments (or to find local performers willing to be
recorded), so the number of recordings (and the number of independent perform-
ers) varies by instrument. In almost all cases, two recordings were used per per-
former. If a particular recording was longer than ten seconds, only the first ten-
second segment was played for the subjects. Typically, the segment contained a
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melodic phrase, often taken from the cadenza of a concerto; a few segments con-
sisted of major-triad arpeggios. All segments were intended to be typical of a
musical style commonly performed on the particular instrument. Table 10 sum-
marizes the number and sources of recordings used in the listening experiment.

Instrument

Total
number of
samples

Number of
professional
performers

Number of
student
performers

Alto trombone

2

Bassoon

Bass clarinet 1
B-flat clarinet 13
Cello
Double bass 2

English horn

\S]

Euphonium

Flute

—_
w

French horn

Oboe

Piccolo

Saxophone (?)

Soprano Saxophone

Trumpet

Tenor trombone

Tuba

COIN| R[N~ OO

Viola

N | W | =[] === NN | —= ||| =N~
— = OO N ||| O |R|m|= === ~=|O

Violin

—
\S]

TABLE 13.

Summary of the stimuli used in the second experiment.

Of the 27 instruments in the response list, eight instruments were absent alto-
gether from the stimulus sets of both experiments (alto flute, E-flat clarinet, con-
trabassoon, cornet, fluegel horn, bass trombone, tenor saxdphodearitone
saxophone). Bass clarinet, alto trombone, euphonium, soprano saxophone, and

1. Two of the samples, which came from a collection of short solo passages, were labeled
only “saxophone.” | judged them to most likely have been played ait@saxophone,
and that was arbitrarily deemed to be the correct response. It turns out that 50% of the
subjects judged it to betanorsaxophone, and only 28.6% responétd. Neither
interpretation changes the overall results significantly.
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6.2.2

alto saxophone were also absent from the isolated tone stimulus set used in the
first experiment.

Results

A confusion matrix for the isolated tone stimuli, pooled across all subjects, is
shown in Table 8. Table 16 summarizes the results by family. Pooling across all
subjects in the isolated-tone condition, the exact instrument was selected on
45.9% of trials, and an instrument from the correct family on 91.7% of trials (a
subject would score 3.7% and 20.2% on these statistics by guessing randomly).
In this condition, a within-family error is 5.5 times more likely to occur than a
between-family error. All of these results are strongly significant. For the full
confusion matrix, pooled across all subjeqt%(,lS, 26) = 8837 p «0.001 )(2 (
values for individual subjects were all strongly significant using this test). Col-
Ia?sed across instrument families (still pooled across all subjects),

X (4,5) = 5334 p «0.001 (again, each individual subject result was strongly
significant).

Six of the subjects were not able to reIiabIX distinguish double-reed instruments
from clarinets in the isolated tone conditiql.  tests using only trials on which a
double-reed or clarinet instrument was presented or responded were insignificant
for subjects 4, 7, 9, 11, 13, 14. Results for the other subjects ranged from signifi-
cance levels 0p <0.05 t@<0.001

A confusion matrix for the ten-second excerpt stimuli, pooled across all subjects,
is shown in Table 15. Table 17 summarizes the results by family. Pooling across
all subjects in the ten-second excerpt condition, the exact instrument was selected
on 66.9% of trials, and an instrument from the correct family on 96.9% of trials
(a subject would score 3.7% and 18.1% on these statistics by guessing ran-
domly). In this condition, a within-family error is 9.7 times more likely to occur
than a between-family error. All of these results are strongly significant. For the
full confusion matrix, pooled across all subje(xt%(l& 26) = 13236 p «0.001

()(2 values for individual subjects were all strongly significant using this test).
Collapsed across instrument families (still pooled across all subjects),

)(2(5, 5) = 6477 p «0.001 (again, each individual subject result was strongly
significant).

In the ten-second excerpt condition, only one subject (#13) could not reliably dis-
tinguish double-reed instruments from clarine(t?s. tests for all other subjects
were significant at thep(< 0.001 ) level, except for subject #14

(x*(1, 1) = 8.6, p<0.005).

A summary of the results from both conditions is shown in Figure 42, along with
results for a hypothetical “random guesser.” Performance pooled across all sub-
jects is summarized in Table 18. Table 19 illustrates the overall performance for
each individual instrument in the two conditions.
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2]

2 /%‘E’o § §
(o) = 2] o
CRN 7 @ °© . 5
G/)/ QO ? % 'g g 9 o
S E & 3 8 5 3
O o O O T u»
Strings [97.8 0.4 04 0.3 04 0.7
Brass | 1.3 864 75 25 2.3
Doublereeds | 2.0 5.6 73.5 10.7 2.6 5.6
Clarinets 3.6 13.1 72.6 10.7

Flutes | 0.7 0.7 98.6
Totals [46.3 28.1 10.6 5.3 7.7 2.1

TABLE 16. Family confusion matrix for the isolated tone component of the experiment.
Entries are expressed as percentages.
2]
Q g 4
o) % g (%) S
% 2 n o O <
“\N%, & 9 3 £ g8 %
%o > £ 8 3 8 5 %
n m O O T u
Strings [99.7 0.3
Brass 98.8 0.9 0.3
Doublereeds | 0.4 1.389.3 6.7 2.2
Clarinets | 0.5 4.6 94.4 0.5
Flutes | 0.4 0.4 99.1
Saxophones 3.6 96.4
Totals [27.6 23.7 14.8 14.1 155 4.2
TABLE 17. Family confusion matrix for the 10-second phrase component of the experiment.

Entries are expressed as percentages.
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Ten second
Isolated tone segment
Condition Condition
% Exact responses 459 66.9
% correct family 91.7 96.9
P (within-family error) 55 97
P (between-family error)

percent correct classifications

100

80

60

40

20

TABLE 18. Summary of human performance in the two conditions, pooled across all subjects.

Isolated tones

Isolated tones, within-family confusions tolerated
10-second segments

10-second segments, within-family confusions tolerated

OO@E

2 3 4 5 6 7 8 9 10 11 12 13 14 random
subject number guessing

FIGURE 42. Performance by subject on the two components of the experiment. Separate
results are shown for identification of the correct instrument, and of the correct
family group.
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ROR| <0 | e
Instrument tone
10-second Isolated condition
excerpts tones
Flute 79.5 49.6 [2]
Trumpet 72.3 62.6] [1]
B-flat clarinet 70.0 47.2 [3]
Tuba 70.0 6.6 [14]
Bassoon 69.5 30.8 [8
Double bass 63.4 28.4 [
Violin 57.6 31.8 [6]
Cello 57.4 32.4 [5]
Oboe 54.9 38.5 [4]
French horn 52.1 23.3 [17]
Piccolo 42.9 28.1 [10]
Tenor trombone| 42 .4 13.7 [13]
Euphonium 35.3 - -
Bass clarinet] 34.6
Viola 32.9 21.2 [12]
English horn 24.7 31.3 [7]
Alto saxophone 20.0
Alto trombone 11.8 - -
Soprano saxophonge 6.5 - -

TABLE 19.

“Recognizability” scores by instrument, calculated as the number of trials in which
the instrument was correctly identified divided by the total number of trials in which
the instrument appeared as either a stimulus or a response. Instruments are
sorted by their rank in the ten-second excerpt condition.
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6.2.3 Discussion

There are several statistics from this experiment that can be compared to previous
studies, including correct-response rate and within- and between-family confu-
sion rates. Pooling across all subjects in the isolated-tone condition, the exact
instrument was selected on 45.9% of trials, and the correct family on 91.7% of
trials (a random guesser would score 3.7% and 20.2% on these statistics). In this
condition, a within-family error is 5.5 times more likely to occur than a between-
family error. Success rates from previous studies include 35-57% exact answers
on a free-response task (Eagleson & Eagleson, 1947), 85% on an 8-way forced-
choice task (Strong & Clark, 1967), and 59% on a 10-way forced-choice task
(Berger, 1964). Strong’s subjects identified the correct family on 94% of trials
(thus, within-family confusions were 1.5 times more likely than between-family
confusions). Berger's subjects identified the correct family 88% of the time
(within-family confusions were 2.4 times more likely than between-family con-
fusions).

Pooling across all subjects in the ten-second-exceprt condition, subjects
responded with the exact instrument on 66.9% of trials, and with the correct fam-
ily on 96.9% of trials (a random guesser would score 3.7% and 18.1% on these
statistics). In this condition, a within-family error is 9.7 times more likely to

occur than a between-family error, rather strongly highlighting the perceptual
salience of the instrument families.

Previous studies suggest that certain small groups within families are particularly
difficult to distinguish. Within the string family, for example, Robertson (1961)
reported common confusions between violin and viola, and between cello and
double bass. The confusion matrices from both components of the current exper-
iment (Tables 8 and 15) exhibit a strong diagonal band, with each string instru-
ment commonly confused with its neighbors in size. Confusions occurred
particularly often between violin and viola. Viola samples were also very often
classified as cello, although the converse does not hold.

Robertson (1961) also reported frequent confusions between instruments of the
brass family, particularly between instruments of similar size. Saldanha and
Corso (1964) reported common confusions of trumpet with cornet, saxophone
(not a member of the brass family!), and French horn; and trombone with French
horn, saxophone, and trumpet. Berger (1964) reported common confusions
between trumpet and cornet; and French horn, baritone, and trombone. Schloss-
berg (1960) reported confusions between trombone and trumpet; and French horn
and trombone. In the ten-second-excerpt data, brass instruments were commonly
confused. Trumpet samples were classified correctly on 76.8% of all trials, but
were confused with cornet (18.8%), fluegel horn (2.7%), French horn (0.9%),
and clarinet (0.9%). Tuba samples were classified correctly on 75.0% of trials,
but were confused with Euphonium (14.3%), bass trombone (7.1%), and French
horn (3.1%). Euphonium samples were classified correctly on 42.9% of trials,
and were confused with fluegel horn (17.9%), French horn (14.3%), tenor trom-
bone (14.3%), bass trombone (3.6%), tuba (3.6%), and English horn (3.6%).
These statistics do not suggest particularly salient subgroups, but it is interesting
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to note that across all trials, most mistaken classifications were as French horn,
but French horn was misclassified relatively infrequently.

Within the double-reed family, frequent confusions between oboe and English
horn were reported by Robertson (1961) and Saldanha and Corso (1964). The
data from this experiment support the oboe-English horn confusion pair, though
oboe was selected much more often than English horn. Subjects 13 and 14
accounted for nearly all (21) of the confusions of the double-reed instruments
with the clarinets (subjects 11 and 7 contributed made three such confusions; no
other subjects made any).

The clarinet family did not exhibit any strong subgroups, except possibly
between B-flat and E-flat clarinet. The E-flat clarinet is used much less fre-
qguently than the other clarinets in performances, and no recordings of it were
used in this study. Similarly, the flute family did not exhibit strong subgroups,
except possibly between flute and alto flute. Again, however, no recordings of the
alto flute were used, and only one piccolo recording was available, so no strong
conclusions can be drawn. So few recordings of saxophones were used in the
study that analysis of confusions is impossible.

Several previous studies indicated that some instruments are easier to recognize
than others, but such effects appear to depend rather strongly on the details of the
experiment. For example, Eagleson and Eagleson (1947) found that violin and
trumpet were easiest to identify in a free-response task, and that alto-horn, pic-
colo, and flute were the most difficult. It is likely, however, that the violin score
was elevated because it is the most well-known string instrument and no other
strings were used as stimuli. Trumpet is similarly well known, and alto horn (a
relatively rare instrument) was the only other brass instrument used in the study.
Piccolo and flute may have been confused with each other, leading to poor identi-
fication scores.

Saldanha and Corso (1964) found that B-flat clarinet, oboe, and flute tones were
most easily classified, and that violin, cello, and bassoon tones were most diffi-
cult. Their study, however, did not include English horn or piccolo tones, which
may have elevated the oboe and flute scores respectively. The fundamental fre-
guencies they tested were very high in the bassoon playing range (and relatively
high in the cello playing range as well), possibly contributing to its low score.

Berger (1964) found that oboe tones were easiest to classify, and that flute and
trumpet tones were most difficult. His study, however, included no double-reeds
other than oboe, thereby elevating its score, but several brass instruments, includ-
ing the cornet, which is easily confused with trumpet.

The correct-classification scores for the instruments used in the current study are
shown in Table 19 on page 129, sorted in decreasing order based on the ten-sec-
ond-excerpt portion of the data. Scores for the isolated-tone data are shown
alongside. Flute, trumpet, and B-flat clarinet scored well in both conditions.

Viola and tenor trombone scored poorly in both conditions.
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6.3

A final point of comparison with previous studies is the relative performance of
individual subjects. Figure 42 on page 128 shows the performance of each sub-
ject on the two conditions, with separate scores for identifications with and with-
out toleration of within-family confusions. Only one subject (#4) was a
professional musician; the others were university graduate and undergraduate
students. Interestingly, subject #1, who scored highest on the isolated-tone classi-
fication task, is the only subject with “perfect pitch”. In a post-experiment inter-
view, he admitted to using rather exact knowledge of the pitch-ranges of the
various instruments to improve his judgments, particularly in the isolated-tone
condition.

Computer experiment #1: Isolated tone pilot study 1

While the recognition architecture described in Chapters 4 and 5 was under
development, a short pilot study was conducted to test some of the feature-extrac-
tion techniques described in Chapter 4 and to evaluate their usefulness for recog-
nizing the sources of isolated musical tones. 1023 tones were selected from the
MUMS collection, covering the full pitch ranges of fourteen instruments (violin,
viola, cello, bass, flute, piccolo, B-flat clarinet, oboe, English horn, bassoon,
trumpet, trombone, French horn, and tuba) playing several different articulation
styles (e.g., pizzicato, bowed, muted).

For this study, 31 one-dimensional features were computed from the weft repre-
sentation of each instrument tone. These included the pitch, spectral centroid,
attack asynchrony (both the relative onset times of partials at different frequen-
cies, and their overall variation), ratio of odd-to-even harmonic energy (based on
the first six partials), and the strength of vibrato and tremolo. Many of the 31 fea-
tures were subtle variations of other features included in the set, measured in a
slightly different manner. The feature set was intended to be representative of the
features described in Chapter 3 but certainly not exhaustive. For example, the
shapeof the spectral envelope was not considered at all in this study. Table 20
contains a list of the features that were extracted.

Several instrument-class taxonomies were constructed and various pattern-recog-
nition techniques were used to build statistical classifiers at each node. Statistical
classifiers require a set of training data whose size grows exponentially with the
number of feature dimensions, and with 31 features, the necessary data set size is
much larger than what was available. To reduce the training requirements, Fisher
multiple discriminant analysis (McLachlan, 1992) was employed at each node of
the taxonomy. The Fisher technique projects the high-dimensional feature space
into a space of fewer dimensions (the number of dimensions is one fewer than the
number of data classes at the node) where the classes to be discriminated are
maximally separated. The analysis yields the mean feature vector and covariance

1. The results of this study were reported in (Martin & Kim, 1998). This section is a con-
densed version of the paper written for that conference. The statistical classifiers were
implemented and tested by Youngmoo Kim.
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matrix (in the reduced space) of a single normal density for each class, which can
be used to form maximum posteriori(MAP) classifiers by introducing prior
probabilities. The taxonomy that resulted in the best overall classification perfor-
mance (of those that were tested—the search was not exhaustive) is shown in
Figure 43. Figures 44 and 45 show the decision spaces found at two of the nodes
of the taxonomy.

Average pitch over steady state Tremolo frequency

Average pitch ratio® Tremolo strength

Pitch variance Tremolo heuristic strength

Pitch variance) ratic® Spectral centroid modulation frequency (Hz)

Average spectral centroid (Hz) Spectral centroid modulation strength

Spectral centroid\ ratio® Spectral centroid modulation heuristic streﬁ’gth

Variance of spectral centroid Normalized spectral centroid modulation frequency (Hz
Spectral centroid variand® ratic® Normalized spectral centroid modulation strength
Average normalized spectral centroid Normalized spectral centroid modulation heuristic stréhgth
Normalized spectral centrof ratio® Slope of the onset harmonic skew

Variance of normalized spectral centroid Intercept of the onset harmonic skew

Normalized spectral centroid varianeatic® | Variance of the onset harmonic skew

Maximum slope of onset (dB/msec) Post-onset slope of amplitude decay

Onset duration (msec)

Vibrato frequency (Hz) Odd/even harmonic ratio

Vibrato amplitude

Vibrato heuristic strenglfh

TABLE 20. List of features extracted from each tone in the pilot study.

a. TheA ratio is the ratio of the feature value during the transition period from onset to steady state (~100
ms) to the feature value after the transition period.

b. The heuristic strength of a feature is the peak height from the DFT divided by the average value surround-
ing the peak.

c. The onset harmonic skew is a linear fit to the onset times of the harmonic partials (defined as time the par-
tial reached an energy level 3 dB below the steady-state value) as a function of frequency.
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All

instrument
samples
Pizzicato Sustained
V|0I|n Cello Double m Brass
bass Strings Flutes +

% /\ ~
Reeds Brass

Violin Viola Cello Double Flute Ppiccolo

Obo% mmnor

English Clarinet horn Trumpet  trombone
horn

FIGURE 43. Taxonomy used in the pilot study. Instrument family groups are shown in italics.
The leaf nodes are the individual instrument classes.
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FIGURE 44. Fisher projection for the Pizzicato vs. Sustained node of the taxonomy. Since
there are two classes, the projection is one-dimensional. There are “modes” in the
projection: the one on the left-hand side corresponds to Pizzicato tones; the one
on the right to Sustained tones. The Sustained tone distribution is favored by prior
probability and therefore appears larger. The axes are not labeled; the abscissa is
a linear combination of the 31 features.
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FIGURE 45. Fisher projection for classifying the individual string instruments. There are four
classes and thus three dimensions in the projection. Violin data points are plotted
with X’s, viola with O’s, cello with plus symbols and double bass with squares. The
axes are not labeled. Each axis is a linear combination of the 31 features.

In addition to the Fisher projection technique, two varietidsridarest neighbor
(k-NN) classifiers were tested. ,ANN classifier works by memorizing the fea-

ture vectors of all of the training samples. When a new sample is to be classified,
the system finds thienearest training samples in the feature space (usually using
a Euclidean distance metric), and the new sample is classified by majority rule
based on the labels of tkeraining samples.

To evaluate the performance of the various classifiers, each was trained with 70%
of the MUMS tones, leaving 30% as independent test samples. Table 21 contains
a summary of the classification performance of the hierarchical Fisher classifier,
a hierarchicak-NN classifier, and a non-hierarchidaNN classifier. The results

are averaged over 200 test runs with different training/test data splits. The hierar-
chical Fisher classifier performs best, particularly at the individual instrument
level.
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Hierarchical Methods
Level of taxonomy Non-hierarchical
Fisher + MAP k-NN k-NN
Pizzicato vs. sustained 98.8% 97.9% 97.9%
Instrument family 85.3% 79.0% 86.9%
Individual instruments 71.6% 67.5% 61.3%

TABLE 21.

Classification results for the three classifiers tested. Each result was cross-
validated with 200 test runs using 70%/30% splits of the training/test data.

Although Fisher ané-NN techniques yield successful classifiers, they provide

little insight into the relative importance of the various individual features. It

would be valuable to know if particular features are good at characterizing partic-
ular instruments or families. To that end, a step-forward algorithm was used to
find the best features for isolating each instrument family. A step-forward algo-
rithm works by testing each feature individually and choosing the best esrthe

rent set The algorithm continues by testing all combinations of the current set
with each of the remaining features, adding the best of these to the current set and
repeating. For computational simplicity, of§NN classifiers were used in this

part of the study. This procedure was followed using three different 70%/30%
splits of the training/test data, iterating 10 times to find the 10-feature combina-
tion that provided the best average performance over the three different data sets.

By using only the 10 best features at each node, the system’s success rate for
instrument family identification increased to 93%. Some of the features were
generally salient across many of the instrument families, and some were particu-
larly useful in distinguishing single families. The most common features selected
for each subgroup are listed in Table 22.

Vibrato strength and features related to the onset harmonic skew (roughly, the rel-
ative onset times of the various partials) were selected in four of the five instru-
ment subgroups, indicating their relevance across a wide range of isolated
instrument tones. One interesting omission occurs with the clarinet group. One of
the 31 features was the ratio of odd to even harmonic energy. The conventional-
wisdom about the clarinet is that its odd partials are much stronger than its even
partials, but this is not true over the clarinet’s entire range, and this study did not
find it to be a very useful feature.

This pilot study has two results worth noting. First, it demonstrates the utility of a
hierarchical organization of sound sources, at least for the limited range of
sources it considered. Second, it demonstrates that the acoustic properties sug-
gested by the musical acoustics and analysis-by-synthesis literature (see Chapter
3) are indeed useful features for musical instrument recognition.
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Subgroup Selected features

Vibrato strength

Strings Onset harmonic skew

Average spectral centroid

Vibrato strength

Brass Variance of spectral centroid

Onset harmonic skew

Pitch variance

Onset duration

Clarinets
Vibrato strength
Onset harmonic skew
Pitch
Onset duration

Flutes Tremolo strength

Spectral centroid

Vibrato frequency

Vibrato strength

Average spectral centroid

Double reeds - -
Spectral centroid modulation

Onset harmonic skew

TABLE 22.

Features that were particularly useful in distinguishing single instrument families.

Not surprisingly, the hierarchical classifier performs better than humans on this
classification task. It is unfair, however, to compare its performance directly with
the results from Section 622The classifier has learned to identify the instru-
ments from the MUMS collection with great success, but it is not in any way a
demonstration of performer-independent generalization. Because of the particu-
lar form of cross-validation used in this study, on any given trial the computer
had been trained with tones produced by the same performer. The human listen-
ers did not enjoy the same advantage. The next two sections address this limita-
tion of the pilot study.

1. Although the comparison is unfair, to save you the trouble of looking up the result, the
human subjects averaged 45.9% exact identifications (91.7% allowing within-family
confusions). The computer program scored better on exact classifications, but not quite
as well on determining the family. It should also be noted that the stimulus set was not
the same in the two experiments, though there was substantial overlap.
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6.4 Computer experiment #2: 6- to 8-way classification

Although the isolated-tone pilot study showed that the features used by the sys-
tem enabled good classification results on isolated-tone stimuli, two troublesome
aspects of the study make it difficult to draw any strong conclusions from it. To
address these issues, a second experiment was performed using more realistic
stimuli and more principled cross-validation.

Of the 27 instruments considered in the human experiment, recordings of more
than three independent performers were available for only five: violin, viola,
trumpet, B-flat clarinet, and flute (bassoon, cello, French horn, and oboe each
had three; each of the others had fewer). Three sub-experiments were conducted
with subsets of this list, using 6, 7, and 8 instruments respectively. Violin, viola,
cello, trumpet, B-flat clarinet, and flute were used in the first sub-experiment.

The second sub-experiment added French horn, and the third added oboe (bas-
soon was omitted because the available recordings of two of the performers were
very short).

In each sub-experiment, the stimuli from the human experiment corresponding to
the selected instruments were used to test the system. For each trial, the computer
system was trained with all of the recordings available for those instruments—
except those by the particular performer being tested. This folwawé-one-out
cross-validation makes good use of the available training data, yet still provides a
fair test because on every trial the system was not trained on any recordings by
the performer playing on the sample being tested.

Because the number of classes in each sub-experiment was so small, the system
was configured to use a flat hierarchy (i.e., there was only one decision node, and
each instrument formed a leaf node). With the flat hierarchy, beam search is
meaningless, so it was not used. Four variations of context-dependent feature
selection (see Section 5.3.1 on page 107) were tested: (1) no salience weights, (2)
average salience score based on the classes currently under consideration, (3)
salience based only on reliability estimates, and (4) the product of (2) and (3). In
all cases, the “rule-one out” extension (see Section 5.3.2 on page 109) was used.

Table 23 shows the main results of the experiment, organized by the number of
instrument classes tested and by the form of context-dependent feature selection.
In each sub-experiment, the best configuration employed average feature-
salience scores based on the current set of classes under consideration (case 2).
The worst-performing configuration in each sub-experiment used salience
weights based only on reliability estimates (case 3). Unsurprisingly, performance
improves as the number of instrument classes decreases.

Tables 24-26 show the confusion matrices for the best-performing configuration

in each sub-experiment. Like the human subjects, the computer system tends to
confuse violin with viola, and viola with cello. Other mistakes are consistent
across the three sub-experiments but do not bear obvious relationships to the mis-
takes made by the subjects in the human experiment. They may be due to quirks
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of the particular feature-extraction algorithms, but are probably just due to an
insufficient feature set or insufficient training data.

No _Salience Salience weights Combined
; weights based based on A
Condition Salience on current confidence salience
Weights f ol h weights
) set of classes ratings @)
2 3)
e 68.9% 73.0% 67.6% 68.9%
-wa
Y (78.4%) (83.8%) (79.7%) (82.4%)
; 75.0% 77.9% 72.1% 73.5%
-wa
Y (85.3%) (89.7%) (85.3%) (86.8%)
6 77.4% 82.3% 71.0% 77.4%
-wa
Y (88.7%) (95.2%) (85.5%) (93.6%)
TABLE 23. Results of computer experiment #2. In all cases, performance was best in the

second salience-weight configuration, which chooses feature subsets based on
their ability to discriminate among the particular sound-source classes under
consideration. In each box the percentage of exact responses is given (along with
the percentage of correct responses if within-family confusions are tolerated).
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Violin |[75.0 25.0
Viola |12.5 50.0 12.5
Cello 16.7 83.3
Trumpet 12.5 75.0 12.5
B-flat clarinet 846 7.7 7.7
Flute 93.3 6.7
French horn 33.3 16.7 50.0
Oboe |16.7 50.0 33.3
Totals |16.2 14.9 9.512.2 16.2 21.2 54 4.0

Confusion matrix for the 8-way classification experiment. Results are reported as
percentages. The classifier answered correctly on 73.0% of trials (83.8% allowing
within-family confusions).

TABLE 24.
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Violin [75.0 25.0
Viola |12.5 50.0 12.5
Cello 16.7 83.3
Trumpet |12.5 75.0 125
B-flat clarinet 846 7.7 7.7
Flute 100.0
French horn 33.3 16.7 50.0
Totals |17.7 14.7 10.3 8.8 17.7 25.0 5.9

TABLE 25. Confusion matrix for the 7-way classification experiment. Results are reported as
percentages. The classifier answered correctly on 77.9% of trials (89.7% allowing
within-family confusions).
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Violin |75.0 25.0
Viola [12.5 50.0 12.5
Cello 16.7 83.3
Trumpet |12.5 75.0 12.5
B-flat clarinet 923 7.7
Flute 100.0
Totals (16.2 14.9 9.512.2 16.2 21.2
TABLE 26. Confusion matrix for the 6-way classification experiment. Results are reported as

percentages. The classifier answered correctly on 82.3% of trials (95.2% allowing
within-family confusions).
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6.5 Computer experiment #3: Direct comparison to

human abilities

A final experiment was performed to enable a more direct comparison between
human abilities (based on the experiment described in Section 6.2) and the abili-
ties of the recognition system. The full stimulus set used in the human experi-
ment was employed to test the system. As with Computer experiment #2, on each
trial the computer system was trained with all of the available recordings—except
those by the particular performer being tested. This forleasMe-one-outross-
validation makes good use of the available training data, yet still provides a fair
test because on every trial the system is guaranteed to have never heard any per-
formances by the musician playing on the recording being tested.

The system was configured to use the taxonomy shown in Figure 46, which
includes an instrument-family layer based on the discussion in Chapter 3. The
best-performing configuration from Computer experiment #2 was employed,
using salience weights based on the average discriminating power of each feature
for the particular categories being considered at any time. In all cases, the “rule-
one-out” extension was used. Three values were tested for the beam-width
parameter (1, 3, and infinite).

Table 21 shows the main results of the experiment, organized by beam width and
by experiment component. With a beam width of 3 or greater, the computer sys-
tem performs better than subjects 9, 11, and 13 on the ten-second excerpt compo-
nent. With an infinite beam width, the system performed better than subject 11 on
the isolated-tone component. All of the human subjects, however, scored much
better than the computer system if within-family confusions are tolerated. Tables
28 and 29 show the computer system’s confusion matrices for the two conditions.

Experimental Beam Width

condition 1 3 Infinite

Isolated tones |  32.2% (69.3%) | 32.9% (72.3%) | 38.7% (75.9%)

Ten-second excperts 41.2% (53.9%) | 55.9% (70.6%) 56.9% (74.5%)

TABLE 27.

Percentage of correct classifications for the computer recognition system
configured to use the taxonomy shown in Figure 46, with beam searches of
various widths. Values in parentheses indicate performance if within-family
confusions are allowed.

Computer experiment #3: Direct comparison to human abilities 141



Violin
Pizzicato strings < \C/:ieolllz
Double bass
Violin
Bowed strings < Viola
Cello

Double bass

C trumpet

Bach trumpet
Alto trombone
Tenor trombone
Bass trombone
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Double reeds < English horn
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B-flat clarinet
E-flat clarinet
Bass clarinet
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axophones Tenor saxophone
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FIGURE 46. Taxonomy used in Computer experiment #3 to test the recognition system.
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6.6 General discussion

Although the human experiment described in Section 6.2 and Computer experi-
ment #3 (described in Section 6.5) afford the most direct comparison between
human and computer performance on musical instrument classification tasks, the
comparison is still not completely fair. As described in Chapter 2, there are sev-
eral criteria that must be kept in mind when making such comparisons. Consider-
ing each in turn:

Do the computer system and humans exhibit the same level of generali-
zation? No. The computer system described here demonstrates the most
general performer-independent recognition of musical instruments of any
system described to date. However, the tests used to demonstrate this ability
were limited, and it is not possible to make strong claims about generaliza-
tion. It is very interesting to note that the human listeners who participated in
the experiment made particular kinds of mistakes that suggest that they have
succeeded in generalizing abstract groups of instruments—namely the
instrument families. The computer system did not exhibit this particular gen-
eralization.

Do the computer system and humans handle real-world complexity
equivalently? No. Both the computer system described here and the human
experimental subjects exhibit robust classification performance with typical
commercial music recordings, which include reverberation (and, occasion-
ally, high levels of ambient noise). With the possible exception of the sys-
tems described by Brown (1998a; 1999) and Marques (1999), the computer
system described here is much more robust in this regard than any other sys-
tem described to date. However, although it was not tested, complexity aris-
ing from mixtures of sounds would surely cripple the computer system. |
speculate that the performance of human subjects would degrade somewhat,
but would be much more robust than that of the computer system with this
particular kind of complexity.

Are the computer system and humans “equivalently scalable"Rlo.

Humans are capable of recognizing examples from a vastly larger set of
sound sources. The computer system described here could be extended to a
much larger range of sound-source classes, but doing so would require the
addition of many more feature extractors and quite a lot more training data.
The taxonomic recognition structure is intended to make the system more
scalable than previous systems, but this aspect has not been adequately
tested. Judging by the system'’s classification performance in Computer
experiment #3, the representations of the instrument families would have to
be improved significantly to make the classifier robust with the narrow width
beam-search technique.

Do both systems exhibit equivalently graceful degradation®o. The

computer system was designed to make good decisions based on whatever
evidence is available, and its performance does degrade smoothly as particu-
lar features are removed from consideration, but it has not been tested under
conditions similar to those that would be caused by masking in normal lis-
tening situations. Again, human abilities are much more robust.
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* Do both systems exhibit a flexible learning strategy®o. The computer
system requires a supervised framework in order to learn to recognize sound
sources. Humans can also learn without explicit instruction (though not for
this particular forced-choice task).

* Do both systems operate in real-time®o. The computer system operates
two to three orders of magnitude more slowly than “real” time. This is due in
large part to the exploratory nature of this work, but a better criticism is that
the recognition architecture does not provide any means for refining its deci-
sions over time.

Although human listeners satisfy the foregoing criteria more thoroughly than the
computer model, it is worthwhile to compare human and machine performance in
light of these differences. Figure 47 summarizes the published performance data
for experiments using isolated tones as stimuli. The first four entries represent
human performance, and as should be expected, human performance decreases
somewhat as the number of categories in a forced-choice task increases. The
results from the 27-way forced-choice task described in Section 6.2 are approxi-
mately equal to performance observed by Eagleson and Eagleson (1947) in a
free-response task.

The other five entries in the figure show the results from tests of computer recog-
nition systems. Again, as the number of classes increases, the performance wors-
ens. However, the results reported by Bourne (1972), Kaminskyj & Materka
(1995), Fujinaga (1998), and Computer experiment #1 (Section 6.3) are not fair
estimates of the systems’ performance with truly independent test stimuli. In
these four experiments, the systems had exposure during training to perfor-
mances by the same musicians (in the same acoustic environment) who per-
formed the test samples. This critical failure of the experimental protocol
probably elevates the reported performance levels significantly. Only Computer
experiment #3 (Section 6.5) used a fair test of performance; the results can most
fairly be compared to the human 27-way forced-choice task (again, keeping in
mind differences in the satisfaction of the performance criteria).

Figure 48 makes a similar comparison between experiments that used real music
as stimuli. Again, the trend for both humans and computer systems is that perfor-
mance suffers as the number of classes in the forced-choice task increases. The
listening experiment described in Section 6.2 is the first to test human listeners
with stimuli consisting of real music from a wide variety of musical instruments.
All of the computer systems shown in the figure were tested fairly, with princi-
pled cross-validation techniques equivalent to those used in Computer experi-
ment #3. The most direct comparison between human and computer is the human
27-way forced-choice task and Computer experiment #3 (a 25-way forced-choice
task). On average, the human listeners scored somewhat higher than the computer
model, as described in Section 6.5.

Of the computer systems shown in the figure, the most direct comparison can be
made between Marques’s (1999) 8-way classifier and the 8-way classifier from
Computer experiment #2 (Section 6.4). Although the reported performance levels
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Humans Computer systems
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50 t+

% correct

Strong: 8-Way FC
Berger: 10-Way FC
Eagleson: FR
Hum. exp: 27-way FC
Bourne: 3-Way FC
Kaminskyj: 4-Way FC
Fujinaga: 23-Way FC
Comp. exp. #1:14-Way FC
Comp. exp. #3: 25-Way FC

FIGURE 47. Comparison of human and computer abilities on isolated-tone recognition tasks.
The open bars indicate the percentage of correct responses on the task; the filled
bars indicate the level achieved by uniform random guessing. Human results are
shown for Strong’s (1967) 8-way forced choice experiment, Berger’s (1964) 10-
way forced choice experiment, Eagleson & Eagleson’s (1947) free-response task
(with tones from nine instruments as stimuli), and the human experiment
discussed in Section 6.2. Computer results are shown for Bourne’s (1972) 3-way
classifier, Kaminskyj & Materka’s (1995) 4-way classifier, Fujinaga’s (1998) 23-
way classifier, and Computer experiments #1 and #3 from Sections 6.3 and 6.5.

Of the computer systems, only Computer experiment #3 employed performer-
independent cross-validation.
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Kendall: 3-Way FC

Hum. Exp.: 27-Way FC

Brown: 2-Way FC

Brown: 4-Way FC

Marques: 8-Way FC

Comp. Exp. #2: 6-Way FC
Comp. Exp. #2: 7-Way FC
Comp. exp. #2: 8-Way FC
Comp. exp. #3: 25-Way FC

FIGURE 48. Comparison of human and computer abilities on recognition tasks using realistic
musical signals. The open bars indicate the percentage of correct responses on
the task; the filled bars indicate the level achieved by uniform random guessing.
Human results are shown for Kendall’s (1986) 3-way forced choice experiment
and the human experiment discussed in Section 6.2. Computer results are shown
for Brown’s (1999) 2-way classifier, Brown’s (1998) 4-way classifier, Marques’s
(1999) 8-way classifier (9-way, actually, but only 8 choices were instruments; the
grey bar shows the performance level when non-commercial recordings were

added to the stimulus set), and Computer experiments #2 and #3 from Sections
6.4 and 6.5.
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of the two systems appear to be similar, the classifer tested in Section 6.4 appears
to have generalized more thoroughly than Marques’s classifier. Marques reports a
performance level of 71.6% for professionally recorded music (from compact
discs). After introducing “non-professional” recordings (a subset of the student
recordings described in Section 6.1) to the test set, the system’s performance
dropped to 44.6%. This suggests that the classifier hagenetalizechs well as

the classifer tested in Section 6.4, which scored 73.0% with both professional and
“non-professional” recordings as test data. | speculate that this difference is due
to the different feature sets used by the two classifiers. Both Marques and Brown
use MFCC coefficients as features. These capture short-term properties of the
spectrum, but do not represent temporal properties of the sound, such as attack
transients or vibrato. The failure of the MFCC-based computer system to gener-
alize from obervations of these features may be related to the sensitivity of
human talker recognition systems—which often use the same feature set—to
variations in channel conditions (Reynolds, 1995).
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cueer 7 SUMMary and conclusions

7.1

Chapters 4-6 described the implementation and evaluation of a sound-source rec-
ognition system, based on the theory presented in Chapter 1 and on extensive per-
ceptual analysis and modeling described in Chapters 2 and 3. In this chapter, |

will take a step back and consider how well the original goals of the research

have been met and what implications the work has for the fields of research from
which it draws.

Summary

| began this dissertation by outlining a broad theory of sound-source recognition,
considered from the standpoint of the question “what is recogti@iéh |

described sound-source recognition as a process of gathering information about
an object in the listener's environment so as to enable the listener to infer unob-
served properties of the object. The ability to detect predators or prey has obvious
evolutionary significance, but sound-source recognition can also enable the lis-
tener to subconsciously infer the properties of sounds that are partially masked by
other sounds, and this kind of inference may be the key to understanding mix-
tures of sounds. From this perspective, sound-source recognition is essential to
the hearing process, but it is absent from the current generation of computational
auditory scene analysis models.

In Chapter 2, | presented a list of desiderata for sound-source recognition sys-
tems. In light of these, | compared the abilities of the state-of-the-art in artificial
recognition systems to those of humans. The general conclusion was that human
listeners are much better able to recognize examples from general classes of
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sound sources than are the current generation of artificial systems. This is hardly
surprising, but it suggests that there may be aspects of human perception that
could be modeled more closely in order to improve the performance of artificial
systems.

In Chapter 3, | restricted attention to the class of orchestral musical instruments.
Human abilities for recognizing musical instruments were reviewed, and acousti-
cal and perceptual research was scoured for insight into the acoustic properties
most likely to account for human recognition abilities in this limited domain. My
conclusion was that the most significant acoustic properties are related to the
excitation and resonance structures of the musical instruments. The chapter con-
cluded with a summary list of properties both likely to be useful during the recog-
nition process and known to be perceivable by human listeners.

In Chapters 4 and 5, | described a musical instrument recognition system based
on the insights gained from the previous chapters. In Chapter 4, | described a
series of representational transformations, beginning with the acoustic waveform
and resulting in an abstract model (based on perceptually salient acoustic fea-
tures) of the sound source’s excitation and resonance structure. The representa-
tions were functionally matched to current models of information processing in
the human auditory system. In Chapter 5, | presented an improvisational classifi-
cation framework for sound-source recognition based on the theory outlined in
Chapter 1 and using the representational scheme from Chapter 4. The framework
is the result of an attempt to satisfy many of the criteria outlined in Chapter 2, and
is sufficiently general to be used with many sound-source classes in addition to
the musical instruments considered here.

In Chapter 6, | tested the recognition model on a battery of classification tasks
and compared its performance to that of human listeners on similar tasks.
Although, the human subjects in the experiments performed better overall than
the computer program, the computer model performed better than at least one
musically-skilled human subject in each test condition and at least as well (and
with improved generalization) as other computer systems that have been tested
on similar tasks. Many aspects of this performance are of interest. For example,
the same model configuration performed well with both isolated-tones and real
music as test stimuli. The context-dependent feature selection extension enables
the model to choose appropriate features for different contexts—attack features
for isolated tones, vibrato features whenever available, and spectral features for
whole-phrase stimuli—without explicit instruction (indeed, the two kinds of
stimuli were never distinguished during training). The model’s success on this
variety of stimuli is unprecedented, and these results suggest that the approach
has considerable merit for musical-instrument recognition and considerable
potential for sound-source recognition in general.
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7.2 Future developments

It goes without saying that there are many ways in which the work presented here
could be extended or improved. Not all of the goals set out at the beginning of
this undertaking have been met, and many portions of the implementation were
developed only far enough to see how the system as a whole might behave. Some
of the possibilities for future development of the work include:

Integration with a CASA framework. The system described here was pur-
posely based on the representations used in Ellis’'s PDCASA architecture
(Ellis, 1996), which | view as the most promising line of current research in
computational auditory scene analysis. As was described in Chapter 1,
sound-source recognition is only useful insofar as it allows the perceiver to
infer properties of the sound source. Ellis's micro-taxonomy of noise cloud,
transient, and quasi-periodic tonal elements is an example of the way recog-
nition can be used at a very low level to improve the interpretation of mix-
tures of sounds. By extending the taxonomy to include more elaborate
sound-source models such as those discussed here, CASA systems may
someday be better equipped to understand more complicated mixtures. This
integration will by no means be a trivial step.

Addition of multiple, overlapping taxonomies.The system described here
employs a single taxonomy as its knowledge base. In contrast, the organiza-
tion of knowledge in the human brain is much more complicated. Perhaps
many different taxonomies are superposed over the same set of object
classes, organizing them according to different principles. It is not at all
obvious how a recognition system based on multiple, overlapping taxono-
mies might operate. Perhaps one or another is selected according to the prob-
lem at hand. Or perhaps one taxonomy might be chosen in a given situation
because of the particular feature set that is available. Perhaps taxonomic
structures are too rigid altogether—other, more general models could be
based on spreading activation (Maes, 1989) or something like Hofstadter’'s
Slip Net (Hofstadter, 1995).

Integrating more general learning techniquesWhen | began this work,

my goal was to build a system that would not require explicit training. | envi-
sioned a system that could listen to real music performances and determine
for itself what features were important and what the relevant classes of
sounds are. Over time, | gradually whittled this vision down to the system
presented in the preceding chapters. There are, however, many interesting
ways that machine learning techniques could be applied to the problem of
sound-source recognition. For example, it would be interesting to have the
system form its own taxonomy rather than have one specified in advance.
Perhaps Bobick’s techniques for evaluating the usefulness of particular cate-
gorizations (Bobick, 1987) could be spun into a method for generating and
refining taxonomies, or maybe other statistical clustering techniques could
be used. Perhaps the system could start with a few supervised training exam-
ples, build preliminary representations, and then refine them by trying to rec-
ognize unlabeled sounds in an unsupervised framework. Another interesting
direction is multi-modal integration. In particular, there may be ways in
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which visual and auditory object recognition systems could help each other
learn more robustly and quickly than either could do on its own.

Extending the knowledge base to include other kinds of sound sources.

In Chapter 3, | concluded that musical instruments must be recognized on
the basis of features arising from the excitation and resonance structures of
the instruments. This may also be true of a much wider range of sound
sources. For example, vowels in human speech appear to be identified on the
basis of vocal-tract resonancesfanmants(e.g., Peterson & Barney, 1952).
Also, the distinction between “bouncing” and “breaking” events appears to

be due in large part to the excitation structure of the events—in particular
their temporal properties (Warren & Verbrugge, 1984). Many of the features
used in the system presented here could be useful for recognizing the sources
of pitched sounds in addition to the orchestral instruments (one promising
set of possibilities is animal vocalizations). Of course, in order to extend the
work to other kinds of sound sources, new features would have to be added
to the system’s repertoire. Happily, the conceptual division of the sound
source into excitation and resonance is a useful tool for guiding the search
for new features, and the architecture described here is sufficiently flexible
for new features to be added as they are discovered.

Using model alignment to improve early decisiondn the visual object
recognition literature, model alignment is an obvious and important aspect of
the recognition process (e.g., Ullman, 1996). In order to compare local fea-
tures of a model to sensory data, there must first be a stage of rough position-
ing or alignment to determine the correspondence of portions of the
perceptual data to parts of the model. It is not as obvious that such a step is
important in audition, but | believe that classification at upper (more

abstract) levels of a taxonomy could be improved greatly by some form of
model alignment. Consider, for example, the brass and string families, for
which each instrument is—to a first approximation—a scaled version of a
single prototype. The changes in scale from one instrument to another shift
many feature properties—including the spectral centroid, pitch range, and
cutoff frequencies—uniformly. By taking these shifts into account, abstract
prototypes could become much better predictors of unobserved features, and
high-level classifiers could be made much more robust, thereby alleviating
the need for techniques like beam search. In addition, this could enable the
system’s performance to become more like that of expert human listeners,
who rarely confuse instruments from different families.

Taking advantage of inheritance One of the most important conceptual
strengths of frame-based semantic networks (Minsky, 1974) is that slots in
some frames can inherit default values from other frames. Within a taxon-
omy, the inheritance structure is obvious: a node’s slots inherit default values
from the node’s ancestors unless they are overridden by evidence from train-
ing data. This style of inheritance is related to the statistical technique
termedshrinkage which has been used to advantage in text-document classi-
fication tasks (McCallum et al., 1998), andd&leted interpolationwhich

has been used in speech recognition systems (Jelinek & Mercer, 1980). The
basic idea is that, instead of using a single probability model for each feature
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based only on training data applicable to a particular node of the hierarchy,
the system forms mixture modebased on the probability models at the

node and all of its ancestors. The intuitive reason for using this kind of tech-
nigue is that it improves estimates of probability-model parameters that
would otherwise be uncertain due to limited amounts of training data.
Empirical results show that the technique improves classifier performance,
with the biggest improvement occurring when training data is sparse
(McCallum et al., 1998).

Considering “cognitive” cues.Many of the features experienced listeners

use to recognize sound sources are not related directly to the acoustics of
sound production. High-level contextual cues, such as the particular piece of
music being played, can be used to zero in on the particular instrument being
heard. Similarly, particular phrasing styles (e.g., portamento in bowed string
or vocal performance) can be emblematic of particular instrument classes or
performers. As another example, human speakers may have characteristic
speaking rhythms or pitch contours. There are so many possibilities that
small systems like the one described in this dissertation may never be able to
compete with humans on recognition tasks using real-world sounds. Systems
may require vast degrees of experience (equivalent to years of listening)—
and orders of magnitude more feature detectors and memory—to compete
directly with human listeners.

Using multiple prototypes for each sounesource categoryThe classifi-

cation system described in this dissertation employed a single prototype for
each sound-source category, and an obvious extension is to use multiple pro-
totypes, particularly for the categories that vary the most from instance to
instance. Systems that take this approach will need to carefully balance the
additional processing requirements against the degree of improved perfor-
mance that the approach may provide.

Constructing better feature-salience estimatesBecause the set of sound
sources explored in this dissertation was relatively small, the extensions to
the basic classification architecture proposed in Section 5.3 were not ade-
guately explored. The results of Computer experiments #2 and #3 (Sections
6.4 and 6.5) suggest that feature selection based on local estimates of dis-
criminating power do improve performance, but aldehocestimates of
measurement reliability did not help. This is not to say, however, that reli-
ability estimates are not a promising avenue for future research, but only that
the issues involved are subtle and worthy of more extensive investigation.

Improving the feature detectors (and adding additional features)lt

should be obvious from the presentation in Chapter 4 that many of the signal
processing techniques used to extract features from the correlogram repre-
sentation were invented in ad hocmanner. Many could be made more
robust by more thorough analysis of the properties of the signals being ana-
lyzed, or by more principled statistical approaches. In addition, the repertoire
of feature detectors could of course be expanded to include more of the
range known to be important to human perception. In particular, | believe
that note-to-note transitions are the single most promising enexplored fea-
ture for musical-instrument recognition. However, so little work has been
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done to explore these features (see Strawn, 1985, 1986, 1987, for some ini-
tial analyses), that it is difficult to know where to begin.

* Providing more training data. | had hoped that a good set of features
would enable the recognition system to generalize from very little training
data, and it is conceivable that the right features could make this possible.
Although it would be interesting to see how the system’s performance would
improve if more labeled examples were provided to it, | do not view this as
one of the more interesting paths to explore. At this stage, | believe that
exploring a wider range of sound sources, another set of features, or alternate
recognition algorithms could yield more insight than such a brute-force
approach.

* Improving the system'’s efficiency.The system’s current implementation is
painfully slow. The front end, which is implemented in C++, runs at about
ten times real time on a desktop PC (mine is a 150 MHz Pentium). The rec-
ognition algorithm is implemented in MATLAB and is even slower.

Although it would probably be possible to implement a real-time front end
with technology available today, | do not believe that it would be a useful
exercise. Much more work has to be done to develop the recognition frame-
work—aparticularly in regard to how the recognition process evolves over
time—before it would be worth attempting to build a real-time system.

7.3 Insights gained

In this dissertation, | have described a computer model based on portions of a
new theory of sound-source recognition. Although many parts of the implemen-
tation were exploratory (and certainly sub-optimal), several key insights can be
gained from this work. For example:

* Serious consideration of psychoacoustics can lead to successful com-
puter perception systemsThe recognition system described here was engi-
neered rather than “hill-climbed.” Instead of blindly applying a black-box
pattern-recognition technique to a fully general—but not interpretable—fea-
ture set (as is done by many purveyors of artificial neural network tech-
niques), | purposely discarded much of the information in the acoustic signal
based on evidence that it is not used by human listeners. The human sense of
hearing is more robust than current machine systems, and we have much to
learn as engineers and as scientists by carefully studying human perception.

* “Timbre” is useless as a scientific concepiThere is no fixed set of param-
eters that determine what something “sounds like,” any more than there is
for what something “looks like.” There are infinitely many ways to describe
objects in the world, and worrying about holistic concepts such as timbre or
appearance is a waste of time.

* Introspection is misleading.Previous research in auditory perception—par-
ticularly in computational auditory scene analysis—has in general vastly
underestimated the ubiquitous nature of the perceptual illusions our brains
create. Our perceptual systems are incredibly robust, and we are constantly
deluded into believing that we perceive more than is actually there to be dis-
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cerned. When we “hear out” the guitar solo in a pop song, we do not do so by
“separating out” the waveform generated by the guitar. We do it by subcon-
sciously making huge inferential leaps to fill in the perceptual gaps created
by competing sounds. | rather strongly believe that the only reason our
brains can fool us so well is that we are unknowingly making extensive use
of contextual information and background knowledge.

* Resynthesis is not a necessary component of a successful computer lis-
tening system.t disturbs me greatly to see how much emphasis is placed on
using computational auditory scene analysis systems to “extract” sounds
from mixtures and resynthesize them as isolated components. The human
auditory system surely does not do this, so why should computer models of
the human system? Even if the human auditory systarid perform this
task, what would be the point?—who would listen to the result? This is a
version of thehomunculus paradoxX he solution to the paradox in this case
is to realize that the system can only progress toward its goal—which is to
make sense of objects in the world and their interactions—by abstracting
away from the acoustic signal to a point where aspects of the sound can be
related to prior experience. To be sure, we do not know exactly how this hap-
pens in the human brain, but what would be the point of re-representing the
world at the same level of abstraction? My best guess is that abstract audi-
tory representations refer to the low-level sensory data for support of hypoth-
eses about mixtures of sounds; there is no need to separate their
contributions explicitly, and there certainly is no need for resynthesis.

7.4 Conclusions

The theory of sound-source recognition outlined in Chapter 1 is necessarily
vague and should probably be viewed mainly as a collection of constraints that
will need to be part of a more developed theory. There are many possible recogni-
tion systems that would be consistent with the general theory | have proposed;
the particular implementation described here is but one.

To my knowledge, this theory is the first of its kind. Many of its components can
be found in the computer vision and cognitive science literature, and parts of it
are hinted at by Bregmanfuditory Scene Analysibut this particular assem-

blage of ideas is new to hearing science, and it is my hope that | have provided a
viable jumping-off point for future research in this area. Our current scientific
understanding of perception is so limited that we do not even know all of the
right questions to ask of a perceptual theory. It is encouraging, however, that the
approach | have described has yielded such promising initial results. Sound-
source recognition remains a promising avenue for future research—one that will
eventually lead to a deeper understanding of audition in general.
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