
Vector Quantization  in Speech Coding 
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Quantization, the process of approximating  continuous-ampli- 
tude signals by  digital  (discreteamplitude) signals, is an important 
aspect of data  compression or coding, the  field concerned with  the 
reduction  of  the  number  of bits necessary to transmit or store 
analog data, subject to a  distortion or fidelity  criterion. The inde- 
pendent  quantization  of each signal value or parameter is termed 
scalar quantization,  while  the  joint  quantization  of a block of 
parameters is termed block or vector quantization. This tutorial 
review presents the basic concepts employed in vector quantization 
and gives a realistic assessment of its benefits and costs when 
compared to scalar quantization. Vector quantization is presented 
as a process of redundancy removal that makes effective use of  four 
interrelated  properties  of vector parameters: linear dependency 
(correlation),  nonlinear dependency, shape of the  probability den- 
sity function  (pdf), and vector dimensionality  itself.  In contrast, 
scalar quantization can utilize  effectively  only linear dependency 
and  pdf shape. The  basic concepts are illustrated  by means o f  
simple examples and  the theoretical limits of vector quantizer 
performance are reviewed, based on results from  rate-distortion 
theory. Practical issues relating to quantizer design, implementa 
tion,  and  performance  in actual applications are explored. While 
many of  the  methods presented are quite general and can be used 
for the  coding  of arbitrary signals, this paper  focuses primarily  on 
the  coding  of speech signals and parameters. 

I. INTRODUCTION 

Current  projections for world-wide communications in 
the 1990s and beyond, point  to a proliferation of digital 
transmission as a dominant means of  communication  for 
voice and data. Digital transmission is expected to provide 
flexibility,  reliability, and  cost  effectiveness, with the added 
potential for  communication privacy and security through 
encryption. The  costs of digital storage  and transmission 
media are generally proportional to the amount of digital 
data that can be stored or transmitted. While the cost of 
such media decreases  every  year, the demand for their use 
increases at an even higher rate. Therefore, there is  a 
continuing need to minimize the number of  bits necessary 
to transmit signals while maintaining acceptable signal 
fidelity or quality. The branch of electrical engineering that 
deals with  the latter  problem is  termed data  compression or 
coding. When applied to speech, it is known as speech 
compression or speech coding. 

The conversion of an analog (continuous-time, continu- 
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ous-amplitude) source into a  digital (discrete-time, discrete- 
amplitude) source,  consists of two parts: sampling and 
quantization. Sampling converts a continuous-time signal 
into a discrete-time signal by measuring the signal  value at 
regular intervals of  time. Quantization converts a continu- 
ous-amplitude signal into one of a set of discrete ampli- 
tudes, thus resulting in a discrete-amplitude signal that is  
different  from the  continuous-amplitude signal by the 
quantization error or  noise. In this paper, we shall assume 
that  our signals are adequately sampled (see, for example, 
[107]) so that  the  only loss in  fidelity is  attributable to 
quantization. 

When each of  a set of parameters  (or a sequence of 
signal values) is quantized separately, the process is known 
as scalar quantization. When the set of parameters is quan- 
tized  jointly as a single vector, the process is known as 
vector quantization (also known as block  quantization or 
pattern-matching quantization). We shall often abbreviate 
vector quantization  in this paper as.VQ. 

A. Purpose and Scope 

The main purpose of this paper is to present the reader 
with  information that can  be  used in making a realistic 
assessment of the benefits and costs of vector quantization 
relative to scalar quantization, especially in speech coding 
applications. The  emphasis is on the exposition of basic 
principles rather than the elaboration of various techniques 
and  their variations for which references to the literature 
are provided. Vector quantization is presented as a process 
of redundancy removal that makes effective use of  four 
interrelated properties of vector  parameters: linear depen- 
dency (correlation), nonlinear dependency, shape of  the 
probability density function (pdf),  and vector dimensional- 
ity itself. We shall see that linear dependency and pdf 
shape can be employed quite effectively with scalar quanti- 
zation while  the other two properties cannot. Nonlinear 
dependency plays a significant role in the quantization  of 
speech spectral parameters, while dimensionality is  im- 
portant for waveform quantization. Because of the relatively 
large cost of vector quantization (generally exponential in 
the number  of dimensions and the number of bits per 
dimension), given today’s computation and  storage tech- 
nologies, the major benefits of vector quantization are 
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realized largely at transmission rates of about 1 bit per 
parameter or less, which is exactly the range where the 
performance of scalar quantizers degrades  sharply. While 
the concepts presented are quite general, we shall  focus in 
this paper on the  low-rate  coding  of speech (below 8 
kbits/s) as an application. 

Vector quantization for the purpose of speech coding 
was  used by  Dudley [31] in the 1950s and Smith [I271 in the 
1960s. However, it was not until the introduction  of linear 
predictive coding (LPC) [8],  [71],  [%I, [X)] to speech coding 
that VQ has had significant activity, starting with the  work 
of Kang and Coulter [77], but spurred on mainly by the 
work  of Buzo et  al. [18],  [81]. Until recently, the main 
purpose for the use of VQ in speech coding has been to 
reduce the transmission rate of 2400-bit/s  vocoders (voice 
coders) to operate at much lower rates while maintaining 
acceptable speech intelligibility and quality. Speech coding 
at very low rates, in the range of 200-800 bits/s, has 
attracted substantial interest [18],  [32],  [53],  [56],  [76],  [77], 
[%I, [loo], [ I l l ] ,  [119],  [137],  [I381 for use in  both govern- 
ment and commercial applications. At such low rates, it is 
important to maximize the cost effectiveness of every bit 
that is transmitted. Vector quantization has been instrumen- 
tal in retaining sufficient speech intelligibility  to make  such 
systems of actual utility. Today, very-low-rate coding of 
speech remains one  of the major successful applications of 
VQ. More recently, a mushrooming research activity in the 
application  of VQ to speech waveform coding at somewhat 
higher data  rates has been taking place. While much  of  the 
activity has focused on the &16-kbit/s range [I], [24],  [25], 

work has started at data rates below 8 kbits/s [7],  [117], 
which  points  to exciting possibilities for high-quality speech 
coding at low rates. 

We  should  point out that, in a sense, VQ has been used 
regularly and effectively in pattern-recognition type of 
speech applications, such as in speech and speaker recogni- 
tion (see, for example, [27], [ a ] ,  [95], [ l a ] ,   [ l a ] ,  [118], 
[126]). After all, the VQ problem is  part of  the general 
pattern-recognition problem  of the classification of data 
into a discrete number of categories that optimize some 
fidelity criterion. Indeed, in the design of vector quantizers, 
one  often employs well-known techniques from  pattern 
recognition. However, the basic theory underlying VQ  stems 
from  information theory and has wider implications for the 
transmission of information. 

The theoretical foundations of data compression and 
vector quantization lie in a branch of  information theory 
known as rate-distortion theory, originally set forth by 
Shannon [122]. Also,  most of the theoretical developments 
since Shannon have taken place as part of the information 
theory  discipline. Of particular relevance is the book  by 
Berger [I41 on rate-distortion theory, as well as other infor- 
mation theory texts,  such as [%I,  [92]. Because a full devel- 
opment of vector quantization theory would be highly 
mathematical, we have  chosen in this paper to concentrate 
on presenting the basic notions and the major results with 
just  enough mathematics that would  allow us to be com- 
plete  without being obscure, we hope. 

For further reading, we list a few key  references which 
also contain  other references to the literature. The books of 
collected papers edited by Jayant [73] and Davisson and 

[341, W I ,   W I ,  [491,  1501,  1561,  1631,  1831,  [1091, [124l, Some 

Gray [26] are devoted to data compression and cover  aspects 
of speech compression. Two relatively recent special issues, 
the IEEE TRANSACTIONS ON INFORMATION THEORY of March 
1982 and the IEEE TRANSACTIONS ON COMMUNICATIONS of 
April 1982, are devoted to quantization and to speech 
coding, respectively. The most comprehensive treatment of 
waveform coding, with applications to speech and video, i s  
the recent book  by Jayant and Noll [74]. The review articles 
by  Gold [52], Flanagan et  al. [39], and Makhoul [87] cover 
various aspects of speech coding, while the review articles 
by Gersho and Cuperman [49] and Gray [56] describe some 
recent work  in vector quantization. 

B. Paper Outline 

In Section II we present the basic  VQ problem and 
several distortion measures that are utilized, along with the 
basic  system design and  associated computational and stor- 
age costs.  The section ends with a VQ model that is 
introduced, with examples, to aid the reader in visualizing 
the  different processes  at work in  VQ and in assessing the 
relative merits of vector and scalar quantization. The re- 
mainder of  the paper  can  be viewed as an elaboration of 
the basic model, supported by theoretical and practical 
results. Section Ill contains some of  the major theoretical 
results known about VQ performance from rate-distortion 
theory. Section IV is  devoted to the design of scalar quan- 
tizers for vector sources; it includes a comparison between 
scalar and vector quantization for low-rate speech coding. 
In Section V  we present important practical considerations 
for vector quantizer design, including methods for  reducing 
computational and storage  costs  at  some loss in perfor- 
mance, and issues of robustness in terms of expected dif- 
ferences between design performance and operational 
performance. One can take advantage of  long-term  time- 
related signal dependencies to reduce the bit rate further 
without sacrificing signal fidelity; several time-dependent 
VQ methods are summarized in Section VI. The main paper 
ends in Section VI1 with a brief discussion of VQ in speech 
waveform coding and an outlook  to the future. 

C. Speech Coding 

Before we start the main presentation, we describe the 
main components  of a general  speech coding system and 
two paradigms that  we shall use in this paper as a basis for 
our examples from speech coding. 

Fig. 1 shows the basic components of a data compression 
system appropriate for speech coding. The first component 
analyzes the discrete-time signal ~ ( n ) '  and  extracts a vector 
of  unquantized parameters x(n).  The  set of parameters 
x( n )  is quantized into the vector y(n),  which is  then 
encoded  into a sequence of bits c(n )  and transmitted 
through the transmission channel or stored in some  storage 
medium. (The quantizer includes any prediction and feed- 
back loops  that are  an integral part of the quantization 
process.) In general, the output of  the channel c'(n) will be 
different  from c(n )  if there are channel errors. At the 
receiver, the decoder converts the sequence of  bits c'(n) 
into parameter values y'(n), which are then used as input 

'The  dependence of the discrete-time signals on  the sampling 
period  will  be assumed but not shown explicitly. 
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Fig. 1. Basic components  of a  data compression system for speech coding. 

to the synthesizer. The output r (n) is the reconstructed 
signal which  will be an approximation to the input signal 
s( n).  

If there are no channel errors, then c‘(n)  = c ( n )  and 
y’( n) = y(n).  The subject of channel errors is  important, 
but  will be treated only briefly in this paper. Unless other- 
wise noted, we shall assume no channel errors. 

The nature of the synthesizer in Fig. 1 determines the 
type  of voice coder and dictates the type of analysis to be 
performed. Fig. 2 shows an example of a synthesis model 
that is in general use.  The model has two major compo- 

SIGNAL SPEECH 

Fig. 2. Major components of the synthesizer in many 
speech coding systems. 

nents: an excitation (or  source) and a spectral shaping filter. 
Havi.ng chosen a particular synthesis model, any reduction 
in transmission rate is  accomplished by the quantizer and 
the encoder in Fig. 1 .  The encoder2 i s  assumed to be 
noiseless, i.e., it does not  introduce any additional noise  or 
loss in  fidelity.  It assigns bits to y ( n )  in such a way as to 
minimize  the transmission rate, without any loss in fidelity, 
and may include additional bits to protect the transmitted 
bit stream  against channel errors. 

The distortion  in the output r (n )  relative to the input 
s(n) may be the result of two processes: modeling and 
quantization. The modeling effected by the analysis/ 
synthesis system in Fig. 1 may introduce a certain amount of 
distortion, even in the absence of any quantization (see, for 
example, the pitch-excited  model described below). In this 
paper, we shall focus only on the  distortion caused  by the 
quantization process. 

The speech coding task then is  to design a system that 
minimizes  the transmission rate while maintaining a certain 
speech quality,  or conversely to maximize speech quality 
(minimize distortion) for a given transmission rate, subject 
to certain system  cost constraints. For a given choice of 

’The terms “encoder” and “coding” are often used to refer to 
the  whole compression process, as in speech coding. The  noiseless 
encoder in Fig. 1 refers to a  very  specific  part of the compression 
process. It i s  hoped that it  will be  clear from  the context which of 
the two usages  is meant. 

analysis/synthesis system, the  distortion and transmission 
rates are determined by the quantizer and the encoder. 

Speech coding paradigms: We shall employ two basic 
paradigms as representative of the applications in speech 
coding, a low-rate coding paradigm and a medium-rate 
paradigm. The terms low-rate (or narrow-band) and 
medium-rate (or medium-band) have been used in the 
literature to denote a wide variety of systems. We shall use 
the term medium-rate for systems operating in the range 
8-16 kbits/s, and lowrate for systems operating below that 
range, typically at  or below 2400 bits/s. The term very- 
lowrate is often used to denote low-rate systems operating 
below about loo0 bits/s. Below, we give the basic  para- 
digms that are used in this paper as examples of current 
systems that operate in the two main ranges. 

In our paradigms, the synthesis model  shown in Fig. 2 is  
based on a  short-term spectral  analysis of speech, where 
the speech  signal is modeled as the output of an all-pole 
spectral shaping filter 

k = l  

which is excited by a source with a flat spectral envelope. 
This is the well-known linear-predictive coding (LPC) model 
for speech.  The gain G and the predictor coefficients 
{ a (  k ) ,  1 < k < N }  are computed on a short-term basis over 
a frame of  about 20-30 ms in  which the speech  signal  can 
be considered to be approximately stationary. The coeffi- 
cients are obtained as a result of minimizing the energy of 
the prediction residual obtained by filtering the input signal 
s(n) through the all-zero filter A(z) .  Ideally, the excitation 
signal u(n) in Fig. 2 should match the residual  signal so that 
the reconstructed signal r (n )  will match the input s(n). In 
many medium-rate systems, the excitation used  is exactly a 
quantized version of the prediction residual. This is  true of 
many predictive waveform coding systems  such as adaptive 
predictive coding (APC) [IO], [89] and certain implementa- 
tions of adaptive transform coding (ATC) [16]. We  shall refer 
to such systems as residual-excited systems. (In Section VII, 
we shall include another filter that models the periodicity 
in  the speech  signal.) 

At  low rates, without using VQ it becomes necessary to 
have a simple model of the residual to maintain adequate 
speech intelligibility and quality. The  most popular model is  
the pitch-excited model, where the speech in each  frame is 
declared as either voiced or unvoiced. (Vowels and nasals 
are examples of voiced sounds, while consonants  such as p, 
t, k, f, s, are unvoiced.) If a voiced determination is  made, 
i.e., the  sound is  quasi-periodic at that point, the pitch, or 
fundamental frequency is  measured  and transmitted as well. 
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At  the receiver, voiced sounds are synthesized by exciting 
the spectral shaping filter by a sequence of pulses  separated 
by  the  period (Fig. 2 depicts that situation). For unvoiced 
sounds, a white random noise  source is  used as excitation. 
In either case, the gain C of the filter H ( z )  i s  set such that 
the short-term energy in the  output is equal to that of  the 
input speech. Note that the  pitch-excited  model causes a 
certain  amount of modeling  distortion in the output,  which 
can be heard even with  no quantization  of  the  model 
parameters. 

II. VECTOR QUANTIZATION 

This section begins with a  formulation  of the vector 
quantization problem, followed  by a discussion of the more 
common  distortion measures that are employed. Next we 
present the basic VQ  system design and its associated 
computational and storage  costs.  The section ends with the 
introduction  of a VQ model that is aimed at giving  the 
reader a view  of the various processes  at work in vector 
quantization. 

A. Problem Formulation 

We assume that x = [xl  x2  xNIT is an N-dimensional 
vector whose components { xk, 1 < k < N} are real-valued, 
continuous-amplitude random variables.  (The superscript T 
denotes transpose.) In vector quantization, the vector x i s  
mapped onto another real-valued, discrete-amplitude, N- 
dimensional vector y. We say that x i s  quantized as y, and y 
i s  the quantized value of x .  We write 

Y = 9 ( x )  
where 9(.)  is the quantization operator. y is also called the 
reconstruction vector or the output vector corresponding to 
x .  Typically, y takes on one of  a finite set of values Y = 
{ n , l  < i < L } ,  where = [h nz .. . nN]'. The  set Y is 
referred to as the reconstruction codebook, or simply the 
codebook, L is the size of  the codebook, and { n} are the 
set of code vectors. The vectors x are also known  in the 
pattern-recognition literature as the reference patterns or 
templates. The size L of  the codebook is also called the 
number of levels, a  term  borrowed from scalar quantization 
terminology. Thus one talks about an L-level codebook or 
L-level quantizer. To design  such a codebook, we partition 
the N-dimensional space of the random vector x into L 
regions or cells { C,,l d i d L} and  associate with each cell 
C; a vector X. The quantizer then assigns the code vector 
i f  x is in C, 

The codebook design process is also known as training or 
populating  the  codebook. A method for designing the 
codebook will be presented in Section 11-C. 

Fig. 3 shows an  example of a partitioning of two-dimen- 
sional space (N = 2) for the purpose of vector quantization. 
The region enclosed by the bold lines is the cell C,. Any 
input vector x that lies in the cell C, is quantized as n. The 
positions of  the code vectors corresponding to the other 
cells are shown by dots. The total number of code vectors 
in  the example of Fig. 3 is  L = 18. 

For N = 1, vector quantization reduces to scalar quantiza- 
tion. Fig. 4 shows an example of  a partitioning of  the real 
line for scalar quantization. The code values (output or 

Fig. 3. Partitioning  of  two-dimensional space ( N  = 2) into 
L = 18 cells. All input vectors in cell C, will be quantized as 
the code vector E. The  shapes of  the various cells can  be 
vew  different. 

- c, 
* I : ;  I * 

0 ai vi O,+l x 

fig. 4. Partitioning of the real line  into L = 10 cells 0 1  

intervals for scalar quantization ( N  = 1). 

reconstruction levels) are shown by dots.  Here,  also,  any 
input value x that lies in the interval C, is quantized as x. 
The number  of levels in Fig. 4 i s  L = IO. Scalar quantization 
has the very special property that while cells may  have 
different sizes, they all have the same shape, namely, they 
are all intervals on the real line. In comparison, note how  in 
Fig. 3 the cells in  two dimensions actually have different 
shapes.  This freedom of having various cell shapes in  multi- 
dimensional space  gives vector quantization an advantage 
over scalar quantization, as we shall see below. 

When x is quantized as y, a quantization error  results and 
a distortion measure d(x ,  y )  can be  defined  between x and 
y.  d (x ,  y )  is also known as a dissimilarity measure  or dis- 
tance measure. As the vectors y(n) at different times n are 
transmitted, one can define an overall average distortion 

I M  

If the vector process x(n )  is stationary and e r g ~ d i c , ~  the 
sample average in (3) tends in the limit  to the expectation 

D = &[ d ( x ,  Y ) ]  
L 

= c P ( X €  C ; ) + 4 x , x ) I X E  c;] 
i = l  

where P ( x  E C,) is  the discrete probability that x i s  in 
C , , p ( x )  i s  the multidimensional  probability density func- 
tion (pd9 of x ,  and the integral is  taken over all compo- 
nents of the vector x .  

For purposes of transmission,  each vector is encoded 

3Ergodicity  allows us to substitute sample  (or time) averages for 
ensemble averages [28]. 
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into a codeword of binary digits (bits) c, of  length 6, bits. In 
general, the  different codewords will have different lengths. 
The transmission rate T is then given by 

T = BF, bits/s (5) 

where 

I M  

M - m  M n-1 
B = lim - B( n)  bits/vector ( 6) 

is the average codeword length, B(n) is the number of  bits 
used to code  the vector x(n )  at time n, and F, i s  the 
number of  codewords transmitted per  second. It will also 
be useful to  define the average number of bits per  parame- 
ter or per dimension4 

B 
R = - bits/dimension. 

For a codebook  of size L, the maximum number of bits 
needed to code each vector is 

N ( 7 )  

B,,, = log, L .  ( 8) 

In designing a data compression system, one attempts to 
design  the  quantizer such that the  distortion in the output 
is  minimized for  a given transmission rate. One major 
decision  in designing a quantizer is  what distortion measure 
to use.  This is discussed next. 

6. Distortion Measures 

To be useful, a  distortion measure must be tractable, so 
that  one can analyze it and compute it, and be subjectively 
relevant, so that differences in distortion values  can be used 
as indicating similar differences in speech quality.  Most 
distortion measures in use today are certainly tractable and, 
to some extent, subjectively relevant. However, many re- 
searchers  have experienced the frustration which accompa- 
nies their discovery that a  few decibels of decrease in the 
distortion is  quite perceivable by the ear in one situation 
but  not  in another. The careful researcher  has learned that, 
while  objective  distortion measures  are  necessary and use- 
ful tools in  the design of speech coding systems, periodic 
subjective quality testing is indispensable to making an 
informed decision on directions for  improving system per- 
formance. Below we list some of  the major distortion mea- 
sures in use today. 

1) Mean-Square Error: By far the most common  distor- 
tion measure is the mean-square error (mse) 

1 I N  

N d2(X,Y)  = - ( x -  Y > b -   Y )  = x  c ( X k  - Y k )  
2 

k - I  

( 9) 
where  the distortion is  defined per dimension. The popular- 
ity  of  the mse lies mainly in its simplicity and mathematical 
tractability. A more general distortion measure  based on the 
Lr  norm is  defined by 

I N  
dr(X,Y) = x c I X k  - Y k r .  (1 0)  

k = l  

4Note that R is the  bit rate per dimension, 6 is the  bit rate per 
vector,  and T is the  bit rate per second. We shall often use the 
generic  term bit rate to refer to any  or  all of the  three meanings. 
We trust the  intended  meaning  will be clear from the  context. 

Note that (IO) is equal to (9) for r = 2. The two other most 
popular values of r are r = 1 and r = w .  dl represents the 
average absolute error  and dm tends towards the maximum 
error. In fact, one can show that 

~ i m [ ~ r ( x , y ) ] ” r = m a x { ~ x k - y k ~ , ~ < ~ ~ ~ ~ .  
r+ m 

(11) 
Minimizing D for r = w would be equivalent to  minimiz- 
ing  the maximum  quantization error. 

For speech coding, d, has been the most popular distor- 
tion measure, with 4 and d, being used occasionally. 

2) Weighted  Mean-Square Error: In the mse d2 we 
assumed that  the  distortions  contributed by quantizing  the 
different parameters { x k }  were weighted equally. In gen- 
eral, unequal weights can  be introduced to render certain 
contributions  to  the distortion more important  than others. 
A general weighted mse is then  defined by 

d , ( x , y )  = ( x -  Y ) W X -  Y )  (1 2 )  
where W is a  positive-definite weighting matrix. W = N-’ / ,  
where / is the  identity matrix, results in d,  = d2. 

One choice  for W that is popular in many pattern classifi- 
cation applications is  W = I’-’, ‘where I’ is the covariance 
matrix of  the random vector x 

r = q(.- 21‘1, z=s [x ] .  (13) 

d, (x ,y )  = (1 -  Y)Tr-l(X- Y )  (1 4) 

In this case, d,  reduces to 

and is  known as the Mahalanobis distance [85]. 
If, in addition  to being positive definite,  the weighting 

matrix W i s  symmetric (as in the Mahalanobis distance), one 
can factor Was  follows: 

w = PTP. (1 5) 

The vectors x and y can be transformed into a new set of 
vectors x’ and 9 

f=pX y = p y  (1 6) 
and 

d w ( x , Y )  = (* -  P V ) T ( - -  0 )  
= ( i -  j y ( x ’ -  9 )  
= dl( I, 9 ) .  (1 7 )  

Thus the  weighted mse between  the original vectors is  
equal to  the mse between  the transformed vectors.  There- 
fore, for  computational purposes, it may  be  advantageous 
to  perform  the transformation in (16) on all the data before 
vector quantization is performed. 

3) Linear  Prediction  Distortion  Measures: In LPC analy- 
sis, the  predictor coefficients { a ( & ) }  are obtained as a result 
of  minimizing  the energy of the prediction residual. One 
can show [€%I that the solution for the optimum A ( z )  in (1) 
is unique and is computed  from  the set of simultaneous 
linear equations 

N 

a ( & ) $ ( ;  - k )  = - $ ( i ) ,  1 6 i Q N (18) 
k - 1  

where { + ( i ) ,  0 < i Q N }  are the short-term autocorrelation 
coefficients of the speech  signal  over a single frame. (For a 
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speech signal band-limited to 5 kHz, for example, the 
number  of  coefficients N is typically set to 12-14.)  The gain 
G of  the  filter H(z) is set so that when excited by a unit- 
variance source the output energy will be equal to +(O). 
That  can be accomplished by setting 

N 

G2 = +(O) + c a ( k ) + ( k )  (1 9) 
k - 1  

which is equal to the minimum residual energy.  The  param- 
eters of the  filter H(z) are computed every  frame, quan- 
tized, and transmitted. 

The gain G is usually quantized on a logarithmic scale 
and  transmitted separately. (Some work has been done in 
joint  quantization of the gain  and the LPC parameters 
[108].)  Because the  quantization  of  predictor  coefficients 
can lead to instability  of the resulting all-pole  filter, they are 
usually transformed to another set of parameters known as 
the  reflection coefficients { K,,1 Q k d N }  or partial corre- 
lation (PARCOR) coefficients [69]. Reflection coefficients 
result as a byproduct of solving (18)  or  can be computed 
recursively from the  predictor coefficients (see, for example 
[%I,  [90]).  For a stable H(z), the reflection coefficients have 
the property 

lKki < 1, 1 Q k Q N. ( 20) 

Because for values of lKkl approaching 1 the poles approach 
the  unit circle, small  changes in K, can result in large 
changes in  the spectrum. Therefore, for quantization  pur- 
poses, the reflection coefficients are usually transformed to 
another set of coefficients that exhibit  lower spectral  sensi- 
tivity as K approaches 1. Two popular transformations are 
[781 

2 
5 - - sin-’ K,, ,-7r 1 d k Q N (21) 

The parameters Gk are known as log-area-ratios (LARS) 
from the acoustic tube analogy of the vocal tract [8], [90] 
and possess the property that small  changes in Gk are 
approximately  proportional to corresponding changes in 
the log spectrum of H(z) [131].  The  mse d, as well as the 
minimax error d, have been used to quantize Sk and ck. 
The quantization properties of K,, S,, and Gk have been 
studied by several  researchers  [61],  [72],  [131], 

An alternative distortion measure  used in quantizing pre- 
dictor coefficients was proposed by ltakura and Saito [ a ] ,  
[70]; it derives from maximum-likelihood principles. A  mod- 
ified  form  of the Itakura-Saito distortion  between one 
vector of predictor coefficients x = [a(l) a(2) . .. a(N)]‘ 
and another vector of predictor coefficients y is given by 
(see [57] for variations on the Itakura-Saito distortion) 

d / (X ,Y)  = ( x -  Y ) ‘ @ A X -  Y) (23) 

where 

ax= { + ( i -  k)/+(O),O< i , k Q  N - I }  (24) 

is  the normalized autocorrelation matrix whose coefficients 
+ ( i  - k )  were used in computing the vector of predictor 
coefficients x in (18).  Since the autocorrelation coefficients 

in (24)  are normalized by +(O), one can show that the matrix 
and  the vector x uniquely determine each other. It is 

important  to  note that ax in (23) is effectively a weighting 
matrix but, unlike  in (12) where W is fixed,  here  changes 
value as x changes. Since ax # aY for x # y ,  the 
Itakura-Saito distortion is  not symmetric with respect to i ts  
arguments, i.e., d,(x,  y )  # d , ( y , x ) .  The distortion measure 
is not a distance or a metric. By contrast, the  weighted mse 
distortion is a symmetric distance and metric. 

Even though the  computation of dl in (23) implies a 
matrix multiply, the  computation can  be simplified consid- 
erably and reduced to a scalar (dot) product [ a ] .  

4)  Perceptually Motivated  Distortion Measures: For 
very small distortions, and therefore high bit rates, most 
reasonable distortion measures, including those mentioned 
above, all exhibit similar behavior, by linearity arguments. 
Furthermore, they would all be expected to correlate well 
with subjective judgements of speech quality. However, as 
bit rate decreases  and distortion increases, simple distortion 
measures  have not always correlated well  with perceptual 
judgements. Since VQ is expected to be especially useful at 
low  bit rates, it becomes more important to develop and 
use distortion measures that are correlated better with 
human  auditory behavior. A number of perceptually based 
distortion measures,  and others that correlate well  with 
subjective judgements, have been used in speech coding 
(see, for example, [74, Appendix E], [ I l l ,  [12],  [94],  [IOO], 
[ lo l l ,  [134]). If  high speech quality at a given bit rate is  the 
most important consideration in a coder  design, then one 
would  do well to consider the use of a distortion measure 
that correlates well  with human perception. 

C. Codebook Design 

As mentioned above, to design our L-level codebook, we 
partition N-dimensional space into L cells { C,,l Q i 4 L}  
and associate with each cell C, a vector x. The quantizer 
then assigns the code vector x i f  x is in C,. A quantizer is 
said to be an optimal (minimum-distortion) quantizer if the 
distortion in (4) is minimized over all L-level quantizers. 
There are two necessary conditions for optimality. The first 
condition is  that  the  optimal quantizer is realized by using a 
minimum-distortion or  nearest neighbor selection rule 

q ( x )  = x ,  iff d ( x , x )  d d ( x , ~ ) ,  j #  i, 1 a i <  L. 

( 2 5 )  
That is, the quantizer chooses the code vector that results 
in  the  minimum distortion with respect to x .  (Ties  are 
decided  by some rule.) The  second  necessary condition for 
optimality is that each code vector x is chosen to  minimize 
the average distortion  in cell C,. That is, x is that vector y 
which minimizes 

D, = &[ d( x ,  y ) l x  E C,] = d( x ,  y ) p (  x )  dx. 
X €  c, 

( 26) 
We call such a vector the centroid of  the cell C,, and we 
write 

x = cent ( C,). (27) 

Computing  the centroid for a particular region will depend 
on  the  definition  of the distortion measure.  (The cells thus 
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defined are known as nearest neighbor cells, Voronoi cells, 
or Dirichlet regions [a].) 

In practice, we are given a set of  training vectors { x (n ) ,  
1 G n Q M } .  A subset M i  of those vectors will be in cell 
Cj .  The average distortion Di is then given by 

1 

For either the mse or the weighted mse criterion, one can 
show that Di is minimized by 

1 

or );. is simply the sample  mean of all the  training vectors 
contained in C,. For the Itakura-Saito distortion d,, one can 
show that E is computed by first averaging the normalized 
autocorrelations corresponding to the sample  vectors 

where are normalized such that +x(0) = 1. The vector 
x is then  obtained as the solution to (18) with + J k )  as the 
autocorrelation coefficients. 

One  method for codebook design is  an iterative cluster- 
ing  algorithm  known  in the  pattern-recognition literature as 
the K-means a lg~ r i t hm.~  In our problem here, K = L. The 
algorithm divides  the set of  training vectors { x ( n ) }  into L 
clusters' Cj  in such a way that the two necessary conditions 
for optimality are satisfied. Below, m i s  the iteration index 
and C,(m) i s  the i th cluster at iteration m, with X(m) its 
centroid. The algorithm is as follows: 

K-Means Algorithm 

Step 1 : Initialization: Set m = 0. Choose  by an adequate 
method a set of  initial code vectors n(O), 1 Q i 
Q L .  (See Section V-E.) 

Step 2 :  Classification: Classify the set of  training vectors 
{ x(n), 1 Q n Q M }  into the clusters C; by the 
nearest neighbor rule 

X E  C j ( m ) ,  i f f d [ x , ~ ( m ) ]  Q d [ x , v ( m ) ] ,  

all j f i .  

'The  algorithm presented here was described by  Forgy in 1965 
[41] and is the  clustering  algorithm described most in the pattern- 
recognition  literature [5],  [30], [a], [%],  [129].  The  name K-means 
comes from MacQueen [MI, who actually describes a  different 
algorithm. In an unpublished paper in 1957, Lloyd had indepen- 
dently  developed the same algorithm as Forgy's but for the scalar 
quantization  problem and a  known  distribution (Lloyd's  paper has 
recently  been  published [82].)  The application of this algorithm to a 
training sequence and the VQ case  has been termed in some of the 
information  theory literature as the generalized Lloyd algorithm 
[56]. Linde, Buzo, and Gray  [81]  have shown that the algorithm 
works with a large class of distortion measures, including measures 
that are not metric, and so the algorithm has  also been called the 
LBC algorithm. 

bWe use the same symbol C, to represent both the cluster and 
the  cell  corresponding to code vector E. Cell C, is that region of 
N-dimensional space that is closest to E based on the nearest 
neighbor  rule,  while cluster C, is that subset of training vectors 
which are closest to E based on the same rule, i.e., cluster C; is the 
set of training vectors contained in cell C,. 

Step 3: Code Vector  Updating: m + m + 1. Update the 
code vector of every cluster by computing the 
centroid of the training vectors in each cluster 

E(rn)=cent(C,(m)), 1 Q ; Q  L 

Step 4: Termination Test: If  the decrease in the overall 
distortion D ( m )  at iteration m relative to D ( m  
- 1) is below a certain threshold, stop; other- 
wise go to Step 2.  

Any other reasonable termination test may be substituted 
for Step 4 above. 

The above algorithm can be shown to converge to a local 
optimum (see, for example,  [5],  [81]). Furthermore, any  such 
solution is, in general, not  unique [33],  [58]. Global optimal- 
ity may be achieved approximately by initializing the code 
vectors to  different values  and repeating the above  al- 
gorithm for several  sets of  initializations and then choosing 
the codebook  that results in the minimum overall distor- 
tion.  In Section V-E we shall  discuss methods for perform- 
ing  initialization. 

D. Computational and  Storage  Costs 

Having designed a codebook as described above, one can 
then use it  to quantize each input vector x(n). The quanti- 
zation is performed as shown in (25) by computing the 
distortion  between x( n) and  each of the code vectors, then 
choosing  the code vector with the minimum distortion as 
the  quantized value of x(n). This type of quantization is 
known as a full search since all code vectors are tested for 
quantizing each input vector. For  an L-level quantizer, the 
number  of distortion computations needed to quantize a 
single input vector is L. While a distortion  computation can 
be  arbitrarily complex, we shall assume here that each 
distortion  computation requires a total of N multiply-adds 
(this is true for the mse and one version of the Itakura-Saito 
distortion). Therefore, the computational cost for quantiz- 
ing each input vector is 

Q= N L .  (31 1 
If we encode each code vector into B = RN = log, L bits 
for transmission, then 

Q= N 2 R N .  (32) 

Thus computation cost  grows exponentially with the  num- 
ber of dimensions and the number of bits per dimension. 

Another  important part of the quantization cost is mem- 
ory or storage cost, i.e., how much storage is needed to 
store the code vectors.  We  shall  measure  storage  assuming 
one storage location per vector parameter. It is  clear that 
storage cost is then given by 

A= NL = N 2 R N .  (33) 

Like computational cost,  storage  cost is  exponential in the 
number  of dimensions and the number of bits per di- 
mension. 

The costs given above are for the full search algorithm. In 
Section V  we shall present methods that reduce computa- 
tional costs substantially at the cost of relatively small loss 
in performance and/or increase in storage. 

While we place heavy  emphasis on the costs  associated 
with the  quantization process itself, it is  also important to 
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keep in  mind the costs  associated with design of  the 
codebook in the first place. In the K-means algorithm 
described above, most of  the computations result from the 
classification step; code vector updating presents a  negligi- 
ble amount  of  computation by comparison. For  an L-level 
quantizer, M training vectors, and I iterations, the computa- 
tional cost for training is 

Q, = NLMl = N2NRMl. (34) 

The storage  cost, including the storage needed to store all 
the  training vectors, is 

, K T  = N ( L  + M). (35) 

For reliable design of the codebook, it has been our experi- 
ence that one needs at  least 10 and preferably about 50 
training vectors per code vector, so that M i s  on the order 
of 1OL or  more (see Section V-E). So, storage  cost for 
training is largely dominated by the amount of training 
vectors needed. 

E. Vector  Quantization  Model 

Before we delve into more mathematics and  examine the 
detailed workings  of vector quantization, we shall present a 
simple  model  of vector quantization, which we hope will 
give the reader a basic understanding of  the various pro- 
cesses  at work. The concepts presented will be illus- 
trated by  simplified examples. 

7) Basic Model: Our VQ model  identifies  four  proper- 
ties of vector components which, when utilized appro- 
priately in codebook design, result in optimal performance. 
The four  properties  of vector components are: linear d e  
pendency,  nonlinear  dependency,  pdf shape, and dimem 
sionality. These four properties are interrelated to a certain 
extent. For example, even though the multidimensional pdf 
shape completely specifies any dependencies among vector 
components, we shall see that pdf shape still plays  an 
important  role  in determining  optimal performance, even 
when all dependencies among components are removed. 
For a given codebook size, VQ takes  advantage of the four 
properties above by proper placement of the code vectors 
in N-dimensional space. By code vector placement we 
mean  having the freedom to place code vectors where they 
are needed most so as to minimize  the given distortion 
measure. For example, one would  not place code vectors in 
regions of zero probability. There  are two aspects of code 
vector placement that are of interest: code vector spacing 
or  density  and cell shape. Code vector spacing  refers to 
how close the code vectors are to each other. In general, 
one  would expect closer  spacing (higher density) in high 
pdf regions (i.e., where p(x )  is large) and wider spacing of 
code vectors in regions of low  pdf. Once  the code vectors 
are specified, then the cell shapes  are automatically de- 
termined  by  the distortion measure.  Conversely, once all 
the  cell shapes and positions are specified, then  the code 
vectors are automatically determined as the cell centroids. 
We shall see below that it will be beneficial to  think  in 
terms of  cell shapes to gain a better understanding of the 
workings of VQ, for it is  the freedom we have to choose 
different  cell shapes in higher dimensions (N > 1) that 
allows us to exploit dimensionality to minimize distortion 
in a way that is not possible with scalar quantization. 
Below,  we demonstrate how a vector quantizer chooses i ts  
code vector placements and cell shapes, taking advantage 
of  the four vector properties to  optimize performance. The 

examples are designed to expose the processes  at work in 
VQ in a  simple way  and to show how they may differ  from 
scalar quantization. 

2) Dependency: Data compression is  largely a process 
of redundancy removal; it is  not necessary to waste bits in 
transmitting redundant  information. Redundancy usually 
implies some sort of dependency among transmission 
parameters. We shall  classify statistical dependency into 
two types: linear dependency and nonlinear  dependency. 
These terms are explained below. 

Linear dependency is what we normally think of as corre 
lation. Two  random variables that are correlated are linearly 
dependent. If  the variables are uncorrelated, they are no 
longer  linearly dependent, but they may still be statistically 
dependent. The latter "residual" dependency we call non- 
linear dependency; it is  whatever dependency remains after 
the linear dependency is removed. Two (zero-mean) vari- 
ables x1 and x2 are uncorrelated if the expected value of 
their  product is zero 

b [  x , x 2 ]  = 0 (uncorrelated). (36) 

But x1 and x2 are independent if and only if their joint  pdf 
is equal to  the product of the  individual (marginal) densities 
of x1 and x2 

p( x l ,   x 2 )  = p( x l )  p( x 2 ) ,  for all x , ,  x2 (independent). 

(37) 
If x, and x2 are uncorrelated but dependent (i.e., (36) 
applies but  not (37)), then that dependency we call nonlin- 
ear. We shall now demonstrate how one can  take ad- 
vantage of both types of dependency in reducing the nec- 
essary bit rate for transmission. In the examples below we 
shall use the mse as our distortion measure. 

EXAMPLE 1 
x, and x 2  are two random variables  whose joint  pdf 

p(x,,x2) is shown in Fig.  5.  The density is uniform and 
nonzero inside the rectangle and  zero outside the rectan- 

Fig. 5. An example of a uniform  pdf p(x , ,x , )  in  two  di- 
mensions; the density is zero outside the region C. Shown 
also  are the marginal densities p ( x l )  and p(x,) .  x1 and x 2  in 
this example are correlated. 
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gle. Let the region inside the rectangle be denoted by C, 
then 

otherwise. 

The rectangle has  sides a and b, and is  oriented at  an angle 
B = a/4. Shown also in Fig. 5 are the marginal densities 
p( x l )  and p( x , ) ,  which  in this example happen to be equal. 
It i s  clear from (38) and the marginal densities in Fig. 5 that 
(37) does not apply, and so x, and x ,  are dependent. One 
can also show that x1 and x ,  are correlated, so that (36) is  
not  true either. 

Now,  let us  use a scalar uniform  quantizer to quantize x, 
and x ,  independently.  A uniform quantizer is one whose 
quantizing intervals C, are of equal length. (Such a quan- 
tizer  minimizes  the mse only for a uniform density and, 
therefore, would  not be optimal for quantizing x, and x ,  in 
this example.) We shall quantize x, and x ,  using quantiz- 
ing intervals equal to A .  Since x, and x2 have  values that 
range between - ( a  + b) /2 f i  and ( a  + b ) / 2 f i ,  the  num- 
ber of levels needed to quantize each of x1 and x ,  is equal 
to 

x1 and x 2  can be coded using R, = log, L, bits and R, = 
log, L,  bits, respectively. The vector x can  be  coded, then, 
using 

( a  + 6)' 

2 A2 
B, = R, + R,  = log, LlL2 = log, bits. (40) 

The two scalar quantizers correspond to using a vector 
quantizer with a  total number of levels 

( a  + b)' 
L ,  = LIL,  = 

2A2 ' 

Indeed, such a quantizer can  be obtained by first demarking 
the extreme values of x1 and x ,  by the dashed rectangle (it 
is a square in this example) enclosing the region Q in Fig. 5, 
and then  drawing a rectangular grid with the separation 
between  grid lines equal to A in  both directions (see  Fig. 8). 
Such a quantizer would have quantization cells in the form 
of squares,  each of area A,. Clearly, the  total number of 
such squares inside the dotted region Q i s  obtained by 
dividing the total area byA2. The result is  equal to L,  in (41). 
Such a vector quantization code is known as a product 
code because it is the Cartesian product  of the codes for 
quantizing x1 and x ,  separately.  The use of a product code 
for this example is  clearly wasteful of  bits since regions of 
zero probability are  assigned  some of the bits. 

We have  seen  above that, with a product code, the  total 
number of quantization levels is proportional to the area of 
the  whole quantization region (region Q in Fig. 5). There- 
fore, i f  the area of the  quantization region can somehow be 
reduced, the number  of  quantization levels and the corre- 
sponding  bit rate will also  be reduced. For our example, 
one can perform a coordinate transformation via a rotation 
that transforms Fig. 5 into Fig.  6. The vector x is transformed 
into another vector u. One can show that the new  coordi- 
nates u, and u, are, in fact, uncorrelated. With the proper 
rotation, any set of random variables  can  be rendered 
uncorrelated, as we shall see in Section IV. In the special 
case of the ,example in Fig.  6, we see from  the marginal 

Fig. 6. The pdf in Fig. 5 after a rotation of coordinates. u, 
and u2 are now uncorrelated and independent. 

densities shown  in the figure that 

P(UltU2) = P ( Y ) P ( U , ) ,  forall Y!U, 

and, therefore, y and u2 are  also statistically independent. 
Performing uniform scalar quantization in this case with a 
quantizing interval  of  length A yields a number of levels 
equal to 

a b 
L = -  
' A  

L,  = a  
ab 

A2 
L = L L  =-.  u 1 2  

The corresponding number of-bits is 

ab 

A, ' 

B" = log, - (43) 

The difference in the number of  bits needed to code x and 
u can be seen from (40) and (43) to be 

( a  + b)' 

2ab 
B, - Bu = log, 

For example, for a = 26 

8, - B,, = 1.17 bits ( a  = 26) .  (45) 

Therefore, the  rotation saves  us in excess of 1 bit per 
transmitted vector. Such a difference can become signifi- 
cant at low data rates. 

In comparing bit rates in (44) we made  an implicit as- 
sumption that  the  total  quantization  distortion is the same 
for both examples of Figs. 5 and  6. Otherwise, comparing 
bit rates as such is not meaningful. In fact, for small A and, 
hence, large B, and large B,,, one can show from (4) that the 
total  distortion  in  both cases is  about the same. Differences 
in  distortion arise as A increases and boundary effects near 
the edges of  the rectangle become significant. Under such 
circumstances one must be careful to equalize the  distor- 
tions  before  comparing bit rates. At such low  bit rates, (45) 
would  not be expected to hold; it would most likely de- 
crease. 

EXAMPLE 2 
Example 1 demonstrated how one can  take  advantage of 

decorrelation  through  rotation to reduce the bit rate in 
scalar quantization of a vector. In this example, we shall 
demonstrate how,  through vector quantization, one can 
take advantage of nonlinear dependencies to reduce the bit 
rate. 
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Fig. 7. An example where u, and u2 are uncorrelated but 
dependent; this type of dependency is termed nonlinear. 

Fig. 7 shows a  different example of a pdf that is  nonzero 
and uniform inside the hatched region C and  zero other- 
wise. Since the area of the hatched region is  5ab/8, we 
have 

8 

P ( u ) =  5ab' i 0, 

U E  c 
otherwise. 

(46) 

One can show that, like the example in Fig. 6, u, and u2 are 
uncorrelated but, unlike in Fig. 6, u, and u, here are not 
independent, as is  clear from (46) and the marginal densi- 
ties in Fig. 7. Such statistical dependency is-termed nonlin- 
ear; it cannot  be removed by a process of decorrelation. A 
scalar quantizer designed for y and u2 in Fig. 7 will yield 
the same bit rate 6, in (43).  To take  advantage of  the 
nonlinear dependency we must use a different vector 
quantizer  that  partitions only the hatched area in Fig. 7 and 
does not waste bits inside the small rectangle. One such 
quantizer would divide  only the hatched area into squares 
of equal area A2. (Such a quantizer would yield the same 
distortion as the scalar quantizer for small A , )  The number 
of levels and bits for this vector quantizer would be 

5 ab 5ab 
L' = -- 4 = log, - 

8 A2 0 A 2  
(47) 

The reduction in bit rate between  a scalar quantizer and a 
vector quantizer in this case is the difference between (43) 
and (47) 

8 

5 
6, - 4 = log, - = 0.68 bits. 

Therefore, taking advantage of nonlinear dependency in 
this case  saved  us 0.68 bits/vector. 

We have  seen how, with proper cell or code vector 
placement, a vector quantizer was able to take  advantage of 
nonlinear dependencies to reduce the bit rate. It should be 
clear that any vector rotation will not affect the vector 
quantizer's ability  to locate its cells properly. Therefore, VQ 
can make effective use of all dependencies (linear or non- 
linear) simply by proper code vector placement. 

(48) 

3) Dimensionality: 

EXAMPLE 3 
The vector quantizer in Example 2 employed the square 

as the shape of all i ts  cells. The  square  shape  was inspired 
from  the scalar quantizers used earlier. But one property of 
vector quantizers in higher dimensions is  that one has the 

freedom to choose other cell shapes and not  be restricted 
to the N-dimensional cubes  suggested by scalar quantiza- 
tion. Let  us examine the effect of using a different shape, 
such as the hexagon, to partition our two-dimensional 
space.  Fig. 8 shows a covering of space by squares and Fig. 9 
shows a space covering by regular  hexagons.  Let  each 

Fig. 8. Packing of two-dimensional space with squares. 

Fig. 9. Packing of two-dimensional space with regu 
hexagons.  For the same number of cells in a given area w 
a  uniform  pdf, hexagons  have a  lower mse than squares. 

hexagon have  sides of size 6. The  area of  the hexagon is 
then 

( 49) 

To compare the performance of  the square quantizer to  the 
hexagon quantizer, we must  compare the  quantization mse 
for  both quantizers. If we assume that the code vectors are 
located in  the center of  the square  and the hexagon in each 
case  (as shown  by the dots in Figs. 8 and 9), one can show 
that  the mse for each cell is  given by 

A4 
E, = - 

6 
(square) 

5 6  
E, = - 1 3 ~  (hexagon) 

8 

where  the subscripts denote the respective quantizers. The 
total mse is then obtained by multiplying (50) and (51) by 
the number of cells (levels). If we make the area of the 
hexagon equal to the area of the square,  i.e., set A, = A2 = 
A, in (49), then, neglecting edge effects, both quantizers 
will have the same number of cells covering any given area 
and, therefore, they will have the same bit rate. However, 
the  ratio of the distortions can be shown to be 
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which is  equivalent to -0.167  dB.  That is, the hexagon 
quantizer will yield a lower mse than the square quantizer 
by a  fraction  of a decibel. Conversely, if we equalize the 
distortions, i.e., set E, = E,, then  the  ratio  of  the areas will 
be 

A,  3 _=-= 

A s  86 1.0194 ( E, = E,) . (53) 

This means that,  for  the same distortion,  the hexagon has a 
slightly larger area than the square  and, therefore, will 
require proportionately fewer cells to cover the same  space. 
Therefore, the  bit rate for the hexagon will be lower by an 
amount equal to log, A,/AS, which  from (53) is equal to 
0.028 bits. 

The gain of 0.028 bits resulting from  the use of  a hexagon 
quantizer can be  obtained in the examples of Figs. 6 and 7 
in addition  to any other gains obtained by taking advantage 
of linear and nonlinear dependencies. This  means that, 
even in the case when two random variables are indepen- 
dent, as in Fig. 6, vector quantization can  squeeze out an 
additional small fraction  of a bit by taking advantage of the 
higher  dimensionality using an appropriate cell shape. 

4)  PDF Shape: In the examples  above, the cells always 
had not  only  the same  shape throughout the quantization 
region  but also the same size. Effectively, the cell spacing 
was uniform.  Uniform cell spacing is certainly a reasonable 
choice  with a uniform  pdf. However, for nonuniform  pdf 
shapes, one would expect that some form  of nonuniform 
cell spacing would be needed for optimal performance. We 
shall see in Section Ill how scalar and vector quantizers 
make effective use of pdf shape to reduce the bit rate. 

In this section, we presented a model for vector quantiza- 
tion and gave a few examples to illustrate some of the basic 
principles. In the  following sections, we shall review some 
of  the theoretical foundations of vector quantization and 
give practical examples from speech coding. However, the 
basic concepts presented in the vector quantization  model 
above and in the simplified examples will still hold when 
we deal with real-world data. 

I l l .  THEORETICAL VECTOR QUANTIZER PERFORMANCE 

In this  section  we review some of the important theoreti- 
cal tools  that are used to help estimate the performance of 
vector quantizers, along with some of  the known results. 
The presentation is under three headings: rate-distortion 
theory, scalar quantization, and asymptotic vector quantiza- 
tion. Rate-distortion theory and scalar quantization will give 
us lower and upper bounds, respectively, on the mini- 
mum  bit rate achievable by vector quantizers for any given 
distortion. 

This section is  theoretical in nature and is  rather long. At 
first reading, we recommend that the reader take only a 
cursory look at the contents of this section to gain familiar- 
ity  with  the basic definitions and concepts presented, and 
move quickly to Section IV  and the remainder of  the paper. 

A. RateDistortion Theory 

Since a major purpose in performing data compression is  
to  minimize  the  bit rate for a desired level of  distortion, it i s  
important in a particular situation to  know the theoretical 
lower  bound  on the bit rate for any quantizer. By knowing 
such a bound, one can compare the performance of differ- 

ent quantizers to that bound and decide whether to search 
for other possibly more complex quantizers that might 
approach that bound more closely. Rate-distortion theory, a 
branch  of information theory, deals with obtaining such 
lower bounds without requiring  the design of actual quan- 
tizers. For a given distortion D, one can compute either 
R (  D ) ,  the rate-distortion function, defined as the minimum 
achievable rate (per dimension) for a given distortion D, or 
i ts  inverse D(R), the distortion-rate function, defined as 
the  minimum achievable distortion for a given rate R. The 
performance limit provided by D(R) or R(  D )  applies to all 
methods  of source coding, not just vector quantization. It 
specifically  allows for coders that incorporate arbitrarily 
long delays. In  light of the complexity of  encoding  per- 
mitted by this theory, not being able to come very  close to 
the  optimal performance when investigating practical vec- 
tor quantizers may not be indicative of a meaningful dispar- 
ity.  It is when the performance of practical coders is rela- 
tively close to the  rate-distortion  limits that the theory is 
most useful. Below, we present a summary of  the relevant 
results from rate-distortion theory, preceded by an intro- 
duction  to  the concept of entropy from information theory. 

1 )  Coding  of Quantizer Output: We mentioned in 
Section II that  one can code the quantizer output vectors 
{ x ,  1 d i Q L }  with log, L bits each. If L i s  a power of 2, the 
coding is very simple, but if L i s  not a power of 2, then one 
can group several  vectors together and then  perform  the 
coding. For example, if L = 5, then to code a single vector 
would require 3 bits instead of  the desired log, 5 = 2.32 
bits, since one cannot transmit a fractional number of bits 
as such. However, if we group three vectors together, the 
total number of levels is equal to L3 = 125 s 2’, then each 
triplet can be  coded using 7 bits, for an  average of 2.33 bits 
which is  close to the desired average. Henceforth, we shall 
disregard the  problem of fractional bits and simply assume 
that values  can  be grouped together, if desired, to achieve 
the needed rate. 

In general, coding L vectors with log, L bits each is 
actually  the maximum rate needed for coding. The mini- 
mum average achievable rate to code the vectors { x }  is 
given by the entropy of { x }  [&I, defined as 

L 

H( Y )  = - c P( x) log, P( x) (54) 
i -1  

where H ( y )  is the entropy of the discrete-amplitude vari- 
able y and P ( x )  i s  the discrete probability  of x. H( y )  is also 
called self-information, and it is  a measure in bits of the 
information  in { x } .  Since all discrete probabilities must 
obey 

L 

0 Q P ( x )  Q 1 P ( x )  = 1 (55) 
i = l  

one can show [ 4 6 ]  that entropy is bounded by 

0 d H( y )  d log, L .  (56) 

Each vector x is coded using 

B, = -log, P( x) bits (57) 

so that vectors with different  probabilities will have differ- 
ent wordlengths. The resulting code will be  a variablelength 
code, with an  average  rate equal to the entropy H ( y )  in 
(54).  This type  of  coding is known as entropy coding. The 
Huffman code [ 6 6 ]  is a well-known, straightforward method 
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for  performing entropy coding. With variable-length cod- 
ing, appropriate buffering schemes would need to be im- 
plemented i f  transmission is over a fixed-rate channel. Any 
such buffering  would, of course, introduce a delay in the 
system.  Also, variable-length coding is particularly sensitive 
to channel errors. Permutation codes [IS] offer an alterna- 
tive  for entropy coding using fixed-length codes; however, 
the codewords can  be  very long, which also  results in 
delays. In practice, variable-length codes with  buffering are 
used. 

One can show that maximum entropy is achieved when 
all vectors n have equal probability [&I, i.e., P(n) = 1/L, in 
which case 

H,,,,,( y) = B,,, = log, L bits. 

For this special case, a fixed-length code is, in fact, optimal. 
Entropy coding is one form  of noiseless coding in that 

the  coding does not  introduce any additional noise or 
distortion beyond that introduced by the  quantization pro- 
cess; it merely takes  advantage of the probability  distri- 
bution  to  minimize the bit rate.  (The  purpose of  the noise- 
less encoding box in Fig. 1 is to minimize  the bit rate 
without  introducing extra distortion.) 

One  important and useful property of entropy coding is 
that, even if  the number of levels L is infinite,  the entropy 
can still be finite. (Values with very  small probability con- 
tribute very little  to the entropy since the limit as P + 0 of 
- Plog, P is zero.)  Therefore, one can partition  N-dimen- 
sional space into a countably infinite number of  finite 
(nonzero) cells, and the entropy of the resultant codebook 
will be finite.  In practice, L must  be finite, but  it  could be 
made large without substantially increasing the bit rate, 
provided entropy coding is used. 

As the cells in the  quantization process  are  made  smaller 
so that their size goes to zero, the quantizer discrete out- 
puts { n} tend  to the original continuous-amplitude source 
x; the quantization  distortion goes to zero; and the entropy 
becomes infinite.  In other words, it takes infinitely many 
bits to transmit a continuous-amplitude source. For  such a 
source, it will prove useful to define its differential entropy 
[I  41 

where h(x )  is the differential entropy of the vector x and 
the integral is over all the components of x .  Unlike a b  
solute entropy, which was defined in (54), differential en- 
tropy may be positive or  negative. As such, differential 
entropy values are not meaningful in and of themselves; 
they are meaningful  only relative to other differential  entro- 
pies. Thus the difference between two differential  entro- 
pies is  a meaningful measure of the difference in informa- 
tion  (in bits) between the corresponding sources. 

For a  random variable x with a given variance u 2 ,  one can 
show that h ( x )  is bounded above by [I221 

source that is defined as a function of  a discrete variable 
(such as sampled time). Let x(n)  be  a discrete-time, con- 
tinuous-amplitude random source,  i.e., a stochastic se- 
quence. l f  all samples of x(n)  are independent and identi- 
cally  distributed,  we say that the source is memoryless and 
is completely specified by a single pdf, p(x) .  It  would 
appear that in quantizing  a memoryless  source, vector 
quantization should  not have  any  advantages  over  scalar 
quantization. However, we have already seen in Example 3 
that VQ indeed can  achieve better performance even in the 
case of a memoryless source.  Therefore, in investigating 
rate-distortion  limits we group samples of  the source in 
blocks  or vectors and determine the  conditions that achieve 
those limits. 

We shall group N consecutive values of x(n)  into a 
single vector x ,  so that x is a random vector. The vector x i s  
then quantized into a vector y =  q(x),  where y is one of 
the vectors in  the set { n , l  < i < L } ,  with L possibly in- 
finite. The  average distortion D in representing x as y is  
given by &‘[d(x, y)], where d ( x ,  y) is the  distortion per 
dimension (i.e.,  per  sample of x(n)) .  The vectors y can be 
transmitted at  an  average bit rate of R = H(y)/N bits per 
sample, where H(y) is the entropy of  y as defined in (54). 
The minimum achievable distortion DN( R )  for a given rate 
R is given by 

1 
D,,,( R )  = min&[ d( x ,  y)], with - H( y) 6 R 

s ( x )  N 

where  the minimum is taken over all possible mappings 
q(x ) .  The distortion-rate function D(R) is obtained in the 
limit as N 4 DC) 

D(R) = lim DN(R) .  (62) 

D(R) is the  minimum attainable distortion in  coding the 
source x(n )  at a rate R; it is a lower bound  on the  perfor- 
mance of any quantization scheme.  The rate-distortion 
function R(D) is the inverse of D(R) and is defined  simi- 
larly.’ We shall have occasion to use both functions in this 
paper, although D(R) is used more in practice since we are 
typically  given the rate R and we design our quantizer to 
minimize  the distortion. 

The main result of rate-distortion theory that relates to 
VQ is that, by  using a vector quantizer, one can in principle 
approach the distortion-rate function arbitrarily closely  by 
increasing the vector  size N. This is essentially implied  in 
the  definition of D( R )  in (62). Therefore, D( R )  is not mere- 
ly a lower  bound for any quantizer, it is actually achiev- 
able, in theory, by a vector quantizer of high dimension. 

The distortion-rate function D(R) has two important 
properties: it is monotone decreasing with R and it is  con- 
vex. Furthermore, for the mse distortion, D( R )  decreases  at 
the rate of about 6 dB/bit for large R .  We shall exhibit 
these properties in specific examples below. 

While  defining R(D) or D(R) is straightforward, neither 

N- m 

h( x )  < h,( x )  = log, (2neu’) (60) is simple to evaiuate analytically, except for a few special 
cases.  For a memoryless (zero-mean) Gaussian  source with 

where h,(x) is the differential entropy of a Gaussian pdf variance u2 and a mse distortion, R(D) and D( R )  are 
with variance u2.  We shall see that Gaussian  sources play a 
special role in bounding the performance of  coding sys- 
tems. 

of rate-distortion theory have been obtained for a scalar our purposes. 

’The general definition of R(D) in rate-distortion theory i s  given 
in terms of  the concept of mutual  information [14]. We have 

2) RateDistortion Theory  Results: Most  of  the results chosen here a somewhat narrower definition that is sufficient  for 
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given by [I41 

R,( D )  = max 0,; log, - ( 3 
= { i , log2u2 /D ,  0 Q D Q u2 (63) 

D > u 2  

DG( R )  = 2-2Ru2. ( 64) 

If D > u2 i s  given, then we need not transmit any informa- 
tion ( R  = 0) because we can  always obtain D = u2 by using 
zeros for the  quantized values of x(n) ,  since the quantiza- 
tion error is then equal to x(n) .  By dividing (64) by u2 we 
obtain the normalized distortion which can be measured in 
decibels 

DC( R )  
0 2  

gC( R )  = IOlog,, - - - -6.02R dB  (65) 

where script 9 i s  the normalized distortion in decibels. The 
negative of 9 is just the signal-to-noise ratio (SNR) in 
decibels  of the quantizer 

(12 
SNR = -9 = 10 log,, - dB. 

D (66) 

For much  of this paper we shall use 9 instead of SNR to 
measure quantizer mse distortion. 

There are  scant explicit D ( R )  results for memoryless 
non-Gaussian sources (see the result for Laplacian densities 
by Berger  [14]). However, lower and upper bounds exist 

D*(  R )  Q D (  R )  < Dc( R ) .  ( 67) 

Thus D(R) i s  upper bounded by the distortion-rate  func- 
tion for a Gaussian  source.  The lower bound D*( R ) ,  known 
as the Shannon lower  bound, for a mse distortion is given 
by 

1 D*( R )  = - 2 2 h ( x ) 2 - 2 R  
2 ae (68)  

R*( D )  = h( x )  - 1 log, 2aeD ( 69) 

where h ( x )  is the  differential entropy of the memoryless 

source. The Shannon lower bound is  achievable for many 
sources only as R + 00. From (60) and (a), we can write 
9 * ( R )  as a normalized  distortion in decibels 

9*( R )  = -6.02R - 6.02[ hc( X )  - h( X ) ]  dB (70) 

or 

a,( R )  - 9*( R )  = 6.02[ h,( X )  - h( X ) ]  dB 

= 6.02[ Rc( D )  - R*(  D ) ]  dB. 

(71) 

Since h,(x) > h ( x ) , 9 * ( R )  is less than the Gaussian distor- 
tion-rate  function by an amount equal to the difference 
between  the source and Gaussian differential-entropies (in 
bits) multiplied by 6.02 dB/bit. Equation (70) makes it very 
clear that the asymptotic behavior of the distortion-rate 
function for many  sources is  expected to decrease  at a rate 
of -6.02 dB/bit as R + c o .  

Table 1 shows four pdfs that are common models used 
for certain signal distributions. Shown are the  differential 
entropies, the difference R,(D) - R*(D) ,  and the corre- 
sponding difference in distortion. The  Gamma pdf shows 
the greatest deviation  from the Gaussian; it is by far the 
sharpest  or most peaked of the four pdfs, and it becomes 
unbounded at x = 0. The Gamma density is often men- 
tioned as a good model for the first-order pdf of speech [74, 
p. 321. However, this model is only good for long-term 
statistics. Medium-term statistics (on the order of 100 ms), 
where  the speech amplitudes are normalized with respect 
to  the  medium-term energy, show that the Laplacian pdf 
becomes a better  model  of speech  [%I. Short-term statistics 
(on the order of 20  ms) show the Gaussian pdf to be a good 
first-order model [%I. The  Gaussian pdf also  appears to be a 
good short-term first-order model for the  prediction resid- 
ual in adaptive predictive  coding [7],  [74].  Since  any  speech 
coding system operating at 2 bits/sample or less would 
need to be  normalized with respect to short-term energy to 
minimize distortion, we shall assume in this paper that the 
first-order pdf for speech  and the prediction residual is 
essentially Gaussian. 

Table 1 Four Common PDFs and their  Differential Entropies h ( x ) .  Column  4 gives the 
difference in  bits  between the Gaussian rate-distortion  function Rc(D) and the Shannon 
lower  bound R*(D) for each pdf.  Column 5 shows the corresponding difference in 
distortion  in decibels; it i s  obtained by multiplying  column  4 by  6.02. Column 6 is the 
asymptotic  (high bit rate) difference in bits  between  the rate of a Lloyd-Max quantizer R,,  
and  the Shannon lower  bound, and column  7 is the corresponding difference for the 
distortion. (From Jayant and Noll [74].) 

1 
Gaussian - exp[-x2/2u2] 1 log, (2neo’) 0 0 0.722  4.35 

f i 0  

2 6 0  ’ 
0, otherwise 

Laplacian - exp[-JTlxl/ul 5 log, (2e2u2) 0.1 04 0.63 1.190 7.1 7 

1 
Uniform - 1x1 Q f i0  ; log, (1202) 0.255  1.53  0.255 1.53 

1 

f i 0  

3 
m Gamma ~ exp[-fi~x1/2o] 5 log, (47r&-‘a2/3) 0.709  4.27  1.963  11 8 2  

C = Euler’s constant 
= 0.5772 
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[%I. For a  flat spectrum, i.e., a white source, the Gaussian 
signal values are independent and D,(R) in (75) becomes 
equal to (64). Therefore, 

bit9 

Fig. 10. Distortion-rate  function D(R) for a memoryless 
Gamma source and a mse distortion measure, bounded 
above by the Gaussian distortion-rate function Dc(R) and 
below by the Shannon lower  bound D"(R), from Noll and 
Zelinski [97]. DG(R) and P ( R )  are  always parallel straight 
lines in the  decibel scale with  a slope of -6.02 dB/bit. D(R) 
tends toward a slope of -6.02 dB/bit at high  bit rates 
(usually R > 3 bits). 

Fig. 10 shows a plot of D(R) for the Gamma pdf along 
with the Gaussian upper bound D,(R) and the Shannon 
lower  bound D*(R). (The  reason for choosing the Gamma 
pdf is because it shows  very clearly the departure from the 
Gaussian.)  The D(R) plot was obtained using Blahut's  al- 
gorithm [17]. Note that the D(R) curve is monotone de- 
creasing and convex. Also, as R increases beyond a few bits, 
D( R )  decreases  at the rate of about 6.02 dB/bit which is 
the slope of the upper and lower bounds. The  slope of 
-6.02 dB/bit will recur  over  and  over  again for many  types 
of quantizers as R increases. 

Thus  far we have considered only memoryless  sources. 
For sources with memory, where the samples  are depen- 
dent, explicit D(R) results are even more meager. What 
little is known is  for the Gaussian  case where the  depen- 
dence is  linear and can  be specified completely by the 
spectral density @(a) of the stochastic  sequence x(n).  For 
this special case, D( R )  is given parametrically by [I41 

D,(e) =-/" min{e,@(o)}  do 
1 

2 r  - n  

1 
R,( e) = - /" max ( 0, - log, - @(')) do. (73) 

2 r  - 9  e 
For the case of small distortions defined by 

e c min {@(a)} ( 74) 
w 

D J R )  is given by 

where 

(75) 

G M  and A M  are the geometric mean and arithmetic mean, 
respectively. ( u 2  = arithmetic mean of the spectrum.) y is a 
spectral  flatness  measure which is a nonnegative quantity 
that is equal to one if and only if the spectrum is flat [86], 

Dd ')(correlated  source = Y D ~  Rllwhite source (77) 
for distortions  obeying (74). Note that for this case of small 
distortions, the  distortion  in (72) is equal to 0 for all 
frequencies, which means that the reconstruction error will 
have a flat spectral density: a result that we shall meet again 
below. 

Equation (77) states that D(R) for  a correlated Gaussian 
source is  less than  that  for  the corresponding white (mem- 
oryless) source. The difference for small distortions (or high 
rates) is equal to -lOlog,oy decibels. Equation (77) quanti- 
fies the  intuitive  notion that one can transmit dependent 
sources at a lower distortion  than independent sources. 
This general notion applies to non-Gaussian sources as 
well. The D(R) function for such  sources is  still  bounded 
above and below as in (67), where the Shannon lower 
bound is  still defined by (68). However, h(x)  is now the 
differential entropy for the dependent source, defined as 

1 
h ( x )  = lim - h ( x )  

~ + m  N 
which  will  be smaller than the  differential  entropy for the 
corresponding memoryless  source. 

B. Scalar Quantization 

We showed above how the distortion-rate function D( R )  
provides a lower bound on the minimum distortion 
achievable by a vector quantizer at a given bit rate. Scalar 
quantizers provide us with an upper bound on the mini- 
mum achievable distortion. The difference between  the 
two bounds gives the  reduction in distortion that is poten- 
tially attainable by vector quantization. In this section we 
shall consider the scalar quantization  of memoryless  sources. 
The scalar quantization of correlated sources is discussed in 
Section IV. 

I )  LloyolMax Quantization: A  scalar quantizer may be 
designed using  the K-means algorithm described in Section 
Il-C. However, because in one dimension  the cells are 
restricted to be adjacent line segments, as shown in Fig. 4, 
one can instead use the well-known Lloyd-Max quantize$ 
[82], [W]. Given a pdf p ( x )  and a number of levels L, this 
quantizer determines the intervals C, and the reconstruc- 
tion values E that  minimize the average  mse.  The  necessary 
conditions for  the minimum are obtained by straightfor- 
ward  differentiation  with respect to x and the interval 
boundary values g,. The  necessary conditions for optimality 
can be  shown  to be 

= cent ( C,), 1 6 i G L  ( 79) 

where the  centroid  of C, is simply the mean value of x in 
that interval. Equation (78) states that the interval boundaries 
must lie halfway  between  the reconstruction values. Note 
that (78) corresponds to (25) in  the general case and (79) is 
the same as (27). For L > 3, (78) and (79) are solved itera- 

'Also known as the Lloyd quantizer or the Max quantizer. 
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tively  to  obtain a set of optimal values. Those  values  may 
indicate only a local optimum. For the case when p(x) is 
log-concave, the above necessary conditions are  also suffi- 
cient for optimality [ a ]  and the optimum  will be global. In 
general, the optimum quantizer will not be uniform, i.e., 
the interval lengths will not be the same.'  The interval 
spacing tends to be smaller where the pdf is larger. Perfor- 
mance, typically, must  be evaluated by numerical methods, 
except when the number of quantization levels is  large 
there is the asymptotic formula given by Algazi [4] for the 
rth-power  distortion 

2-' 
D, - L - ' [  /-:[ p( x)]"('+') dx 

r + l  1 ,+l 
(Lloyd-Max). 

(80) 
For R = log, L and r = 2, (80) can  be written  in decibels as 

9, = lolog,, D2 = -6.02R + FLM(p) dB  (81) 

where script 9, i s  the  distortion in decibels and FLM(p) is  a 
constant that depends on the pdf shape. Note again the 
-6.02-dB/bit behavior for large R. 

Fig. 11 shows the normalized mse obtained by the 
Lloyd-Max quantizer as a function of the rate R = log, L for 
four pdfs. While the Gamma pdf has the lowest D(R) of 

value including  infinity. Gish and Pierce  [51]  have shown 
that, at high bi t  rates, the uniform quantizer is the optimum 
constrained-entropy quantizer. With very mild restrictions, 
this result is  true for all pdfs and distortion measures. More 
recently, Farvardin and Modestino [33] showed experimen- 
tally that, with mse distortion,  the uniform quantizer is very 
close to  optimal even at very low rates.  The obvious conclu- 
sion is that, if one is willing  to perform variable-rate en- 
tropy coding, then the uniform quantizer is  always the 
scalar quantizer of choice. 

The asymptotic (high bit rate) performance for the con- 
strained-entropy quantizer is given in [51],  and  can  be 
written for an rth-power distortion measure as 

2- 

r + l  
D, = - 2rh(x)2-'Hmln (constrained entropy) (82) 

where Hmin is the entropy of  the constrained-entropy 
quantizer outputs and h(x) is the differential  entropy  of the 
source. Equation (82) can be written  in decibels for r = 2 

9, = -6.02Hmin + Fc-( p) dB  (83) 

where FCE is another constant that depends on the pdf 
shape. 

It is  interesting that, for the mse distortion, there is a 
simple  relationship  between log, L of the Lloyd-Max quan- 
tizer and Hmin. In particular, we have from [51] that, for 
large L 

HLM - Hmin = 5 (log2 L - Hmln) (84) 
where H,, is the entropy of  the Lloyd-Max quantizer 
outputs. This relation shows the additional  benefit  of  con- 

puts of  the Lloyd-Max quantizer. 
Another  significant result obtained by Gish and Pierce 

[51] i s  that the constrained-entropy quantizer approaches 
the  rate-distortion  bound  within a fixed constant that is 
dependent only  on the distortion measure  and not on the 
pdf. This constant, derived for an rth-power distortion 
measure, is given by 

- - strained-entropy  quantization over entropy coding the out- 
Y 

R - l q , L - b ( b i n )  

Fig. 11. Normalized mse for four memoryless  sources using 
Lloyd-Max quantization ( R  = log, L), plotted  from Jayant 1 re 
and  Noll [74, Table 4.41. Hmin - R( D,) = - log, - 

r l + r  + log2+ + 3) (85) 

the four pdfs, it results in the highest distortion when using 
the Lloyd-Max quantizer. Columns 6 and 7  of Table 1 show 
the asymptotic  difference  between the Lloyd-Max quan- 
tizer and the distortion-rate  function. These differences are 
the maximum  that can  be gained potentially  from vector 
quantization. 

2) Constrained-Entropy Quantization: In Lloyd-Max 
quantization, the number of levels L i s  fixed and the bit rate 
is defined simply as log, L .  However, if the reconstruction 
values 2: are not equally probable, we can  use entropy 
coding  to reduce the rate below log, L to H( y). One can go 
even further and restate the optimization problem to  mini- 
mize  the  distortion subject to a given  entropy H(y) = R .  
We shall call the resulting quantizer a constrained-entropy 
quantizer. The number of levels L can now be any desired 

'Note that a  uniform quantizer is one whose interval lengths are 
equal.  However,  depending  on the pdf shape and the  distortion 
measure, the  output levels of a  minimum-distortion  uniform quan- 
tizer will  not be equally spaced, in general. 

where I' is the Gamma (factorial) function. For the mse 
distortion, (85) reduces to 

1 ne 

2  6 
Hmi, - R(  4 )  = - log, - = 0.255 bits. (86) 

Fig. 12 shows a plot of (85) as a function of r. The horizon- 
tal scale  has been chosen to illustrate the  important result 
that  for r = 00, which corresponds to the minimax criterion, 
the curve goes to zero,  and H,,, = R(D,). Therefore, a 
uniform scalar quantizer with entropy coding can  achieve 
the ratedistortion  function for the  minimax  criterion. For 
r = 1, the constrained-entropy quantizer can approach R(  D )  
within 0.443 bits, and within 0.255 bits for r = 2. 

The low-rate region ( R  < 3 bits) has been explored by a 
number of researchers (see [74]), with the results of 
Farvardin and Modestino [33] being the most useful for our 
purposes. For the mse distortion, the constrained-entropy 
quantizer at low rates is  even closer to D( R )  than 0.255 bits, 
especially for  the more peaked pdfs such as the Laplacian 
and the Gamma densities. In fact, of all the nonuniform 
pdfs tested, the Gaussian pdf registers the least gain and 
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Fig. 12. The difference between the entropy of a con- 
strained-entropy (uniform) quantizer and the rate-distortion 
function at high bit rates for an rth-power  distortion  func- 
tion. This difference is independent of the pdf of the mem- 
oryless source; it depends only  on r. For r = m, the minimax 
distortion,  that difference is zero.  The  data for the plot were 
taken from  Cish and Pierce [Sl]. 

lies the  furthest away from its D(R) function at low rates. 
Figs. 13 and 14 show plots of the mse distortion  with the 
constrained-entropy quantizer (solid curves) compared to 
Lloyd-Max quantization and  the distortion-rate  functions 
for  the Gaussian  (Fig. 13) and the Laplacian  (Fig. 14) mem- 
oryless  sources. The constrained-entropy curve for the 

R b i t s 1  

Fig. 13. Constrained-entropy quantization for a memory- 
less  Gaussian  source, compared to Lloyd-Max quantization 
and  the  distortion-rate  function. (From  Farvardin  and 
Modestino 1331.) 

Fig. 14. Same  as  Fig. 13 for a memoryless  Laplacian  source. 
(From Farvardin and Modestino [33].) 

Laplacian pdf is much closer to its distortion-rate function 
than  the Gaussian  curve is  to its D(R), while the opposite is 
true for the Lloyd-Max curves. 

We saw above how  constrained-entropy  quantization 
(with  entropy  coding) takes  advantage of the pdf shape to 
minimize  the  bit rate at a given distortion. The difference 
between  the  solid curves and the D(R) curves in Figs. 13 
and 14 i s  what is not achievable  by scalar quantization. 
Vector quantization  with very  large N is capable of closing 
that gap without the need for entropy coding. At the low 
data rate of R = 1 bit  in Fig. 13, being able to reach the 
distortion-rate  bound for a Gaussian  source would mean a 
reduction  of about 25 percent in  bit rate  over  the scalar 
quantizers. This result will be important for the coding of 
the speech prediction residual  since it is  modeled  well as a 
memoryless  Gaussian  source. 

C. Asymptotic Vector Quantization 

We now present some of the known theoretical results 
for vector quantization. Most of the  results below were 
derived under asymptotic conditions:  either L is  large  (i.e., 
small distortion) and the vector size N is arbitrary, or N is 
large and L is  arbitrary. We begin by  discussing the opti- 
mum L-level quantizer  in N dimensions, which is analogous 
to Lloyd-Max quantization  in the scalar case, followed by 
constrained-entropy  quantization  in the  vector case. It is  
important  to  notice that, unlike the results of the previous 
section  which  applied  only  to memoryless  sources,  the  VQ 
results below  apply  to sources with arbitrary pdfs, including 
linear and nonlinear dependencies,  unless noted otherwise. 

The asymptotic formulas for scalar quantizer performance 
mentioned  in Section 111-8 have  analogues for vector quan- 
tizers. Zador [I411 showed that, for large L, the optimum 
(minimum  rth-power distortion) L-level quantizer in N di- 
mensions has a distortion 

where p(x) is the  N-dimensional  pdf of the vector process 
x ,  and A(r, N) is a term that is independent of the pdf; it 
represents how  well cells can  be  packed in  N-dimensional 
space for  the rth-power  distortion measure.  Equation (87) is 
analogous to (80) in the scalar case, but it is important  to 
note that (80) was derived for a memoryless  source while 
(87) is true  for an arbitrary source. For the mse distortion, 
(87) may be written  in decibels as 

= -6.02Rc FvQ(p,N) dB (88) 

where B = log, L is the number of bits per  vector, R is the 
number  of  bits per dimension, and Fvq(p, N) is a term that 
depends on  the  pdf p(x) and the number of dimensions. 

The difficulty  in  utilizing the  above  expressions is that 
A(r, N) is known exactly for very few cases. For other than 
N = 1,  only A(2,2) is  known exactly. For two dimensions 
and  the mse criterion [35], [47], optimal vector quantizer 
performance  (without entropy coding) is obtained  with 
hexagonal  regions, for large L. Note that,  except for a 
uniform  pdf, these  hexagons will  not be  regular  and will 
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not have the same  size in general. For higher dimensions, 
there are a number  of upper and lower bounds on A(r, N), 
but such bounds, though theoretically interesting, appear to 
be of  little practical value.  Recently, Conway and Sloane 
[23] conjectured a lower bound  on A(2, N) that seems 
interesting  and useful (see Fig.  15). Other useful informa- 
tion  on performance bounds is contained in [47],  [139]. 

0.04 / 
0.02 t I 1 

~ 1 1 1 1 1 1 1 1 1 1 1 1 l I I I I I l l l l l l  
0 - 2  4 6 8 10 12  14 16 18 20 22 24 

DIMENSION N 

Fig. 15. The  savings in  bits when using certain N-dimen- 
sional lattice quantizers compared to quantization  with  N- 
dimensional cubes for a  uniform  pdf and high  bit rate. The 
data were computed from Conway and Sloane [23, Table I] as 
follows: 

BITS = [lo log,,O.08333/Cn]/6.O2 

where C, is as defined  in [23]. The solid curve is a conjec- 
tured  bound given by Conway and Sloane [23] and the dots 
are the savings for the best known lattice quantizer for 
each N. 

Although  the optimal N-dimensional quantizer and i ts 
performance are not  known  in most cases,  some under- 
standing has been  obtained about its structure. Zador [I411 
has shown that  the optimum density of output values to 
use for  random quantizer selection is proportional to 
pN/(N+r), where p is the  pdf  of  the vector x.  (A related 
result is  also obtained by Cersho [47].)  For very  large N 
(N B r ) ,  therefore, the output values should have a density 
similar to p(x )  for optimum performance. 

In a manner similar to scalar quantizer design, one can 
constrain the entropy rather than the number of levels for 
the vector quantizer; we call the resulting quantizer the 
constrainedentropy vector quantizer. For  such a quantizer, 
Zador [I411 gives the asymptotic rth-power distortion as 

or = B( r ,  N)2rh(x)/N2-rHm,n/N  (89) 

where B ( r ,  N) is a term similar to A(r, N) in (87). Equation 
(89) is analogous to (82) in the scalar  case. One  could  write 
(89) for r = 2 to show the -6.02-dB/bit behavior. 

Again, values of B(r ,  N) are known,for  only a few cases. 
However, if entropy  coding is  to be used, there are subopti- 
mal  solutions for  which the performance is  known for large 
L .  One solution, considered by Cish and Pierce [SI], is 
analogous to the solution in the scalar case; namely, apply a 
uniform scalar quantizer to each of  the vector dimensions 
and perform joint entropy  coding on the vector outputs. 
The quantization interval should be the same in all dimen- 

sions, which is equivalent to specifying an N-dimensional 
cube  for  the cells of the vector quantizer. The result for this 
coding procedure is  that the bit rate will differ  from the 
rate-distortion function by an amount equal to that shown 
in Fig. 12 for an rth-power distortion measure, independent 
of  the shape of  the  multidimensional pdf. For the mse, this 
difference is  again 0.255 bits per dimension. This result is 
true at high bit rates; experiments similar to those per- 
formed  by Farvardin  and Modestino [33] for the scalar  case 
will need to be  done for the vector case to test the  perfor- 
mance at low  bit rates.  The  0,255-bit differential that exists 
for  the mse criterion when  quantizing with cubes can be 
reduced by using different cell shapes for different  dimen- 
sions, as we shall see below  in the discussion under space 
packing. 

While the VQ method outlined above is very simple 
indeed and requires a minimum amount of design and 
computations, it requires a very  large amount of storage. 
Note that the entropy  coding needs to be performed in 
N-dimensional space. Now,  when  we use entropy coding 
we  typically use a large number of levels  per dimension, 
therefore, the total number of levels in N-dimensional 
space will  be very  large, and the entropy  coding will require 
a storage location for each of  the codewords. In essence, 
we are substituting storage for  computation and the amount 
of storage needed may be  excessive for many applications. 

Another important result from  rate-distortion theory is 
that, for fixed L and for very  large N, the entropy of the 
vector  quantizer approaches log, L [123].  This implies that 
the  output values E must have equal probability.  (Note that 
the  output values may  have a density proportional to p ( x )  
but  still have discrete probabilities that are equal.) This 
result is satisfying in that it confirms the fact that a vector 
quantizer can achieve its optimal performance for high 
dimensions without the need for entropy coding. In other 
words, the fixed-L and constrained-entropy quantizers 
achieve the same performance for high dimensions. This 
statement is in sharp contrast to the scalar case (N = 1) 
where  the two types of quantizers give different  perfor- 
mance. 

Space packing: An interesting set of results  have been 
obtained in studying  the benefits of  packing  N-dimensional 
space with  different types of polytopes (volumes bounded 
by planes) for the mse criterion. In fact, in a manner similar 
to  the hexagon result mentioned above for N = 2, it has 
been conjectured by Cersho [47] that, asymptotically for 
large L and for any pdf, the optimum fixed-L vector quan- 
tizer  partitions  the space into cells whose shapes  are derived 
from a specific polytope for each N. 

A special set of polytopes, known as parallelohedra, have 
been  studied by Cersho [47] and by Conway and Sloane [21] 
for the purpose of  quantizing a uniform pdf in N dimen- 
sions.  The centers of these parallelohedra lie on a lattice in 
N-dimensional space."  The lattice points are the output 
values of  the quantizer (i.e., they constitute the codebook), 
and  they form a regularly spaced  array of  points in N- 
dimensional space.  Such a quantizer is termed a lattice 
quantizer. One very attractive feature of lattice quantizers is  

"The concept of a lattice is of importance in a number of diverse 
areas, including the geometry of numbers [19], solid-state physics 
[143], and image processing [29]. 
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that, given an input vector x ,  it is relatively straightforward 
to compute  the nearest lattice output value  [22], without 
having to compare x against all codebook values and 
without having to store all codebook values. Conway and 
Sloane [23] have investigated the use of a number of lattices 
in the vector quantization of a uniform  pdf for large L and 
using the mse criterion. Fig. 15 shows the saving in bits 
when those lattices are used relative to using cubes as 
quantization regions. For  each dimension, the lattice used is 
different. For N =: 1 we  have, of course, the uniform cube 
quantizer. For N = 2, it is  the hexagonal lattice, and for 
N = 3, the  polyhedron is known as the truncated oc- 
tahedron. Note that the saving in  bit rate  increases with N 
for the  different lattices except for N = 9 and N = 10 for 
which  no lattices have been found that perform better than 
N = 8. The value of 0.028 bits for N = 2 is the same as that 
obtained in Example 3 earlier. 

Although  the results in Fig. 15 were obtained for a uni- 
form pdf, they have wider applicability.  One can show that, 
i f  entropy coding is  used, then for a n y  pdf, the lattice 
quantizers with large L achieve an entropy less than the 
cube quantizer by an amount equal to the rates shown in 
Fig. 15. Since from the results of Gish and Pierce the bit rate 
of  the cube quantizer is 0.255 bits above the  rate-distortion 
function,  the  bit rate for the lattice quantizers is  even closer 
to R ( D )  by an amount equal to that shown in Fig. 15  for 
different dimensions. For example, for N = 8, the  lattice 
quantizer with entropy  coding will have a bit rate that is 
only 0.255 - 0.109 = 0.146 bits greater than R( 0 )  for large 
L .  However, because of the potentially excessive amount of 
storage needed for the codewords, this method may not  be 
practical. In  the remainder of the paper we shall  discuss 
methods  that do  not require entropy coding. 

Experimental  results: Much of this section has been 
devoted to theoretical asymptotic vector quantization re- 
sults. Few attempts have been made to see how these 
results may apply in practice and for relatively small  values 
of L and N. For a memoryless  Gaussian  source, the best VQ 
results with R = 1 bit/sample show practically no improve- 
ment over scalar quantization for N = 2, a reduction in mse 
of 0.09 dB (about 0.015 bits) for N = 3, and a reduction  of 
about 0.52 dB (about 0.087 bits) for N = 6 [36],  [58],  [81], 
which is  a good improvement for R = 1 bit. These results 
were obtained with  no entropy coding. 

Much greater  gains are achievable for certain non-Gauss- 
ian sources. For example, for a memoryless  Gamma  source 
and R = 1 bit/sample, Fischer  and Dicharry [36] obtained  a 
substantial reduction  in mse for N = 6. However, the result- 
ing mse  was still approximately 2 dB higher than D(R) and 
well above the distortion of the constrained-entropy uni- 
form quantizer, which was found by Granzow and Noll [55] 
to be  only 0.7 dB  above D(R). However, this result serves 
to illustrate that, for cases where Lloyd-Max quantization 
performs poorly relative to D( R),  and entropy coding is  not 
desired or cannot be used, one can  make good use of 
vector quantization  to improve performance substantially. 

Results with a single-pole Gaussian  source  have  also 
been  obtained at R = 1 bit/sample, which show that VQ 
could  outperform differential PCM  (DPCM) coding  with 
vector lengths N > 3 [60].  But, for N = 7, the VQ mse  was 
still 1.6 dB higher than D(R). 

IV. SCALAR VERSUS VECTOR QUANTIZATION OF VECTOR 
SOURCES 

We  indicated  in Section I1 that the redundancy owing  to 
linear dependency (correlation) can  be utilized effectively 
by vector as well as scalar quantization, provided  the latter 
is  performed after the appropriate coordinate transforma- 
tion.  In this section we show how best to use  scalar quan- 
tizers in the  quantization  of vector components. The pur- 
pose for  this presentation is  twofold. We wish to give the 
reader tools to help assess how much  of  the vector quanti- 
zation performance in a particular application takes  advan- 
tage of linear dependencies, and to help evaluate whether 
a scalar  or a vector quantizer is more cost effective in that 
application,  given other real-world constraints. 

Throughout this section we use the mse as the distortion 
measure. The first two subsections are devoted to the scalar 
quantization of vector sources and the last subsection com- 
pares  scalar to vector quantization. First, we show that, 
given a total  number  of  bits to allocate to scalar coding of 
the various vector components, it is  best (minimum mse) to 
allocate different number of bits to components with  differ- 
ent variances. A bit-allocation procedure is described which 
yields  the minimum mse. We then show that, if the vector 
components are correlated, one can reduce the mse further 
by first performing a decorrelating transformation or rota- 
tion  on the vector, followed  by independent (scalar) quanti- 
zation  of  the components of the rotated vector, utilizing 
the  bit-allocation procedure. Finally, we compare the per- 
formance of scalar and vector quantizers in a particular 
application. 

The subject matter of this section is very applicable to the 
coding of linear prediction parameters  (such as log-area 
ratios), which are generally correlated and have different 
probability distributions and different variances  (see Section 
IV-C). It is also applicable to the transform coding of speech 
and  other waveforms. 

A.  Bit Allocation 

We are given a random vector x whose components x k  
have identical pdf shapes but generally unequal variances 
u:. (The case of different pdf shapes will be treated below.) 
We wish to allocate a given number of bits B among the 
components and use  scalar quantizers to quantize each 
component xk independently, in such a way as to  minimize 
the average vector distortion. Let R, be the number of bits 
allocated to component x k  and let  the  distortion in quantiz- 
ing that component be 

where yk is the quantized value of xk.  The problem  then is  
to determine  the set { R , }  so as to minimize  the average 
distortion 

I N  
D = -  0, (9 I 

k - 1  

subject to 

where R i s  the average bit rate  per component. 
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Let us  assume for  the present that we are operating in the 
high  bit-rate region  of the quantization distortion curve for 
each of  the components (usually R > 3). Then we can write 
from  the results of Section 111-8 

(93) 

where p is a constant value that depends on the pd f  shape 
and on  the particular scalar quantization method used. (For 
example, for a Lloyd-Max quantizer, we see from Fig. 11 
that p = 0 for a uniform  pdf and p = 0.722 for a Gaussian 
pdf.) From (9) and (93) we have 

(94) 

(Note that D in (94)  has a slope of  -6.02/N decibels/bit, 
as expected for  high  bit rates.)  The problem now is  to  find 
the R, values that minimize D in (94) subject to (92). Using 
Lagrange multipliers, one can show that the distortions Dk 
must be equal 

D . = - 2 - X - p )  
mm k - [ k - 1  fi u:]””. for all k (95) 

and  the  bit allocation is given by 

If  the components have different variances, the result im- 
plies  that the number  of  bits used to quantize each compo- 
nent  will  be  different. 

By allocating  a  different number of  bits to different 
components we realize a lower  distortion than we  would, 
had we used an equal number of bits R to quantize each 
component. In the latter case the total distortion  would be 

(97) 

Therefore, the  ratio of  the minimum distortion Dmi, to the 
equal allocation  distortion D, is 

I .  k - I  

which is the  ratio of the geometric mean to the  arithmetic 
mean of the component variances, with equality i f f  all 
variances  are equal. Thus with  bit allocation, one would 
have an increase in SNR of -lOlogloy decibels. (Note  that 
(98) was derived assuming the same pdf and high bit rates 
for  all components.) 

If y a: 1, implying that the  component variances  have a 
large dynamic range, then  the  bit-allocation scheme in (%) 
would result in a wide range of bit rates R,. Some of these 
may be very low (even though the average  may be high) 
and some may even be negative. Low rates would violate 
our assumption of high rates that allowed us to write (93), 
and negative rates  are, of course, unallowable. The latter 

condition results for components whose  variances are  less 
than Dm,,, in (95).  For such cases, one would  not transmit 
anything because by simply using the mean value at the 
receiver one  would have  at worst a  distortion equal to the 
signal variance. If such negative bit rates  are obtained from 
the  bit-allocation scheme, the corresponding components 
are allocated zero bits. When negative values of R, are thus 
increased to zero, the rates of other components will have 
to be  modified  to maintain  the same  average rate R. Several 
procedures have been developed which reoptimize  the 
allocation. Segall [I201 has solved the above optimal con- 
tinuous bit allocation problem, assuming independent 
Gaussian components. Fox [43] had earlier presented an 
algorithm for optimal integer bit allocation in the general 
case where the pdfs of the components may be different. 
Below we give a  brief description of the algorithm and the 
conditions  for its applicability. 

Optimum Integer  Bit Allocation: Let  us  assume that we 
wish to have a bit allocation where all rates R,  are integers. 
We associate with each component xk a normalized (unit- 
variance) quantization distortion function Ek(b), which gives 
the  distortion as a function of  the number of  bits b, 
assuming x ,  has unit variance. (We assume that each xk 
may have a different pdf.) Clearly then, the distortion of xk 
i s  given by 

0,. 6) = 0:fk( b).  (99) 
f k ( b )  is an actual curve obtained by applying  a specific 
quantizer to the random variable x ,  with its specific pdf. 
The quantizer can  be a Lloyd-Max quantizer or a  con- 
strained-entropy quantizer or any other quantizer of inter- 
est. The main  thing is to generate the curve E k ( 6 )  for each 
component. Of course, if fk(b) is not optimized  in any  way 
to  the  component X , ,  then  the results  may be suboptimal. 
(Fig. 11 shows E(6) for a Lloyd-Max quantizer for four 
different pdfs.) 

The bit-allocation procedure simply assigns the next bit 
to the  component that causes the maximum incremental 
decrease in the overall distortion. The procedure is as 
follows: 

Step 1: For  each bit rate b, calculate the incremental 
decrease in the  distortion  when a bit is added to 
each component: 

Step 2:  Sort the values Ak(6) in decreasing order. 
Step 3: Assign the given bits one by one according to 

the resulting order. 

(In actual implementation,  the values h,(b) are computed 
sequentially as they are needed in allocating the bits.) This 
algorithm can also be  applied to assigning  an integral num- 
ber of levels to each component. The variable b would 
then refer t o  the number of levels. 

The above algorithm gives the  optimal solution  when all 
quantization  distortion functions Ek(b) are monotone de- 
creasing and convex, i.e.,  successive bits decrease the quan- 
tization error by an amount smaller than earlier bits allo- 
cated to that component. For the general case, where the 
quantization  distortion functions are nonconvex or even 
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nondecreasing, Shoham and Gersho [I251 present an al- 
gorithm that  finds  the optimum  bit allocation. 

Note that in the case where the distortions do not obey 
(94), the  minimum distortions for the  different components 
after bit allocation will generally not be equal. 

B. Vector  Rotation for Correlated Sources 

We saw above how one can take  advantage of dif- 
ferences in component variances to decrease the  distortion, 
for  a  given rate,  over that of equal bit allocation. The 
development  did not make  any  assumptions about possible 
dependence among components. We present below a pro- 
cedure  that takes  advantage of any correlation that may 
exist among the vector components. 

Fig. 16 shows a  block diagram for the scalar quantization 
of a vector source, which includes a vector rotation A 
before  quantization, followed by an inverse rotation B at 
the receiver. { q k ,  1 ' k ' N }  are N independent scalar 
quantizers that quantize the components of  the  rotated 
vector u. In Section IV-A we considered the case of A = 
B = 1. Here we ask the question: What are the rotations A 
and B and the quantizers { q k }  that minimize  the  distortion 
at the  output, subject to a given bit rate? The  answer to this 
question is  not  known for general distributions. However, 
for a source x whose components are jointly Gaussian, 
Huang and Schultheiss [65] and then Segall [I201 showed 
that  the optimal rotation A is given by a matrix S whose 
rows are the normalized eigenvectors of r,, the covariance 
matrix of  the vector x (see  (13)), and 6 i s  the inverse of A 

A = S  B = S 1  (101) 

with 
s-1 = s' (1 02) 

and 

srxsr = h = diag [ X,& - A N ]  (1 03) 

where X is a diagonal matrix whose elements are the 
eigenvalues of  the covariance matrix rx. Equation (103) is a 
well-known property of a symmetric matrix [13].  The eigen- 
matrix S i s  known  to be an orthogonal matrix. The rotated 
vector u 

u = A x = s x  (1 04) 

will  then have a covariance matrix 

r, = I [ ( ~  - q ( u  - 4 ' 1  
= srxsT = X.  (105) 

TRANSMITTER  CHANNEL  RECEIVER 

Fig. 16. Scalar quantization of a  vector  source. The eigen- 
vector rotation A converts the  input x into a  vector u with 
uncorrelated components. An inverse rotation after the scalar 
quantizers gives y, the quantized value of x .  

Therefore, the covariance of u is a diagonal matrix whose 
elements are the eigenvalues of the covariance r,. Since r, 
is diagonal, the vector u has uncorrelated components, and 
since x is Gaussian, u will be  Gaussian with independent 
components. The  variance of each component u k  i s  then 
equal to  the corresponding eigenvalue A k .  

Using  property (102) of an orthogonal matrix, one can 
show that the distortion at the receiver is  equal to the 
distortion  in  quantizing  the vector u. Since 

we have from (I@), (I&), and (102) 

D - - & [ ( x -  1 y ) ' ( x -  y ) ]  = - 8 [ ( u -  1 O ) ' ( U -  e,]. 
N N 

(1 07) 
Therefore, minimum distortion is obtained by designing 
quantizers  that will  minimize the average distortion in 
quantizing u. The optimal scalar quantization scheme is 
then  to quantize  the components uk using the bit-allo- 
cation scheme described in Section IV-A. 

For the special case of  high bit rates, the minimum 
distortion and the  bit allocation are given by (95) and (%), 
respectively, with substituted for u:. The ratio of the 
minimum  distortion after rotation Dmin to the equal bit 
allocation  distortion Do i s  then given by 

Note that, since [74] 

we have from (98) and (108) 

K i n  ' omin (110) 

with equality iff  the components of the Gaussian vector x 
are uncorrelated and,  hence, the variances are equal to the 
eigenvalues. In fact, the eigenvector rotation is the trans- 
form that  minimizes the geometric mean of the resulting 
component variances.  The same transformation, therefore, 
minimizes the quantization  distortion. From (104) and (102), 
we can also write 

I N  
- c 0: 

k -1  

Substituting in (IO€%), 

1 

N 
= - & [ ( x -  a ) ' ( x -  i)] 

1 

N 
= - -6 [ (u  - q ' ( u  - q ]  

I N  

we  have 

We  note that there are many possible decorrelating rota- 
tions that can be  applied to x to  obtain a vector u whose 
components are uncorrelated. The eigenmatrix S is the one 
decorrelating matrix that results in the minimum distortion. 
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Optimal Scalar  Quantization: Therefore, for a Gaussian 
vector process, the scalar quantization procedure that mini- 
mizes the mse for a given bit rate is 

Step 1:  Using the eigenmatrix S derived from  the covari- 
ance of  the vector process, transform (rotate) the 
input vector x to form another vector u. 

optimal scalar quantizer and the bit-allocation 
procedure in Section IV-A. The result is the 
quantized vector ii. 

Step 3: Perform an inverse transform (rotation) on ii 
with  the matrix ST, resulting in the output vec- 
tor y.  

Step 2: Quantize the components of u using some 

The above procedure is known  to be optimal  for Gauss- 
ian sources, but experience shows that the procedure works 
well for  other  distributions. In Example 1, we transformed 
the vector x in Fig. 5 into the vector u in Fig. 6. One can 
show that the  rotation used is in fact an eigenvector rota- 
tion.  Note  how  the marginal densities for  the vector com- 
ponents change shape as we go from x to  u, and the 
components u, and u2 in this case become independent. 
With some computation, one can show the interesting 
result in this example that the  reduction in distortion 
achieved by  the eigenvector rotation and the bit allocation 
is far greater than that predicted by (112). The  reason, we 
believe, is  the change in the shape of  the marginal densities 
effected by the rotation. 

Transform Coding: The transformation introduced by 
the eigenvector rotation is sometimes referred to as the 
Karhunen-Lokve  Transform (KLT) (see [74]), or simply the 
eigenvector  transform. The transform involves the computa- 
tion of the eigenvectors and eigenvalues of the covariance 
matrix. For a relatively small number of dimensions N, the 
computation of the eigenvectors can  be accomplished via 
any of a  number  of standard routines [67]. The eigenvector 
transform has been used, for example, in quantizing  the 
outputs of a filter bank in a speech vocoder [79] and in 
quantizing LPC log-area-ratio parameters [45],  [112], [I161 
(see Section IV-C). However, as N increases to values in the 
hundreds, the amount of  computation may  make comput- 
ing  the eigenvectors prohibitively expensive. In such  cases, 
one  often resorts to simpler orthogonal transforms,  such as 
the discrete cosine transform [3], which, even if not  opti- 
mal, has been shown to produce very good results for 
speech and other data [74]. Adaptive transform coding (ATC) 
[16], [130],  [I421 i s  one of the well-known methods for the 
coding  of speech waveforms in the range 8-16 kbits/s. 

Distortion Weighting: In Section 11-6 we mentioned  the 
possibility  of using a weighting matrix W to weight  the 
errors in specific components differently. The  reason for 
utilizing such weighting is  often guided by perceptual con- 
siderations. Minimizing the weighted mse in quantizing x i s  
equivalent to  minimizing the mse in quantizing  the 
transformed vector 9 given in (16). The quantization proce- 
dure then  follows Fig. 16 with B instead of x ,  and A is the 
eigenmatrix corresponding to the covariance of 9, which 
can be shown  to be 

r, = P r, ~7 

where P i s  given by (15). 

C. Comparisons with Vector Quantization 

The performance of VQ in any specific application can  be 
compared to scalar quantization to help assess the benefits 
accrued by VQ. Such comparisons are particularly important 
because of the substantial storage  and computational costs 
typically associated with VQ. In this section we present an 
example to  help illustrate the concepts presented and to 
see the specific benefits in an important  application in 
speech coding. 

EXAMPLE 4 
In very-low-rate speech coding  employing LPC analysis, 

one generally transmits for each frame a set of LPC coeffi- 
cients, a gain term, a voiced/unvoiced decision, and a pitch 
value if the sound is voiced. At an  analysis  rate of 40 
frames/s (i.e., every 25 ms) and 20 bits/frame, for example, 
the  total  bit rate will be 800 bits/s. In this paper we shall 
focus only  on  the quantization of spectral @PC) parameters, 
since that is  where vector quantization is mostly used. 
Typically, about 10-13 bits/frame are  used to code the 
spectrum. Coincidentally,  computational and  storage  costs 
tend  to become unacceptable for applications requiring 
significantly  more bits per frame to code the spectrum. 

Fig. 17 shows the relative performance of scalar and 
vector quantizers for LPC parameters. Speech, low-pass fil- 

0 2 4 6 8 10  12 14 16 18 

B = BITSNECTOR  IN = 141 

Fig. 17. Normalized mse in quantizing log-area-ratios 
(LARs) using three methods: ( a )  scalar quantization with  bit 
allocation; ( 6 )  scalar quantization with  bit allocation, pre- 
ceded by eigenvector rotation; and (c) vector quantization. 
The 3-bit  reduction  from ( a )  to (6) takes  advantage of linear 
dependencies (correlation), and the additional  5-bit reduc- 
tion  from ( b )  to (c) takes  advantage largely of nonlinear 
dependencies. 

tered at 5 kHz and sampled at 10 kHz, was recorded from 
ten male speakers, 1 min of speech from each  speaker. LPC 
analysis with 14 coefficients was performed at a rate of 100 
frames/s. The resulting 6OOOO frames of data were used to 
train the scalar and vector quantizers. The LPC coefficients 
were represented by log-area-ratios (LARs) Gk defined  in 
(22) and the  distortion measure  was the mse.  The  mse in 
Fig. 1 7  is plotted relative to the distortion at zero  bits, 
which is equal to the average squared  value of  the LARs for 
all the data.  Fig. 17 shows three plots  of mse  as a function 
of  bit rate. Plot (a )  was obtained using a separate Lloyd-Max 
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scalar quantizer  for each LAR with the integer bit-allocation 
scheme described in Section IV-A. Plot (6) was obtained by 
first performing a fixed eigenvector rotation, as described in 
Section IV-B, followed by bit allocation and Lloyd-Max 
scalar quantization. Plot (c) shows the performance of a 
vector  quantizer whose codebook was designed using the 
K-means algorithm described in Section It-C. For the same 
mse obtained for  the vector quantizer with  10 bits, the 
scalar quantizer with rotation requires 15 bits, while  the 
scalar quantizer without rotation requires 18 bits. The ben- 
efit  of 5-8 bits with vector quantization at B = 10 bits 
would be expected to increase as the number of bits is 
increased, until the slope of the vector quantization curve 
reaches  -0.43 dB/bit (6.02/14 = 0.43). However, in terms 
of percentage of total bit rate, the relative benefit  of vector 
over scalar quantization decreases as the bit rate  increases. 

The 3-bit  reduction  in  bit rate with eigenvector rotation 
shows the  benefit  of taking advantage of linear depen- 
dency. Much  of  the additional  5-bit  reduction  effected by 
vector quantization takes  advantage of nonlinear depen- 
dencies among LARs.  The existence of such significant non- 
linear dependencies in the space of LARs (or other spectral 
parameters) for speech is what makes vector quantization 
truly attractive in this application. 

The 10-bit vector quantization system  and the 15-bit 
scalar quantization system with rotation were also com- 
pared using subjective listening tests.  The  analysis/synthe- 
sis employed variable-frame-rate transmission (see Section 
VI-A) at  an  average of 30 frames/%  Pitch,  gain, and duration 
were unquantized. Upon informal listening, no clear dif- 
ference could be detected between the two systems. 

The bit allocation for the scalar quantizers utilized the 
pdfs of the different components. Fig. 18 shows the esti- 
mated  (unnormalized) pdfs for G,, G, and G,4. The pdfs 
for Gl and C, are quite asymmetric and their variances  are 
significantly larger than the other LARs. All pdfs for G4 to 

G14 tend  to be Gaussian in shape, as in the pdf of C,, 
shown in the figure. Table 2 shows the bit allocation before 
and after eigenvector rotation for the first 15 bits. The table 
shows the parameter index to  which each additional bit is  
allocated. The parameters are the LARs for the case with  no 
rotation and the transformed parameters after rotation (the 
index in  the latter case is that of the corresponding ei- 
genvector with the eigenvalues ordered in decreasing  value). 
For example, the seventh bit was allocated to the sixth LAR 
in one case and to the parameter corresponding to  the 
fourth eigenvector in the other. Table 3 shows the  total 
number  of  bits allocated to each  parameter for the  15-bit 
case. Generally, the parameters with larger  variance are 
allocated more bits. Note in  both cases how  not all parame- 

Table 2 Bit Allocation Before and After the Eigenvector 
Rotation  of LARs.  The table shows the parameter index to 
which each bit is allocated. 

Parameter Index ( k )  
Bit No With 

Number Rotation Rotation 

1 1 
2 

1 
2 

3 
2 

1  1 
4 2 2 
5 4 3 
6 3 
7 

1 
6 4 

8 I 
9 

5 
5 6 

10  3   3  
11 8 7 
12  4  8 
13  2  4 
1 4   1 0   2  
15 6 9 

Fig. 18. Histograms o f  LARs G,, G, and G,4. Histograms for C, through G14 can be 
modeled  well  by Gaussian pdfs. 
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Table 3 Total Number of Bits Allocated to Each  Parameter 
for  the  15-Bit Case 

Parameter Number of Bits 

Index No With 
( k )  Rotation Rotation 
1 
2 
3 
4 
5 
6 
7 

9 
10 

11-14 

a 

3 
3 
2 
2 
1 
2 
0 
1 
0 
1 
0 

3 
3 
2 
2 
1 
1 
1 
1 
1 
0 
0 

15 bits 15 bits 

ters are allocated bits. Parameters whose variances are 
smaller than  the expected distortion are allocated zero bits. 

Distortion  Measure: In the example  above, the mse  was 
used in measuring the  distortion  of  quantizing LARs.  The 
same distortion measure  was  used for the vector and the 
scalar quantizers. Using the same distortion measure to 
assess the  relative performance of quantizers i s  very im- 
portant;  otherwise, one can obtain misleading results. How- 
ever, one  freedom we have in vector quantization is to 
choose distortion measures that are not usually defined for 
the scalar  case,  such as the Itakura-Saito distortion in (23). 
It  would be unfair, for example, to use the Itakura-Saito 
distortion to compare the performance of vector and scalar 
quantizers unless they were both designed using that dis- 
tortion measure. Unfortunately, it is not simple to design a 
scalar quantizer using the Itakura-Saito distortion?’ One, of 
course, could always compare the performance of any two 
quantizers fairly by subjective listening tests. We have de- 
signed LPC vector quantizers using the Itakura-Saito dis- 
tortion as well as the mse on LARs and found  no clear 
difference in subjective speech quality  between  the two 
methods. 

Dimensionality  and Bit Allocation: It was clear in  the 
example above that if sufficient  bits are not available, then 
certain  vector components may not be allocated any bits 
with scalar quantization. For cases where vector compo- 
nents are uncorrelated and of equal variance, and R < 1 bit, 
the  bit-allocation procedure will have to assign 1 bit  to 
each of several components in some arbitrary fashion and 
assign zero bits to the other components, such that the 
average bit rate is R .  The major limitation we are witnessing 
here is that  a scalar quantizer cannot assign a  fraction  of  a 
bit  to a component; it must assign either 1 bit or none 
corresponding to either  a two-level or a one-level quantizer 
(a fractional  number  of levels is not possible).  (The only 
exception is if entropy coding is used, in  which case frac- 
tional bits are possible.) A major advantage of the  dimen- 
sionality  of vectors is  that fractional bits come in a very 

”Strictly speaking, one cannot deslgn an optimal scalar quantizer 
using  the Itakura-Saito distortion, because  scalar quantization im- 
plies  the  independent  quantization of vector parameters and the 
Itakura-Saito distortion is not separable into distortions on the 
individual parameters. However, one could design a  product code 
instead (see Section V-C). 

natural way, and all vector components are allocated bits in 
an equitable fashion. It is this aspect of dimensionality, in 
addition  to  the  ability  to specify arbitrary cell shapes, that 
makes  VQ especially important at low rates.  These proper- 
ties of dimensionality are what makes it possible to code 
the  prediction residual at R < 1 bit/sample and maintain 
good speech quality (see Section  VII-B). 

Vector Sources: The  sequence of LPC-parameter  vectors 
in Example 4 constitutes what one might consider as a 
“naturally  occurring” vector source. Each vector is not 
merely a collection of scalars from a scalar  source, but 
somehow represents a single entity, namely, the short-term 
spectrum. The VQ of this vector source as described above 
takes advantage of the dependencies among vector parame- 
ters in  parameter space. VQ theory allows us, however, to 
form longer vectors from sequences of LPC vectors and 
perform VQ on the longer vectors, thereby taking ad- 
vantage of dependencies in  time between adjacent LPC 
vectors, and benefiting from  the higher dimensionality. 
(This i s  precisely what is done in segment quantization, as 
described in Section VI.) However, the basic  VQ  process 
and its properties remain the same whether it is performed 
on an inherently scalar or vector source. 

V. CODEBOOK DESIGN 

It  should be clear now that VQ  can offer substantial 
performance advantages  over  scalar quantization at very 
low rates, especially for sources that exhibit significant 
nonlinear dependencies. Unfortunately, these  advantages 
are obtained at considerable computational and storage 
costs, as we saw in Section 11-D. For full-search coding, the 
costs are exponential in the number of bits per vector. 
Computational and storage  costs double for each  increase 
of 1 bit  in  the rate. In Example  4, to perform  10-bit quantiza- 
tion  of vectors of 14 LARs, it takes 14 X 2” = 14336 multi- 
ply-adds to quantize each input vector. The codebook 
requires an equal number of storage locations. This number 
doubles if  11-bit quantization is  desired. Very quickly, com- 
putational and storage  costs become prohibitively expen- 
sive as the  number  of bits/vector increases. 

A  number of fast-search algorithms have been proposed 
in  the pattern-recognition literature [44], [121], [I401 and 
more recently in VQ [20], [MI, which are designed to reduce 
the computations in a full search. Most of  the algorithms 
are based on geometrical notions in Euclidean spaces, they 
require preprocessing of  the codebook, and tend to trade 
off  multiplications  with comparisons and with increased 
storage requirements. The number of multiplications can  be 
reduced by as much as an order of magnitude. 

In this section we present variations on the basic  VQ 
scheme which are intended to reduce computational costs 
in a very significant manner (linear rather than exponential 
growth  with  the number of bits per  vector), but at  some 
reduction in performance. Other methods that are designed 
to reduce storage  costs result in relatively greater reduction 
in performance. The section ends with a discussion of 
training and testing issues and codebook robustness. 

A. Binary  Search 

With  the K-means algorithm (with K = L levels), a full 
search of  the L code vectors is required to quantize each 
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input vector. Binary search  [18],  [112], known  in  the 
pattern-recognition literature as hierarchical clustering [5], 
[64], i s  a method for partitioning space in such a way that 
the search for  the minimum-distortion code vector is pro- 
portional to log, L rather than 1 .  Specifically, N-dimen- 
sional space is first divided into  two regions (using the 
K-means algorithm  with K = 2), then each of  the two 
regions is divided further into  two subregions, and so on, 
until  the space is  divided into L regions or cells. Here, L is 
restricted to be a  power of 2, L = 2', where 6 is an integral 
number  of bits. (A relaxation of this condition  will be 
discussed below.) Associated with each region at each 
binary division is its centroid. Fig. 19 is a schematic of 
binary division  of space into L = 8 cells. At the first binary 

Fig. 19. Uniform tree for a binary-search vector quantizer. 
The vectors y are intermediate code vectors that are com- 
pared with the  input vector x .  The code vectors  are the 
vectors E. The codebook size L is restricted to be a power  of 
2 in  a uniform binary search. 

division, v, and v, are the  region centroids. At the second 
binary  division, there are four regions with centroids v, 
through E. The centroids of the regions after the third 
binary division are the code vectors x. An input vector x i s  
quantized  by traversing (searching) the tree in Fig. 19 along 
a path that gives the minimum distortion at  each node in 
the path. Thus x is compared to v, and y.  If d(x, v,) < 
d(x ,  y), for example, then  the  path leading to y i s  taken. 
Next x is compared to v, and 16. If, for example, d(x, y )  < 
d(x ,  E), then  the path to y i s  taken and x i s  finally 
compared to and k. If d(x ,  k) < d ( x , h ) ,  then k i s  
chosen as the quantized value of x.  Clearly, the  total 
number  of distortion computations is, in general, equal to 
2 log, L .  Again assuming N multiply-adds for each distortion 
computation,  we have a  total  computational cost of 

%'= ZNlog, L = 2NB (binary search)  (114) 

which is only linear with the number of bits. In the exam- 
ple of 10-bit quantization  of 14 LARs, the number of com- 
putations is now  only 280, as compared to 14336 with  full 
search.  (The 280 figure is  close to the cost of scalar quanti- 
zation when  rotation is used.)  Thus a vast reduction in 
computation has been effected. The  storage  cost, however, 
has increased. Note  in Fig. 19 that, in addition to storing the 
code vectors x, one must  also  store all the intermediate 
vectors v. The total storage  cost  can be  shown to have 
approximately  doubled: 

A= 2 N (  L - 2) (binarysearch). (115) 

Also, we shall see below that an additional price is that a 
certain loss in performance takes place. 

The cost requirements in (114) and (115) can  be cut in 
half if the mse is used as the distortion measure. In that 
case, instead of comparing x to  two vectors, one can test 
where x lies relative to the hyperplane that separates the 
two regions. Such a test involves the  computation  of  a 
single scalar dot product  of two vectors. 

We call the quantization tree depicted in Fig. 19 uniform, 
in that all regions at  any  stage  are  each divided into  two 
subregions. When performing  the actual training to  obtain 
the  quantization tree, there may result one or more clusters 
at certain points  in the subdivision process which contain 
very few  training samples, perhaps even one sample. Such 
clusters would be essentially wasting bits because  any fur- 
ther  subdivision  of those  clusters would not reduce the 
distortion. To ensure a lower average distortion and maxi- 
mize the utilization of bits, we do not branch the tree 
uniformly. Specifically, in  the training phase,  at  each point 
in  the subdivision process, the  total  distortion contributed 
by each cluster is examined. The cluster that contributes the 
largest amount of  distortion is subdivided next,  and the 
process is repeated. The result is typically a nonuniform 
tree, as depicted  in Fig.  20. Note that, in this case, the 

Fig. 20. Nonuniform tree for a binary-search vector quan- 
tizer. The codebook size in this case can be any integer. 

number  of levels can  be  any desired integer; it is not 
restricted to be an integral power of 2. A nonuniform tree 
with L = 9 is shown in Fig.  20. 

To evaluate the relative performance of binary search 
(uniform and  nonuniform) compared to the full search we 
give a  specific example from very-low-rate speech coding. 
Fig. 21 shows the average distortion as a function of  the 
number of  bits per vector for the  quantization of LPC 
frames of  14 LARs  each.  As expected, for  a given distortion, 
full search  has the lowest rate, followed by nonuniform 
binary, followed by uniform binary. For the highest rates 
shown in Fig.  21, the difference between full search and 
nonuniform binary is  approximately 0.5 bits only. For many 
applications, this small difference in performance is well 
worth  the savings in computation  effected by binary search. 
The plots in Fig. 21 were obtained  from  the speech of 15 
male speakers.  For a single speaker, the  difference  between 
nonuniform binary and full search is typically larger (about 
0.7 bits at B = 8 bits). 

Binary search is  a special case of  a class of VQ methods 
known as treesearched VQ, with the binary search being 
the simplest. In general, one could divide  the space  at  each 
node in the tree into more than two subregions (using 
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Fig. 2l. Comparison of mse when  quantizing LARs with 
three types of vector quantization: ( a )  uniform binary search; 
( b )  nonuniform binary search;  and ( c )  full search. 

K-means with K > 2).  Such a  method would result in an 
increase in computation over binary search, with some 
increase in performance. However, because the  perfor- 
mance of  binary search is usually quite close to  full search 
for many applications, it is typically most cost effective to 
use binary search with a nonuniform tree. 

B. Cascaded Quantization 

The major advantage of binary search  was the substantial 
decrease in computational cost relative to  full search, 
accompanied by a relatively small  decrease in performance. 
However, the storage  cost was not reduced; in fact, for 
non-mse  distortions the memory cost doubled relative to 
full search. Cascaded VQ is a  method  intended to reduce 
storage as well as computational cost [76],  [112].  As the 
name implies, cascaded  (also known as multistage) VQ 
consists of a sequence of VQ  stages,  each operating on the 
"residual"  of the previous stage. A two-stage cascade is 
depicted  in Fig.  22.  The input vector x i s  first quantized 
using  a B,-bit  (L,-level) vector quantizer (the quantizer can 
use full search or binary search, as desired).  The residual or 
"error" e between x and its quantized value zi is then used 
as the  input  to a 4-bi t  (L,-level)  second VQ  stage with 
output y. (The matrix Ai  plays a useful role that is  explained 
below; here, we assume that A;  = I and u = e.) The final 
quantized value of x is then simply the sum of  the two 
vectors zi and y 

9 ( x )  = y =  zi + w/ ( A ; =  I )  

During  the  training phase, the residuals e from  the first 
stage  are pooled together and treated as a new random 
vector  that is to be quantized. The  process  can  be repeated 
for as many stages as desired. 

There can be  confusion  between tree-searched VQ and 
cascaded  VQ. While  both processes take place in stages, 
what one does at  each  stage is different in the two  meth- 
ods. In tree-searched VQ, one is trying  to  find the desired 

Lr' CODEBOOK v CODEBOOK 
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Fig. 22. A two-stage cascaded vector quantizer. In the first 
stage, a B,-bit vector quantizer quantizes x into  a particular 
vector 2,. The "residual" vector e = x - z, is then  quantized 
using  a B,-bit quantizer. (The rotation A ,  is used to "realign" 
all  the residual vectors to reduce the distortion.) The quan- 
tized value of x is then given as the sum of the two code 
vectors, as shown in  the figure. 

code vector by searching the space in a systematic  manner; 
at each step, one gets  closer and closer to the desired code 
vector. The role played by the intermediate vectors Y in Fig. 
19 is simply to guide the search; the desired code vector is 
found at the  end of the search. In cascaded VQ, each  stage 
is a complete VQ  search of the space which yields a 
separate code vector; the final quantized value of  the input 
x i s  then the sum of  the code vectors found at  each of  the 
stages.  The input  to each  stage is the  difference (residual) 
between  the chosen code vector and the input for the  pre- 
vious stage. 

The computational and  storage  costs for a two-stage cas- 
caded vector quantizer (assuming  K-means for each  stage) 
are simply 

Q= N( I ,  + L , )  (cascade) (11 7) 

"4 = N( L, + L , )  (1 18) 

instead of NL, L ,  for a single-stage full-search quantization. 
For the example of 10-bit  quantization  of 14 LARs, the cost 
of two-stage cascaded VQ with B, = 4 = 5 bits is  14(25 + 
2') = 8% multiply-adds as compared to 14336  multiply- 
adds for single-stage VQ.  Also,  storage  cost is reduced in 
the same proportion. What we are sacrificing for this signifi- 
cant reduction  in cost is a loss in performance, as we shall 
see below. 

We use as our example 14-LAR quantization in speech 
coding. Fig.  23 shows the mse distortion as a function of bit 
rate for several  VQ schemes. Plot (d) shows the  perfor- 
mance of a nonuniform binary quantizer. Plot ( a )  shows the 
performance  of  a cascaded vector quantizer with each  stage 
quantizing to only 1 bit. Clearly, this constitutes the most 
extreme form  of cascaded VQ, with a maximum reduction 
in cost. As can be seen from  plots ( a )  and (d), the perfor- 
mance of this cascaded quantizer is significantly worse than 
the single-stage binary vector quantizer for each bit rate. 

What causes this vast reduction in performance for the 
cascaded quantizer? Recall that during the training phase, 
after each stage, the residuals are pooled together to form 
the  input  to  the next stage. If all the clusters in the first 
stage  possess the same relative pdf structure within the 
cluster, the sets of residuals from the different clusters will 
have the same pdfs and pooling them together should  not 
reduce performance. However, in general, the residual pdfs 
from the different clusters will be different and pooling 
them together will result in a single pdf that will lose  many 
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fig. 23. A comparison of the mse in quantizing LARS using 
four vector quantizers: ( a )  multistage ( I O  stages shown) I -b i t  
cascaded vector quantization with no rotation  between 
stages; ( b )  same  as ( a )  but  with rotation  between stages; (c) 
3-stage, 4-bit cascaded vector quantization  with  rotation 
(each stage  used a nonuniform binary search); and (d) one- 
stage vector quantization with a nonuniform binary search. 

of the dependencies that existed in the initial clusters. As a 
result, the distortion-rate curve will reach i ts asymptotic 
behavior of -6.02/N decibels per bit at a higher distortion 
level. We see from  plot ( a )  that it reaches its asymptotic 
behavior at 7 bits and a  distortion of  -6 dB. 

In an effort  to forestall the loss of dependence among 
residual components, we have inserted a vector rotation A,  
after each  stage  [112], as shown in Fig.  22.  The idea is to 
attempt  to at  least  preserve  some of the linear dependen- 
cies that exist among residual components before they are 
pooled together. The matrix A; is set equal to the eigenma- 
trix corresponding to the covariance matrix of the residuals 
from  the  ith cluster. In this manner, the residuals from  the 
different clusters are rotated so that their covariance 
matrices will have the same structure. Therefore, the covari- 
ance of u = A,e resulting  from each cluster will have the 
same structure. So, pooling the vectors u from  the  different 
clusters together will keep the same covariance structure. 
Fig.  23, plot (b), shows the performance of a 1 -bit cascaded 
quantizer with vector rotation. Note  how the asymptotic 
behavior begins at a  lower distortion level. Plot (b )  shows 
about a  1.8-bit advantage  over plot ( a )  for  the same distor- 
tion at the higher rates.  This  advantage with using rotation 
would be expected to be smaller i f  each  stage in the 
cascade employed  a larger number of bits. 

Plot (c) in Fig. 23 shows the performance of a 4-bit, 
3-stage,  cascaded vector quantizer with eigenvector ro- 
tation after each stage.  The 4-bit VQ in each  stage utilized a 
binary tree search.  (That is  why  plots (c) and (d) coincide 
up till B = 4 bits.)  The asymptotic behavior is reached after 

the second stage  at a distortion level of about -8 dB.  The 
sharp departure  of plot (c) from plot (d) at 4 bits is a clear 
indicator  of  the devastating effect that pooling residuals 
has, even if eigenvector rotation is utilized. The nonlinear 
dependencies among LARS  are so important and they are 
virtually destroyed by the pooling  of residuals. In fact, the 
performance for B > 4  bits in  plot (c) is comparable to  the 
performance of a scalar quantizer at that point. S o ,  there 
may not be any need to  go through  the expense of ad- 
ditional vector quantizers after the first stage; a scalar 
quantizer (with  rotation ) could effectively replace all stages 
beyond  the first. 

The improvement in performance afforded by the vector 
rotation  between  the  two stages of the cascade is obtained 
at a cost of additional  computation and storage. The ad- 
ditional cost can be seen to be 

Q = 2 N2 (rotation) (1 19) 

A= N~L,. (1 20) 

The storage cost i s  especially large relative to that  for  the 
cascade in (118).  Because of these additional costs, the 
inclusion  of  the  rotation becomes less attractive as a method 
for  improving performance. 

It appears, therefore, that the maximum that one can 
effectively  utilize  in practice is about two stages of cascaded 
quantization. The first stage would employ VQ and should 
be allocated the maximum number of bits that one can 
afford  in terms of computations and storage.  The second 
stage would  then perform scalar quantization on the residu- 
als from  the first stage. However, if the bit rate for  the 
second stage is less than 1 bit/parameter ( R  I), then VQ 
would be advisable for  the second stage as well. Also, if the 
distortion measure is not  conveniently  defined in the scalar 
case (such as the Itaku'ra-Saito distortion), then VQ would 
have to be used for all stages. 

Storage Reduction: Cascaded quantization was de- 
signed chiefly  for the purpose of  reducing storage (though 
computations are reduced as well), for in tree-searched VQ 
we already have a very effective method for reducing  com- 
putations  with relatively little loss in performance and a 
modest increase in storage. In fact, with binary search, for 
example, one  could claim with some justification that, for 
many applications, computational cost is no longer a major 
limitation in VQ. i f  storage cannot be reduced without a 
concomitant major reduction in performance, then one 
would have to conclude  that storage  cost is ultimately the 
major limitation  in VQ, for it  would prevent us from taking 
advantage of  the power of very  large codebooks. With 
binary search, many would not hesitate to use a 30-bit 
codebook, but the required storage would tax the address- 
ing capabilities of most of today's computers. Furthermore, 
the  amount  of training data needed to design such a 
codebook can be a serious limitation as well. While much 
research has been devoted to reducing  computational costs, 
relatively little  effort has been expended specifically in 
reducing storage  costs. And  little or no work appears to 
have been done  on reducing storage at the expense of 
increased computation instead of decreased performance. 
Below,  we present another approach to reducing storage 
costs,  namely, product codes.  This approach also  reduces 
computations and results in reduced performance, but it 
could serve as a more attractive solution  for many applica- 
tions. 
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C. Product  Codes 

Assume that  we structure our parameter space  such that 
two or more component vectors,  each with its own 
codebook, jointly represent all points in the space. The 
Cartesian product of the component codebooks is known 
as a product  code. If,  for example, we structure parameter 
space in terms of two component vectors of dimensions N, 
and N,, and let  the corresponding codebooks be  of sizes L, 
and L,, respectively, then  the  product code of  dimension N 
and size L ,  where 

N = N, + N, L = L,L, (121) 

will need  memory storage equal to the sum of  the storage 
requirements of the two component codebooks 

A = N, L, + N, L,  (product code). (122) 

Compared to a storage  cost of N L  for an N-dimensional 
codebook  of size L ,  we see that the storage  costs for a 
product  code can be substantially lower.12 

While storage costs  are reduced through  the use of  a 
product code, computational costs  are reduced only by 
using  certain types of  distortion measures  or by making 
simplifying assumptions and approximations. To illustrate 
the problem, assume we want to use a product code for 
LARs,  i.e., have a separate codebook for each LAR  (see 
Example 4), but instead of the mse  use the Itakura-Saito 
distortiod3  to  find the nearest code vector. Then the only 
way to quantize an input LAR vector would be to perform a 
full search of  the product code for  the nearest code vector, 
because unlike  the mse, the Itakura-Saito distortion is not 
separable into distortions on the individual LARs.  The result 
is that  there is no reduction in  computation relative to the 
full-search  codebook designed by K-means. 

There are  at  least two conditions under which computa- 
tional costs for  quantization with a product code can be 
reduced in a comparable manner to the storage  cost reduc- 
tion  in (122): independent quantization and sequential 
quantization. Under independent quantization, the  compo- 
nent vectors are quantized  independently using their re- 
spective codebooks. If the  distortion measure is separable 
into  independent distortions on the  individual vectors, then 
independent quantization will, in fact,  give the nearest 
product code vector. The  mse is one example of a distor- 
tion measure that is  separable in this fashion. 

Under sequential quantization, one of the  component 
vectors is quantized first, then  the  quantized value of that 
vector is used in the quantization  of a second component 
vector, and so on. (Clearly, sequential quantization includes 
independent quantization as a special case.)  The  LPC 
"gain-shape" product code [18],  [114], using a different 
definition  of  the Itakura-Saito distortion, is one example 
where  the nearest product code vector can  be obtained by 
quantizing  the LPC parameters  (shape) first, then using the 

'*It is possible to structure parameter  space  such that N, + N, is 
larger than  the  dimension  of the original space. (One example is  
structuring  a speech waveform into  two vectors: one representing 
the spectral envelope and another representing the residual.) In 
that case one has to compare (122) with N'L, where N is the 
dimension of the  original space. 

13Computing  the Itakura-Saito distortion  between two LAR vec- 
tors would necessitate converting the LAR vectors to predictor 
coefficients first and then using (23). 

quantized LPC parameters to quantize the gain such that 
the overall distortion is minimized. 

In practice, sequential quantization is often used as an 
approximate  suboptimal  solution so as to minimize  compu- 
tations. One example is in a residual-excited speech  coder, 
where the product code is the product of the spectrum 
codebook and the residual codebook. In one of  the known 
implementations,  the spectral envelope is quantized first, 
then  the residual is  computed using the values of the 
quantized spectrum, and finally the residual is  quantized. 
This sequential quantization procedure does not  minimize 
any known overall distortion on the reconstructed speech 
waveform. (See Section VII-6 for a different example of a 
residual-based product code.) 

Thus  far we have considered only the quantization  pro- 
cess in using a  product code. Another important considera- 
tion is the design of the component codebooks in the first 
place. If an optimal (minimum-distortion)  product code is 
desired, then, in general, the  component codebooks cannot 
be designed independently unless the component vectors 
are statistically independent and the  distortion measure is 
separable. In practice, independent or sequential quantiza- 
tion is employed in the design process to reduce computa- 
tions even if  the final  product code is suboptimal. 

In structuring our parameter space into  two or more 
component vectors, a question arises as how best to define 
the  component vectors and allocate the  bits among the 
respective codebooks. Ideally, one would want to attempt 
to structure parameter space  such that the  component 
vectors  are  statistically independent, as much as possible. 
For i f  the component vectors were independent, then the 
only  reduction  in performance would be owing  to the 
reduced  dimensionality of the vectors. Otherwise, we would 
expect an additional  reduction in performance in propor- 
tion  to  the dependence between the component vectors. 
While  it is possible to remove linear dependencies by 
proper vector rotations, as we saw in Section IV, removing 
nonlinear dependencies is a difficult task, in general. 

To maximize performance, it should be  clear that, as a 
general design criterion,  the number of  component code- 
books should be as low as possible and the size of each 
codebook as large as can be afforded in storage.  The prob- 
lem of how  to choose the sizes of the component 
codebooks is  a  bit-allocation  problem similar to the one 
discussed in Section IV-A. 

In comparing a two-vector  product code and two-stage 
cascaded quantization, we note that if L, and L, in (122) 
are equal to L, and L, in (118), then  the cascade  storage 
would be greater than the product code storage.  But a fair 
comparison between the performance of  the two methods 
would be to design the component codebooks in each  case 
such that the memory costs are equal, then compare the 
resulting  distortion. From  (118) and (122), that would mean 
that the sizes of the component codebooks in each  case 
would have to be  different. Which of the two methods 
would be expected to perform better in practice depends 
on  the particular problem and the structure of  the statistical 
dependencies. 

Below  we mention briefly two specific methods of using 
product codes for  coding LPC spectra, which can be used as 
alternatives to cascaded quantization. In Section VII-6 we 
present an effective  method for utilizing product codes in 
speech waveform coding. 
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Split-Vector Codes: In this method, a vector (such as a 
LAR vector) is split into  two or more subvectors and each 
subvector is coded  independently using a codebook  de- 
signed for  that part of the vector. Consider again the coding 
of LAR vectors in Example 4 above using a total  of 15 
bits/vector for  14 LARs, and assume we are interested i n  
comparing a product code with a two-stage cascade for  a 
given storage cost. In particular, assume that the storage 
cost is the  minimum possible for the cascade  case, which, 
from (118) and (121),  can be seen to occur for 1, = L ,  = 27.5, 
i.e., 7.5 bits for each of  the two codebooks, so that A = 5068 
for a 14-dimensional vector. A  product code can  be desig- 
ned using the bit-allocation table in Table 3 so that the 
storage is similar.  A  good  solution would be to split the 
14-LAR vector into  two subvectors  and use two codebooks: 
a +dimensional, 10-bit codebook corresponding to parame- 
ters 1-4, and a 10-dimensional, 5-bit codebook correspond- 
ing  to parameters 5-14.  The resulting storage  cost from 
(122) is  4416. One  would then compare the distortions for 
the two separate cases. (We note  from Table 3 that a similar 
product code could be designed for the rotated parameters, 
which may perform better than a  product code on the 
LARs.) To our knowledge, the suggestion to use split-vector 
codes for LPC parameters is novel. As yet no comparisons 
have been made with cascaded quantization. 

Split-Band Codes: In this method, the spectral envelope 
is split  into  two or more bands and each band is vector 
quantized separately. Copperi and Sereno  [24] designed a 
residual-excited coder in which  the signal was split into 
two equal frequency bands, and separate LPC model 
parameters for each band were vector quantized separately. 
Using  the split-band approach allows the designer to choose 
lower order spectral models and to make  use of the fact 
that  human  perception is generally less sensitive to high- 
frequency  distortions than to low-frequency distortions. 
This method is reminiscent of sub-band coding [74]  except 
that here we attempt to keep the number of bands to a 
minimum (preferably not more than  two) and the spectrum 
in each band is modeled  explicitly. 

D. Random Codebooks 

While  it i s  important to reduce the costs  associated with 
the vector quantization process, there are times when re- 
ducing  the costs in the training process is of interest. One 
simple method  to design a codebook with essentially no 
computational  training cost is to choose the code vectors at 
random  from a given set of training data. We call the 
resulting codebook  a random codebook. 

At first glance it  would appear that a random codebook 
would  not  perform  well for quantization purposes. How- 
ever, results on the asymptotic (large L and N) optimality  of 
the expected performance of random quantizers [I151 and 
the use of  random codebooks in proving  the basic rate-dis- 
tortion theorems is a strong motivation for the use of such 
codebooks. While the use of  a random codebook is a 
reasonable choice for large L and N, i t  is nevertheless  used 
in practice when these conditions are not satisfied. Random 
codebook selection and performance under these non- 
asymptotic conditions is a research  area of current interest. 

In Fig.  24 we  show the relative performance of random 
and nonuniform binary codebooks for the quantization  of 
14-LAR vectors using the mse distortion measure.  The train- 
ing data consisted of 15 min of speech (1 min from each of 
15 speakers), which comprised approximately Woo0 train- 
ing vectors The random codebook was obtained by select- 
ing a set of vectors from  the  training data at equal intervals. 
Thus i f  a 100-level random codebook was desired, we chose 
every 900th vector from  the  training data.  The  test  data 
consisted of sentences from five male speakers not used in 
the training. Note  how at low  bit rates the random codebook 
performs  significantly worse than the binary codebook. 
However, the  two curves begin to converge as the bit rate 
increases. We  would expect the curves to get  even  closer  at 
higher rates, but asymptotically they would become parallel 
to each other with some separation in bits. The difference 
in performance  of about 1.3 bits at 10-bit  quantization is 
smaller than one might expect. 

We must bear in  mind that, although a random codebook 
is simple to design, it is  a full-search codebook and so 
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Fig. 24. The mse in  quantizing LARs using a random codebook, compared with  a 
nonuniform binary-structured codebook. 
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requires the same computation and storage. We find ran- 
dom codebooks to be useful in exploring how the VQ 
distortion decreases as a function of bit rate for higher data 
rates. In Section VI we mention another useful application 
of  random codebooks. 

E. Training  and Testing 

An  important aspect of  the design of any codebook is the 
training procedure used to populate  the codebook, i.e., to 
fill its entries. In the K-means algorithm, the  training proce- 
dure was given in Section 11-C, except for a crucial initializa- 
tion step where one chooses  an initial set of code vectors. 
Below we describe initialization procedures that we have 
found useful  for  the VQ of LPC parameters in speech 
coding. The testing  of the resulting codebook and i ts ro- 
bustness are discussed next. 

I )  Training: 
Binary clustering: In binary search we need at  each 

stage a method  to initialize  the partitioning of space into 
two regions. Ideally, what we would  like  to  do is to draw a 
hyperplane through the mean of the training data and 
orthogonal to the largest eigenvector (we assume a mse 
distortion). Such a hyperplane would divide space into  two 
initial regions from  which  to start the iterative training 
procedure. For data where one dimension has a larger 
variance than the other dimensions, we approximate the 
eigenvector direction by the dimension with the largest 
variance. The centroids of  the two clusters  separated by the 
orthogonal hyperplane are used as the initial  two code 
vectors. The K-means algorithm is  then  continued with 
K = 2 to determine the final code vectors. (We have found 
5 to 10 iterations  sufficient to  obtain convergence.) After 
the first partition is completed, each of  the subregions i s  
divided  into  two using the same procedure, etc. 

K-means initialization: Because the K-means is not 
guaranteed to result in a codebook that is globally opti- 
mum, it is often suggested that one repeat the  algorithm 
with a number of different initial sets of code vectors.  The 
codebook that results in the minimum distortion is then 
chosen for actual use.  The pattern-recognition and VQ 
literatures contain a number of initialization methods for 
K-means [30], [56], [64], [99]. 

Because the performance of binary search is close to the 
optimal K-means (see  Fig. 21), we have found the  codebook 
generated by  nonuniform binary search as a good initial 
codebook to start the K-means iteration. This initialization 
method has produced better results than using a random 
initial codebook. 

2) Testing: After a codebook is designed with a given 
set of  training data, it is important to test the performance 
of  the  codebook  on independent data that were not used 
in  the training. Testing only on the training data  always 
presents an overly optimistic  view  of how the codebook 
will  perform  on operational data. 

Fig. 25 shows the mse distortion for a 6-bit  codebook 
( L  = 64 levels) of 14-LAR  vectors.  The rnse is  plotted against 
the number  of vectors in the training data.  The training data 
were  taken from the speech of 15 male speakers.  The 
resulting codebook for each  set of  training data was tested 
on  the same training data and on an independent set of test 
data taken from 5 male speakers who were not used in the 
training. With increased training, the convergence of the 
two  plots increases. However, the convergence is  very slow 
beyond 20 training vectors  per codebook level (i.e.,  per 
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Fig. 25. The  mse in quantizing LARS for a 6-bit codebook 
( L  = 64 levels) as a function of the number of training data 
vectors, when tested on the training data and on an inde- 
pendent data set.  The  smaller the gap between the two 
curves, the  more robust is the codebook. 

code vector). As a rule  of thumb, using 50 training data  per 
code vector is considered sufficient for most applications. If 
sufficient data are not available  or if the  computation or 
storage becomes excessive, then using as few as 10 training 
data per code vector may be adequate. The remaining 
difference between the two plots in Fig. 25 is due to the 
fact that  the test speakers were different  from  the  training 
speakers.  This  issue  relates to codebook robustness, which 
is discussed below. 

In general, convergence of  training and test performance 
curves with increased training set size is not guaranteed for 
arbitrary sources. One theoretical result of interest here is  
that, for reasonable distortion measures,  such convergence 
is  guaranteed for a class of sources known as asymptotically 
mean stationary [59], in  which the stationarity condition is 
relaxed. Speech from a single speaker under a fixed set of 
environmental  conditions, for example, exhibits short-term 
and long-term stationary properties and is  well  modeled as 
an asymptotically mean stationary source. However, the 
model may not apply as well under more variable, nonsta- 
tionary  conditions. 

3) Codebook Robustness: Codebook robustness refers 
to the resistance of a codebook to degraded performance 
when tested on data  whose distribution is different  from 
that  of the training data. Under operational conditions, one 
cannot usually predict all of the situations under which a 
quantizer will be  used,  and so the distribution of  the 
operational data will  in general  be different  from that of  the 
training data. (Fischer and Dicharry [36] have studied the 
effects  of  designing codebooks for particular memoryless 
sources and testing on others with different pdfs.) We 
differentiate  two major types of variabilities that impact the 
design and operational performance of a codebook: input 
signal variability and digital transmission channel errors. We 
discuss  each of these below and compare VQ  to scalar 
quantization. 

For speech,  signal variability can  be classified further into 
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speaker variability and environmental variability. Intra- 
speaker variability is that due to changes in each  speaker’s 
voice: normal everyday  changes,  changes due to different 
health  conditions, and changes brought about by various 
emotional states. lnterspeaker variability refers to voice dif- 
ferences across  speakers. Environmental variability refers to 
the level  and  type of background noise that surrounds the 
speaker (e.g., office environment, outdoors, helicopter, etc.) 
and signal pickup characteristics, including the types of 
microphones and transmission facilities (e.g., telephone, 
radio). The performance of any codebook would be ex- 
pected  to deteriorate if used with types of signals for which 
it had not been designed. Thus if a codebook is designed 
(trained) for  the voice of one speaker, it  would not  be 
expected to  perform as well for other speakers. Likewise, a 
codebook  trained in an office environment would  not be 
expected to perform as well  in a helicopter environment, 
for example. It i s  clear that, for optimal performance, one 
should train the codebook using data that are representa- 
tive  of what the VQ system will meet in actual operation. 

The two  plots  of Fig. 25 would have converged even 
more had the test data been taken from the same  speakers 
used in the  training. The remaining difference of about 1 dB 
between  training and test  data in Fig. 25 is  significant. 
Increasing the amount of training data from the same 15 
male speakers will  not reduce the difference appreciably, it 
will simply render the codebook better at quantizing  the 
data from those same 15 speakers. If what is desired is the 
best possible speaker-independent performance, then  the 
gap between  training and test shown in Fig. 25 can  be 
bridged further only by increasing the number of speakers 
in  the  training rather than by increasing the amount of 
speech from each  speaker. If the final system is to be used 
with female speech as well, then including female speakers 
in the  training becomes important. 

For a  given bit rate, a speaker-independent codebook 
cannot possibly perform as well as a speaker-dependent 
codebook.  (We have  seen differences in performance be- 
tween l to 2  bits per vector for LAR quantization around 10 
bits.) One interesting possibility for maximizing  perfor- 
mance of a VQ  system is  to design a speaker-independent 
codebook  initially. Then, as the system is  used, it adapts to 
the speech of  the  new speaker.  Such a system would have 
the extra  advantage of also automatically adapting to the 
acoustic environment  of  the speaker. Codebook adaptation 
means that the code vectors will change in time, which 
necessitates transmitting  the  new code vectors to the re- 
ceiver as well.  Two such  systems were designed by Paul 
[I001  for  real-time speech coding at 800 bits/s. In one 
system, a full-search codebook minimizes the maximum 
distortion  between the input vectors  and the code vectors. 
When the  quantization  distortion exceeds a certain thres- 
hold,  the  input vector is taken as a new code vector and the 
least used code vector up  to that point is  discarded.  The 
new code vector is  then transmitted to the receiver. 

Scalar quantizers are generally more robust to signal 
variability than vector quantizers. For the same number of 
bits per vector, a scalar quantizer usually has fewer output 
levels than the vector quantizer. (For example, a 10-bit 
vector  quantizer has  1024 levels, while 10 1-bit scalar quan- 
tizers have a  total of only 20 output levels.) Therefore, given 
the same amount of training data, the scalar quantizer will 
have more training data  per level and,  hence, the  resulting 
quantizer will be more robust. Another more important 

reason for  the greater  robustness of the scalar quantizer is  
exactly the same  reason that renders its performance lower 
than  the vector quantizer. The  scalar quantizer, by “averag- 
ing” or “projecting” the data on one dimension at a time, 
is less able to model  the  detailed  multidimensional  de- 
pendencies in the data  and, therefore, will be less suscepti- 
ble  to changes in those detailed dependencies. In other 
words, the  one-dimensional pdfs are expected to change 
less between  training and test than  the corresponding mul- 
tidimensional pdfs. Because vector quantizers are not in 
general as robust as scalar quantizers, it is very important to 
test vector quantizers extensively on independent data. 
Also, whenever changes in the algorithm are  made, a new 
set of test data should be  used. Otherwise, there might be a 
tendency to unconsciously change the algorithm to  im- 
prove performance on the same test set, effectively render- 
ing  the test set part of the training data. 

Transmission channel errors present a different type of 
problem  to system  robustness. Channel errors  translate di- 
rectly into distortions in the  output;  the higher the error 
rate, the greater the distortion. Again, in general, VQ  sys- 
tems tend to be less robust to random channel errors than 
scalar quantizers. (Burst  errors  may affect both types of 
quantizers equally.) A simple example will illustrate the 
difference. Let us take the example of the IO-bit vector 
quantizer versus the  ten I -b i t  scalar quantizers, and assume 
a channel error rate of 1 percent. Then, in 100 bits there will 
be 1 bit that i s  in error, on the average. In the scalar 
quantizer, that I -b i t  error causes one value in one dimen- 
sion to be wrong, while in the vector quantizer, the same 
I -b i t  error causes a whole  10-bit vector to be wrong, which 
would result in larger distortions on the average. 

By using extra transmission bits,  standard error-correcting 
techniques can be employed to  help correct for channel 
errors [103]. The use of such techniques is  strongly recom- 
mended  for  high error  rates (> 0.1-percent errors). In an 
unstructured codebook, all bits in the code vector would 
have to be protected in some  fashion, while  in structured 
codebooks (binary-structured or scalar), one can  choose to 
protect  only those bits that are most important to the 
fidelity of the  output. 

Channel errors can play havoc with any  system that 
employs variable-length coding (such as entropy coding). A 
single bit error affects not only the one value in  which  it 
occurs but can also affect many succeeding values.  The 
error causes the receiver to lose synchronization with the 
input and succeeding bits may be erroneously decoded. 
The use of “self-synchronizing codes“ [I051 reduces the 
magnitude of  the problem significantly. However, indepen- 
dent synchronization schemes, involving the transmission 
of  additional synchronization bits, would still  be needed to 
avoid loss of synchronization. 

It  should be clear by now that simply optimizing system 
performance over a set of  training data is  only one aspect of 
choosing the best system for some application. Overall 
robustness of  the system to the operational environment 
must be included  in system performance assessment. 

VI. TIME-DEPENDENT VECTOR QUANTIZATION 

Thus  far, w e  have  assumed that each input vector is 
quantized independently  of any other input vector. While 
we have considered dependencies among vector compo- 
nents (in short-term spectral space, for example), we have 
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not yet  taken advantage of longer term vector dependen- 
cies in time. Certainly, any further dependencies we can 
uncover should  allow us to transmit the data at even lower 
rates for a given average distortion. Speech, of course, is a 
time-varying process that is rich in time-related dependen- 
cies. The statistical structures of the spectral  sequences for 
each sound and of  the sequences of sounds in each utter- 
ance are fertile sources of dependency. In this section, we 
survey briefly several methods in  which time dependencies 
(beyond a single frame) are exploited to reduce the bit rate. 
We begin  first with frame transmission schemes that select 
the frames to be transmitted judiciously, followed by time- 
dependent VQ methods. Most of the methods described 
below incorporate  additional delays. 

A. Selective Frame  Transmission 

Perhaps the simplest, and yet effective, method  for selec- 
tive frame transmission is known as frame  repeat or frame 
fill [93], [IOI], [102]. In this method, only every other frame 
is transmitted; for  the  intervening frames, a 1-bit code is 
transmitted which specifies whether  the missing frame 
should be replaced by the previous frame  or the following 
frame. Which frame to repeat is determined by a nearest 
neighbor  rule.  A variation on this method is to send 1 or 2 
bits which specify values for the missing frame which are a 
linear interpolation of the transmitted frames  [119]. 

Another  simple and very effective method for selective 
frame transmission is  variable-frame-rate transmission [100], 
[119],  [132]. In this method, information is  transmitted only 
when  the properties of the speech  signal  have changed 
sufficiently  (in some predetermined sense) since the pre- 
ceding transmission. The  parameters of the untransmitted 
frames are regenerated at the receiver through linear inter- 
polation  between the parameters of the two adjacent trans- 
mitted frames.  Thus  parameter  transmissions occur more 
frequently  when speech characteristics are changing rapidly, 
as in transitions between sounds, and less frequently when 
speech characteristics are relatively constant, as in steady- 
state sounds. 

B. Segment Quantization 

Variable-frame-rate VQ of spectral  parameters is  a useful 
procedure for  coding at  rates as low as 400 bits/s. For data 
rates of 300 bits/s or lower, the linear interpolation assump- 
tion breaks down and the  method is no longer adequate in 
maintaining reasonable intelligibility. At these lower rates, 
the  method  of choice is to perform VQ on a sequence of 
frames comprising a larger  segment of speech.  The method 
is known as segment quantization [ I l l ] ,  [137], in contrast 
with frame quantization where each  frame is quantized 
separately. VQ is  now employed over a larger vector X = 
[x(l)'x(2)' . . .  X(])']' comprising the elements of 1 con- 
secutive frame vectors. In this manner, the dependence 
between consecutive frames is included implicitly  in  the 
larger  vector^.'^ The duration  J  of  the segment  can be 
either  fixed or variable. Clearly, a fixed J results in a simpler 

14Segment quantization has  also been  termed matrix quantization 
[137]. W e  prefer to use  the  former  term  because  matrix quantization 
could  be  taken  to  imply another method  beyond scalar and vector 
quantization,  while  in reality it is simply VQ applied over a longer 
vector  that comprises a larger  segment of speech. 

quantization problem. However, utilizing variable-duration 
segments has led  to better speech quality. 

Segment quantization is a good example where a random 
codebook has been especially useful. Because of the rela- 
tively high-dimensional space ( I O  X 14 = 140 if J = IO), one 
can argue that  a random codebook should give good re- 
sults. The overriding reason for using a random codebook, 
however, comes from perceptual considerations. We have 
found that the clustering and centroid  computations in the 
K-means algorithm produce code vectors  (segments) that 
sound  muffled  upon listening. So, even if a random code- 
book produces a larger mse distortion than the correspond- 
ing K-means codebook, the synthesized speech from  the 
random  codebook yields higher quality and intelligibility. 
This is  yet another instance where an objective measure of 
distortion is not a  good measure of perceptual distance. In 
the experiments performed thus  far, a 13-bit codebook is 
used ( L  = 8192  segments).  Because a random codebook is 
not structured, quantization  of  the speech input requires a 
substantial amount  of  computation. 

Segment quantization is truly in the spirit of VQ theory. 
For, in principle, one should be able to approach the 
performance  of  the  optimal coding system by simply using 
longer  blocks  for  quantization.  Unfortunately, if signal fidel- 
ity is  to be maintained, exponentially larger codebooks will 
need to be used, which very quickly becomes impractical. 
An alternative solution is to include  time dependence ex- 
plicitly  in  the  modeling (as opposed to  implicitly, as in 
segment quantization). In this manner, the complexity  of 
the vector quantizer can remain manageable.  We  have 
already described two such methods above,  frame  repeat 
and variable-frame-rate transmission. Below, we describe 
other  models  that adapt to the changing properties of  the 
signal. 

C. Adaptive VQ 

Adaptive  VQ  implies a change in the codebook as a 
function  of time. There  are two types of adaptive vector 
quantizers: forward-adaptive and backward-adaptive. In for- 
ward-adaptive schemes, the system  examines future data 
and decides whether a change in the codebook is necessary 
or not, and transmits to the receiver the desired changes 
using  additional bits. Typically, such  schemes incorporate 
some delay to  allow for the  inspection  of  upcoming data. 
Backward-adaptive schemes examine only past transmitted 
data and change the codebook accordingly. Since  past 
information is available at both the transmitter and the 
receiver, the necessary codebook updating  computation 
can be performed at both ends simultaneously, thus obviat- 
ing  the need for  transmitting  additional bits. Backward- 
adaptive systems  have the added advantage of having no 
extra delay, but are quite susceptible to degraded perfor- 
mance under channel errors. If in forward-adaptive systems 
the  additional bits are not counted, then such  systems will 
result in lower quantization  distortion than backward-adap- 
tive systems. However, for an overall fixed data  rate, which 
of  the  two types of systems performs better depends on the 
relative  number  of  additional bits to the overall data rate. 
The principles  of forward and backward adaptation are 
similar to those used in scalar quantization [74]. 

We should mention at this point that VQ, by i ts very 
nature, implies some  delay to  allow for the input vectors to 
be specified. Even a backward-adaptive vector quantizer 
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will have this inherent delay. A forward-adaptive vector 
quantizer may have additional delays  above  and beyond  the 
delays inherent in specifying the vectors in the first place. 

An example of a forward-adaptive system is Paul’s adap- 
tive VQ  system [IOO] described above. Most adaptive VQ 
schemes to date, however, are backward-adaptive and most 
such schemes  are feedback VQ systems [56]. Two major 
classes of feedback VQ  systems  are vector predictive sys- 
tems and finitestate VQ systems. Vector predictive systems 
[25] are a generalization of scalar predictive systems to the 
vector case and, thus far, they have been used for medium- 
rate coding  of speech  waveforms. 

In finite-state VQ, we have a finite-state network  with 
transitions  among states  and we associate with each  state a 
codebook. If one is in a particular state, then  the  codebook 
associated with that state is used to quantize the input 
vector at that time. Depending on  which code vector was 
used, a transition is made to another state (which  could 
also be the same state).  The codebook at that state is  now 
used to quantize  the next input vector, and so on. The 
union  of all codebooks from all states is usually very  large. 
By subsetting the larger codebook into smaller codebooks 
at each  state, a smaller number of bits is used to quantize 
each input vector, so that the average bit rate is reduced 
from  the case where the large codebook is used for every 
input vector. If the  time-dependent structure of the data is  
extensive, substantial reduction in  bit rate without loss in 
fidelity can be accomplished. Finite-state VQ  schemes  have 
been  employed with segment quantization [113], frame 
quantization [32], [IIO], and waveform coding [42], [62]. 

VII. SPEECH WAVEFORM CODING 

Our understanding of the vector quantization  of speech 
spectral  parameters has advanced  and its usefulness and 
practicability have been demonstrated to the point where 
real-time hardware implementation of very-low-rate speech 
coders is becoming a reality. The application  of VQ  to 
speech waveform coding is a more recent but intense 
research activity, and lends itself well  to the development 
of a large number  of techniques and variations. We believe 
it  will be some time before the relative merits of  the various 
techniques are worked out and fully appreciated. While 
some waveform VQ techniques are becoming practical now, 
especially for  coding at about 16 kbits/s, other techniques 
for  low-rate  coding require significant computational re- 
sources that are not widely available. With additional re- 
search effort,  the  role of waveform VQ in speech coding 
will become clearer  and the possibilities of achieving toll 
quality at low data rates (below 8 kbits/s) may become a 
reality. 

Below, we give the reader a view of the difficulties 
inherent  in waveform VQ and  present a framework that we 
hope  will  help sharpen our understanding of the waveform 
VQ  process. It is instructive first to take a brief look at the 
state of the art in the scalar quantization  of speech  wave- 
forms, especially those methods that will have a bearing on 
our VQ discussion below. 

A. Scalar Waveform Quantization 

It is  generally accepted that at 16 kbits/s, adaptive pre- 
dictive  coding (APC)  and adaptive transform coding (ATC) 

result in speech that has approximately toll quality [74] (i.e., 
quality equal to a high-grade telephone line). In a particular 
configuration for both methods, one computes and trans- 
mits: 1) a representation of  the short-term spectrum (typi- 
cally in the form of LPC coefficients); 2) the short-term gain; 
3) the  pitch and parameters of a pitch filter; and 4) the 
prediction residual wavef~rm. ’~ The pitch filter is usually an 
all-pole  filter  with a maximum of three parameters; it is of 
the  form I/C(z), where 

c( Z) = 1 + C( T - 1) ,?-(‘-I) + C( T )  Z-‘ + C( T + 1) Z - ( ‘ + l )  

and T is the estimated pitch period in samples. Pitch peri- 
ods for adults vary from less than 3 ms for high-pitched 
females to over 12 ms for low-pitched males. (In certain 
system implementations, the inclusion of a pitch filter is 
found  to be unnecessary  or undesirable; see, for example 
[89], [133].) Parameter  sets 1-3 above are computed and 
transmitted every frame as side information with the resid- 
ual. At the receiver, the residual excites a filter of the form 

to result in the  output speech.  The  speech  signal is  usually 
sampled at either 6.67 or 8 kHz. At 6.67-kHz sampling, the 
residual is coded with 2 bits/sample, which leaves about 
2.7 kbits/s to transmit the side information. At 8-kHz sam- 
pling, a 3-level quantizer is  used to code the residual (or 
about 1.6 bits/sample), which leaves over 3 kbits/s to code 
the side information. 

At 16 kbits/s, the short-term SNR achievable by APC and 
ATC is approximately equal to the gains predicted by rate- 
distortion theory. The SNR gain over simple quantization of 
the speech waveform itself is  approximately equal to -10 
logloy, where y is the ratio  of  the geometric mean to the 
arithmetic mean of the short-term speech spectrum as rep- 
resented by H(z) (see (76)). The short-term SNR, therefore, 
changes as the spectrum changes  and, in speech, a typical 
range is 5-20 dB, with higher SNR values  associated with 
vowel sounds and lower values with unvoiced sounds. 

As the number  of bits used to quantize the residual is  
reduced to about 1 bit/sample or less, speech quality 
deteriorates rapidly. A number of methods have been em- 
ployed to improve  the  quality at transmission  rates in the 
range 8-9.6 kbits/s. One  technique known as multipulse 
coding [9] models the residual as a sequence of a relatively 
small number of pulses  (smaller than the number of resid- 
ual samples) whose amplitudes and time locations are opti- 
mized and transmitted each frame. Another class of coders, 
with a long history in speech coding, is  known as base- 
band-excited coders [89] or voice-excited  coders  [38]. This 
is a frequency-selective method where only a low-pass 
band  (known as the baseband) of  the residual, for example, 
is  transmitted. At the receiver, the  high frequencies are 
obtained  from the low frequencies by nonlinear high- 
frequency regeneration techniques. Though quite effective, 
these methods also  break down as the bit rate goes much 

15Most ATC systems operate directly  on the speech waveform 
and  not  on  the  prediction residual [74]. However, if done ap- 
propriately, ATC on the prediction residual can produce similar 
results [16]. 
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below 1 bit/sample. Vector quantization promises to carry 
speech coding  with high  quality into these lower rates. 

6. Vector Waveform Quantization 

Direct VQ of  the speech waveform can  be accomplished 
by simply dividing the waveform into consecutive blocks of 
N samples each and designing a  codebook whose vectors 
are obtained by one of the clustering methods described 
earlier. At  high data rates, such a method would give good 
results at relatively small  values of N. However, as the bit 
rate is decreased, it becomes more and more important to 
increase the  block length to  minimize the distortion. As N 
increases, two problems arise.  The first problem is the one 
we already know, and that is the exponential increase of 
needed resources.  This problem can  be dealt with partly by 
proper  structuring of the codebook, as we shall see below. 
The second problem is  less obvious; it concerns the con- 
catenation of waveforms for synthesis. As we quantize each 
block independently to its closest code vector, we mini- 
mize  the  distortion over the whole block so that, for a long 
block,  there is no guarantee that the end of one code 
vector will match  the  beginning  of  the next code vector in 
time. The result will be a discontinuity in the speech 
waveform, which may  be  heard as roughness in the speech. 
The problem is  aggravated at low data rates since the 
choices for appropriate code vectors are relatively few. One 
solution  to  the concatenation problem is to quantize blocks 
that overlap by a small amount. Then, the  quantized code 
vectors are overlapped and added with a decreasing weight- 
ing during  the overlap region which goes to zero in  both 
directions, so that  the transition from one quantized block 
to  the next i s  made smoother. This method is used effec- 
tively in ATC of  the speech waveform to prevent waveform 
discontinuities  from one block to the next [130]. Although 
the weighted-overlap  method just mentioned would be 
expected to  work well, it has the drawback that the overlap 
actually wastes bits since the bits for the overlapped regions 
are in effect  transmitted  twice. Another solution to  the 
waveform discontinuity problem is to quantize the residual 
instead  of the speech waveform itself, as will be described 
below. ATC of  the residual has been used effectively in 
eliminating  the need for overlap [16]. 

Much of the recent activity in applying VQ to the coding 
of speech waveforms has concentrated on the  medium-rate 
range of 8-16 kbits/s (see, for example, [I], [24],  [25],  [34], 

scalar quantization methods already produce approximately 
toll  quality speech at 16 kbits/s and communications qual- 
ity [39] at 8-9.6 kbits/s. Of course, with the use of VQ, we 
have the  potential of  moving  the toll quality boundary 
further  down. An exposition of  the various waveform VQ 
techniques  under development is beyond  the  intended 
scope of this paper. Instead, we have  chosen in this brief 
section to discuss a particular approach to speech coding at 
low rates (below 8 kbits/s), for it is at those rates that scalar 
methods tend  to break down and VQ offers the  potential  of 
achieving toll  quality. This approach was chosen  because it 
forms a natural extension to existing well understood scalar 
speech coding techniques, and  appears to have a potential 
for  high-quality low-rate coding of speech. 

The main problem  in speech waveform coding is  how  to 

1371,  1421,  [491, POI, [561,  [631, P31, [1091,  [1241). In that range, 

structure and design our codebook such that signal fidelity 
is maintained but computational and storage  costs are re- 
duced to manageable proportions.  One relatively natural 
manner to structure the codebook is to factor out the 
short-term spectral and pitch dependencies and code them 
separately, in effect use a product code. By removing  the 
short-term  linear dependencies, one is left  with a residual 
that is relatively white. Fig. 26 shows three waveforms: plot 
(a) is the speech waveform; plot (b) is  the  prediction resid- 
ual after filtering the speech waveform with the spectral 
inverse filter A(z);  and plot (c)  is the residual after filtering 
the speech waveform with the  combined spectral and pitch 
inverse filter A(z)C(z).  (Note that in Fig. 26, waveform (b) 

Fig. 26. (a) A speech waveform. (b) The prediction residual 
after filtering  the speech with the all-zero filter A(z) .  (The 
plot is amplified 10 dB relative to (a).) (c) The residual after 
filtering  the speech with the combined  filter A ( z ) C ( z ) ,  thus 
removing  much  of the pitch-related structure. (The plot is 
amplified 20 dB relative to (a).) (From Atal [7].) 

was amplified 10 dB and waveform (c) 20 dB relative to the 
speech waveform.) The residual waveform (c) has most of 
its short-term linear dependencies removed; it certainly 
looks  much  more random than (a) or (b). The  statistics of 
waveform (c) tend  to be  Gaussian [7]. Our codebook can 
now be  structured in four parts corresponding to the spec- 
tral f i l ter A(z) ,  the pitch filter C(z), the gain C, and the 
residual (shown as waveform (c) in Fig. 26). The first three 
sets of parameters can  be coded and transmitted as side 
information, exactly as in APC, except that here we can 
perform VQ on each set of parameters [2], [24] to reduce 
the bit rate. Also as in APC, the residual is  not  quantized 
separately, but rather as part of a synthesis procedure. If 
performed separately, time-domain  quantization  of the re- 
sidual will result in  no SNR gain over  PCM coding of the 
waveform. 

There is  a compelling reason why  the  product code 
suggested above would be expected to perform well. We 
mentioned in Section V-C that a  product code would be 
expected to  yield good results if the  component vectors are 
chosen to be  independent.  One could argue with some 
justification that the short-term spectral envelope, the  pitch, 
and the  whitened residual are to some extent independent, 
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Fig. 27. A block diagram  of a system for  low-rate  speech  waveform  coding  which  employs 
vector  quantization. The  spectral  and pitch filter parameters are quantized  and  transmitted 
separately.  The  codebook  shown is used to find the  excitation  that  results in the minimum 
distortion. As shown in the figure, the  excitation is white. If desired, C(z) can be 
eliminated, in which case the  excitation  should  have  some pitch structure, as in the  residual 
waveform  (b) in Fig. 26. 

so that  the use of a product code in this case should reduce 
computation and storage at only a relatively small reduction 
in performance over a single large codebook obtained by 
K-means. 

Fig. 27 shows a basic block diagram of  the coding system. 
The first step is  to compute and quantize the parameters of 
A(z ) ,   C (z ) ,  and C, then substitute the quantized values in 
the synthesis filter H(z)  in Fig. 27. Then, the source  genera- 
tor takes one code vector at a time  from  the residual 
codebook and sends the samples from the code vector 
sequentially in time as excitation to the  filter H(z). The 
distortion  between the output speech  and the input speech 
in  the  block  to be coded is  computed. The  process is  
repeated for  all code vectors in the residual codebook, each 
time comparing the  output  to the same block  of input 
speech. The code vector that results in the minimum dis- 
tortion is chosen for transmission.  The whole process is  
then repeated for the next input block. Note that nowhere 
is there an explicit  quantization  of  the actual prediction 
residual; the quantization takes  place implicitly  by search- 
ing all vectors in the residual codebook for the vector that 
minimizes the distortion in the output speech.  (The dis- 
tortion  computation may benefit  from perceptually based 
operations such as the use of spectral noise shaping [Ill,  
[MI.) In product code terminology, the above is a sequential 
quantization procedure, whereby the side information is 
quantized first, then the quantized parameter  values  are 
used in a full-search of  the residual codebook such that an 
overall distortion criterion is minimized. 

The only remaining issues  are to choose the block  length 
N and  the bit rate R ,  and to decide how  to populate  the 
residual codebook for a given N and R.  There is evidence 
from experiments by Atal [7] that block lengths of about at 
least 4 ms  are needed for good results.  This is equivalent to 
N = 32 samples at 8-kHz sampling. At R = 1 bit/sample, 
the codebook contains 32 X 232 residual samples  or about 
one-half year of speech! At R = 0.5 bits/sample, the equiv- 
alent  amount of speech is just over 4 min. However, the 
size of  the codebook is still 1 = 216 = 65 536 vectors, which 
means that the process in Fig. 27 will need to be repeated 
that many times for each block  of 32 samples, if a full 
search is desired. These illustrative numbers place in per- 
spective the magnitude of the computational  problem in 
VQ. To render the computations more manageable, one 
will need to either go to lower rates,  use shorter blocks, or 
structure the residual codebook in some fashion. 

Because the number of dimensions N here is  relatively 
large, a  random codebook would be expected to  do  well. 
This is especially so because the residual is  relatively white. 
Therefore, one  could populate the codebook from a ran- 

dom sample of residual vectors. Since the residual is rela- 
tively Gaussian and white, another possibility would be to 
simply use a  random Gaussian number generator to  popu- 
late the codebook. Both methods have been used by Atal 
and Schroeder with good results. In recent simulations on a 
Cray-I computer, with N = 40 and R = 0.25 bits/sample 
for  the residual (excitation), good speech quality was re- 
ported  with  no quantization of the side information [117]. It 
is important  to  note that even i f  the excitation consists of 
random numbers, each code vector will have a  different 
detailed spectrum and time-domain structure. The quanti- 
zation process  chooses the particular code vector that mini- 
mizes the  distortion between the original and reconstructed 
signals. 

The use of a pitch  filter l/C(z) may not always be 
desirable. If a pitch filter is not used, then  the residual 
codebook will need to contain wave  shapes similar to 
waveform (b) in Fig. 26. Because of the need for the “pitch 
pulses,” one can no longer use a random Gaussian  source 
to populate  the residual codebook. A codebook will have 
to be designed from a set of residual training data. One 
could, of course, use  any of the other methods we  men- 
tioned  in Section V. No one, to our knowledge, has at- 
tempted  to use a more optimized residual codebook for 
large block lengths. 

Tree  and  trellis coding: Another approach to structuring 
the  codebook  to reduce computations and storage is to 
have code vectors share  some of their elements,  i.e.,  some 
of  the elements will have the same  values.  The two most 
well-known methods in this class  are tree coding and trellis 
coding [74], [75], 11351. In tree coding, the vector elements 
are on a tree, while  in trellis coding, the elements are on a 
trellis.  Both types of  coding  permit the use of longer blocks 
because of  the reduced computational requirements. How- 
ever, the computational and memory savings  are obtained 
at the cost of reduction in performance, with trellis coding 
achieving the greatest computational savings but at reduced 
performance relative to tree coding and to VQ. A  number 
of studies have utilized tree and trellis coding  of speech 
waveforms [6], [7], [34], [49], [54], [56], [74], [128], [136], but 
there has not been  a systematic study comparing these two 
methods against VQ at lower data  rates. 

VIII. CONCLUSIONS 

In the  coding  of signals  at a given rate, it is always 
possible to reduce the distortion further by using vector 
quantization instead of scalar quantization. However, be- 
cause of  the substantial computational and memory costs 
associated with vector quantization, it is most advantageous 
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to use it at low data rates of less than 1 bit/parameter  or 
signal  value to be  transmitted. In addition,  vector  quan- 
tizers, on the  whole,  may not be as robust as scalar quan- 
tizers  when  used in an  operational  environment,  especially 
under  condi t ions of channel  errors.  However,  at low data 
rates, vector  quantization  may  sti l l   be  the  method of choice 
w h e n  all factors  are  considered. 

Speech  presents a fertile  signal  for  the  application of 
vector  quantization.  Speech  parameters are rich with linear 
and  nonlinear  dependencies  that are uti l ized  effectively  by 
vector  quantizers to optimize  performance.  Much of the 
success in applying  vector  quantization  to  speech  coding 
has been in the  coding of spectral  parameters  for low rate 
coding of intel l igible speech be low 800 bits/s. Recent  re- 
sults in the  vector  quantization of speech  waveforms point 
to exciting  possibilities  for  high-quality  speech  coding  at 8 
kbits/s  and less. 
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