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Summary

A new monaural method for the suppression of late room reverberation from speech signals, based on spectral sub-
traction, is presented. The problem of reverberation suppression differs from classical speech de-noising in that the
“reverberation noise” is non stationary. In this paper, the use of a novel estimator of the non-stationary reverberation-
noise power spectrum, based on a statistical model of late reverberation, is presented. The algorithm is tested on real
reverberated signals. The performances for different RIRs with 71", ranging from 0.34 s to 1.7 s consistently show
significant noise reduction with little signal distortion. Moreover, when used as a front end to an automatic speech
recognition system, the algorithm brings about dramatic improvements in terms of automatic speech recognition scores

in various reverberant environments.

PACS no. 43.00.Xx, 00.00.Xx

1. Introduction

Reverberation is an acoustical noise appearing in enclosed
spaces through the multiple reflections and diffractions of the
sound on the walls and objects of a room. When a speaker
talks in a room, these multiple echoes add to the direct sound
and blur its temporal and spectral characteristics. Its effect
can be alleviated by the use of a microphone close to the
source of the signal of interest. However, this is not con-
venient for “hand free” applications, such as for instance
men-machine communication. Indeed many applications for
which a distant sound pick up is required perform poorly
in the presence of reverberation. This is the case for Auto-
matic Speech Recognition (eg. [1]) or Automatic Speaker
Verification (eg. [2]). Dereverberation can also be of benefit
to hearing impaired listeners since reverberation can reduce
speech intelligibility [3].

The problem of speech dereverberation has received a lot
of attention from the seventies until now. The process of re-
verberation can be modeled as a filtering process: the speech
signal is convolved by the impulse response of the acoustic
channel defined by the emitter, the receiver and the surround-
ing environment. Such an impulse response is referred to as
a Room Impulse Response (RIR) !

A first set of methods rely on this model and aims at de-
convolving the reverberated speech signal ([4, 5, 6, 7]). How-
ever, deconvolution methods require the RIR to be known
precisely, and have been shown to be little robust to small
changes in the RIR ([8, 9]). In the applications considered
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! The name “Room Impulse Response” can be misleading, since
it is not the room that a RIR caracterizes, but rather a specific acoustic
channel within this room.

here, the RIR is unknown and varying. Techniques such as
sub-band envelope deconvolution ([10, 11, 12]) or envelope
expansion methods are more robust to RIR variation. They
aim at increasing the modulation depth of the reverberated
speech. They have been suggested to tackle both noise [13]
and reverberation [14].

Another set of methods use the spatial and directional
properties of the reverberation noise, considered to be an
additive noise. Array processing techniques have been pro-
posed (eg. [15, 16]). Methods inspired by the mechanisms of
audition in the hearing system of animals -and humans- have
been suggested ([17, 18, 19, 20, 21, 22]) along with more
classical array processing methods ([23]). A group of algo-
rithms that use the spatial decorrelation of late reverberation
stemmed from the work of Allen, Berkley and Blauert [24]:
[25, 26, 27, 28, 29, 8, 30].

In this paper, we focus on an important effect of rever-
beration on speech which is referred to as overlap-masking
[31, 32]: the energy of previous phonemes is smeared over
time, and overlaps following phonemes. This results in the
blur and masking of the spectral features of the phonemes.

The actual physical process underlying this smearing is
the multiple reflections and diffusions of the sound waves
on the boundaries and obstacles of the room, corresponding
to late reverberation. As a result of the phenomena of ab-
sorption by the air and the reflectors, the reverberated energy
decays exponentially, with a time constant depending on the
characteristics of the room.

Intuitively, the evolution along time of the energy of the
reverberant tails for a phoneme will have an exponential de-
cay behaviour similar to that of the Room Impulse Response
(RIR). The repartition along frequency of the reverberant en-
ergy will depend on the repartition along frequency of the
energy of the excitation, that is the spectrum of the considered
phoneme.
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It therefore seems that the smearing of the energy of the
speech signal into reverberation tails can be coarsely modeled
from the knowledge of the preceding phonemes and of the
reverberation time of the room. This modeling can in turn be
used to estimate and suppress part of the reverberant energy
from the reverberant speech signal.

The following study will try to formalize these ideas by
using of a statistical model of late reverberation. This model
is detailed in section 2 and leads to an equation linking the
power spectral density (PSD) of the reverberation part of
the signal to that of the reverberated signal. Section 3 then
details the dereverberation algorithm based on this model.
In section 4 the performance of the algorithm is assessed
for different situations. Section 5 presents a discussion on
possible improvements for the algorithm.

2. Model

2.1. Model for the Room Impulse Response

The Room Impulse Response is modeled as the outcome of
a non-stationary random process:

h(t) = b(t)e At fort >0
h(t) = Ofort <0, (1)

where b(t) is a zero-mean Gaussian stationary noise, consid-
ered in first approximation to be white, and A is linked to
the reverberation time 7;. through:

3In10
A=22
T,
This model was proposed by Polack [33], after Moorer [34],
for application to artificial reverberation.

2.2. Model for the Reverberant Signal

Let us consider s(t) to be the anechoic speech signal, and
x(t) to be the reverberated speech signal, resulting from the
convolution of s(t) by the RIR h(t):

o(t) = /_+°°s(e)h(t—a) a0

= e At / t s(0)b(t — 0)e2? do (2)

— 00

since h(t) is causal. Then, if s and b are considered to be
independent random processes, the autocorrelation of z at
time t is:

Elz(t)z(t + 7)) =
. t t+1
o2t / E[s(8)s(8")] E[b(t — 0)b(t + 7 — 0)]
L eA0H=T) 4 g6’ (3)
Since b is considered to be a white noise of power ag :
E[b(t—0)bt+7—6)] =050(0 —0' +7),

where §() represents the Dirac function.

Equation (3) leads to:
Elz(t)z(t + 1) =

t
e*2At/ El[s(8)s(6 + 7)] o2e?A0 dg.

Let us now consider the autocorrelation of x at a later time
t+T:A=FElz(t+T)zt+T+ 1))

t+T
A = e 2A0+T) / E[s(8)s(0 + 7)]oge*2? do

—0Q

¢
= e*ZATe*Mt/ E[s(8)s(0 + 7)]oge*? do  (4)

t+T
+ e AT+ / E[s(8)s(6 + 7)] o2e?A d6.
t

This equation can have different interpretations. They are
detailed in the next paragraph.

2.3. Interpretations

From equation (4), it can be seen that:

Elz(t+T)z(t+T +71)] =

e AT B[z (t)z(t + 7)) (5)

t+1T

+ e 2AT+Y) / El[s(8)s(6 + 7)] o2e?A? a4,
t

The autocorrelation of x at time ¢ + 7" is the sum of two
terms. The first term depends on the past reverberated signal,
whereas the second depends on the anechoic signal between
time ¢ and ¢ + 7. The first term is considered as being re-
sponsible for overlap masking, since its energy over the time
interval [t, ¢+ T is entirely due to the reverberated signal

present at times prior to £.
Another interpretation of the two terms in equation (4) is

possible: let h(t) be split into two components, h(t) and
h.(t), so that:

h(t) if0<t<T,
hq(t) = -
a(t) { 0 otherwise,

hot) = { h(t) if t>T,

0 otherwise.

Let s4(t) and r(t) be the results of the convolution of s(t) by
respectively hg(t) and h,.(t). If T is relatively much smaller
compared to T;., s4(t) is made up of the direct signal and a
few early echoes. As a first approximation it can be consid-
ered as being the direct signal, whereas r(¢) corresponds to all
the later echoes, that is to late reverberation. It can be shown
[35] that the first term in equation (4) equals E[r(¢)r(t + 7)]
and the second term equals E[sq(t)sq(t + 7)]. Equation (4)
can therefore equivalently be written:

Elz(t)z(t+71)] = E[r(t)r(t + 7)] (6)
+E [sd(t)sd(t + T)] ,
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with: where SNR,,s = ‘fl —1,|5(m, k)| is an estimate of the
_ oAT amplitude spectrum of the signal, and 4., is an estimate of
E [r(t)r(t + T)] =¢ (7) the average PSD of the noise.

‘Elz(t—T)x(t—T +71)].

In practice the signals can be considered as stationary over
periods of time that are short compared to 7;.. This is justified
by the fact that the exponential decay is very slow, and that
speech is quasi-stationary. Let D be the typical time span over
which the signal can be considered stationary. We consider
that D < T << T,.In practice, the order of magnitude of D
is about 50 ms and that of the reverberation times considered
is around 1 s. Under these approximations, the counterpart of
Eqgs. (6 and 7) in terms of short-term power spectral densities
are:

Yoz, ) = Yer(t, £) + Vsasa(ts £, (8)

Yer(t, f) = e_QAT%cz(t =T, f). 9)

3. Algorithm

3.1. Overview

The overview of the algorithm is presented in Figure 1.

The signals are digitized with a sampling rate of 8kH z.
In the following, the discrete time indexes will be notated n
or m, and the discrete frequency index k.

The reverberated signal z(n) is decomposed into a Short-
Time Fourier Transform (STFT) filter bank. The analysis
window is a 128 point Hamming window, and the over-
lap between two successive windows is set to 75 %. Each
frame is zero padded to 256 points in order to avoid wrap
around errors. The power spectral density of the reverber-
ation noise 4, is estimated according to equation (9), as
detailed in section 3.3. The square root of this estimate is
then subtracted from the amplitude spectrum of the reverber-
ated signal, | X (m, k)|, yielding an estimate of the amplitude
spectrum of the dereverberated signal, |S (m, k)|. In practice,
this is realized by a short-term spectral attenuation, equiva-
lent to spectral subtraction. This modification is detailed in
section 3.2. The estimated dereverberated signal (n) is then
reconstructed from its estimated amplitude spectrum and the
noisy phase, through the overlap-add technique (eg. [36]).

3.2. Short-Term Spectral Modification
A formulation for amplitude spectral subtraction is:
[S(m, k)| = |X (m, k)] = 472 (m, k)
= G(m, k)| X (m, k)],

with m being the sub-band time index, k being the frequency
index, and

X (m, k)| — 424> (m, k)

[ X (m, k)|
1

/SNR,os +1’

G(m,k) =

=1-

In a comparative study of different short time spectral
attenuation algorithms, Ayad [37] concludes that amplitude
subtraction gives very good performance, compared with
other more sophisticated methods. This method is the one
retained in this article.

One of the problems arising from such implementation is
that in practice, the term | X (m, k)| — f%%r (m, k) can have
negative values. This is due to the fact that 4..(m, k) is
an estimate of the average noise spectrum. But the noise
component in | X (m, k)| can be inferior to the average. This
leads to negative values for the estimate |S(m, k)| when no
or little signal energy is present in the considered frame.
To make up for this problem, a commonly used solution
is to set to 0 the negative values of | X (m, k)| — ’Ayr%r (m, k).
However, this nonlinear rectification yields a specific residual
noise, often referred to as “musical noise” to account for its
perceptual characteristics.

Whenever the signal is present, musical noise is masked,
but it is clearly perceptible during periods of silence. As a
matter of fact, at times when the noise only is present, some
frequency bands of X (m, k) contain more energy than the
average 9, (m, k). The effect of the spectral subtraction is to
set all the other frequency bands to 0, while only attenuating
those bands with more energy. The spectrum of the pro-
cessed signal therefore contains peaks positioned randomly
at isolated frequencies, lasting for an average duration of the
length of the analysis window [38].

Many solutions have been proposed in the literature to
tackle the problem of musical noise (see eg. [39, 40]...).
In this article, two standard modifications are added to the
algorithm to alleviate the problem of musical noise. The first
one consists in averaging the term SNR,,, in the calculation
of the gain, yielding a reduction of the random variations
due to the noise contribution in | X (m, k)|. The second one
consists in using a spectral floor, as proposed in [41].

Smoothing
G(m, k) in equation (10) can be substituted by:

1
/SNRy.; +1

The term SNR,,; in equation (11) is defined as:

G(m,k) ~1—

X 2
SNR,,. = B[ XL 1. (12)
Yrr
It is estimated through a running average:
SNRPTi(m7 k) = ﬁSNRprz(m - 1; k')
+ (1 — B)max [0, SNRpos] . (13)

The operator max|0, .] prevents the inclusion of negative
values of SNR,,s which have no physical meaning.
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Figure 1. Overview of the algorithm.
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Figure 2. Estimation of the reverberant PSD.

Spectral Floor
Instead of putting the negative estimates of |S(m, k)| to
0, the values of |S(m, k)| less than a threshold, equal to

A/ Arr (M, k), are set to this threshold. In practice A = 0.1,
corresponding to an attenuation of 20 dB, is used.

G(m, k)| X (m, k)|
|§(m,k)| = when > A\/%pr(m, k),
A/ Arr(m, k)  otherwise.

The gain used in the algorithm is finally:

1
VRNt
G(m, k) = if |[S(m, k)| > Ay Yrer (m, k),

M Arr(m, k) /1 X (my, k)| otherwise.

3.3. Estimation of the Reverberant PSD

From equation (9), it can be seen that two terms need to be
estimated to obtain an estimate of the reverberation PSD,
as shown in Figure 2: the parameter of the model A (or
equivalently the reverberation time 7;) and the PSD of the
past reverberated signal.

Then

Apr(my k) = e 2215, (m — T, k).
Since the duration of stationarity of the signals is assumed

to be about 20 ms, according to the approximation stated in
paragraph 2.3, T' is set to: T ~ 50 ms.

Estimation of the PSD of the past reverberated signal

The PSD of the past reverberated signal is estimated by av-
eraging the periodograms of the signal. This is done by a
running average according to:

Aaa (m, k) = Bae(m—1,k) + (1= B)|X (m, k)" (14)

If 3 is close to 1, the variance of the estimate of the PSD
is small, but the equivalent averaging duration long. The
averaging time should be kept small since the signal is non
stationary. 3 should be chosen as a compromise so that the
variance of the estimate is as small as possible while the
assumption of quasi-stationarity is respected. In practice, 3
was set to 0.9.

Estimation of 7.

The reverberation time is a characteristic of the room. It can
change if the environment of the system changes, but its
variations can be considered as very slow. It therefore only
needs to be estimated from time to time, with the assumption
that it does not change between the update periods. The
estimation of 7. comprises two distinct stages:

Detection of silences , where the energy of the rever-
berated signal decays exponentially. This is realized in
two steps: first, the zones where the smoothed energy
envelope of the signal is decreasing are automatically de-
tected. Amongst these zones, only the longest ones are
selected: they are deemed to correspond to silences in the
speech signal, and therefore present the exponential decay
corresponding to the reverberation time of the room.

Estimation of T, over the silences . The slope of
the logarithm of the smoothed energy envelope over the
decreasing periods is estimated through linear regression.
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In Figure 3, an example of the running estimation of 7,
over a reverberated phrase is presented.

In the upper panel, the smoothed energy envelope of a
reverberated speech sentence is represented, along with the
automatically selected ’exponential decay’-zones. The lower
panel shows the values of 7). estimated over these areas.
The estimated values have been found to be in good accor-
dance with the values of 7. estimated on the Room Impulse
Responses by the method proposed by Schroeder in [42].

4. Results

4.1. Methods of Assessment

The reverberated speech signals used were obtained by con-
volution of anechoic phrases by real room impulses (RIRs),
measured by two closely spaced omni directional micro-
phones on a dummy head. Six different RIRs were used,
having reverberation times ranging from 0.4 s to 1.7 s. RIR3,
RIRS and RIR6 correspond to different acoustic channels in
the same room. To assess the efficiency of the algorithm we
have used four types of objective measurement:

Input to Output SNR gain [8]: We used the time
varying method proposed in [8]. The reverberated sig-
nal is decomposed into a sum of a direct signal s;,, and a
reverberant part r;,, obtained by convolving the anechoic
signal with the first 5 ms of the RIR, and with the RIR
minus its first 5 ms. While the complete reverberated sig-
nal is being processed, the time varying, signal-dependent

gain is recorded. The recorded gain is then applied sep-
arately to the direct signal and reverberant part, giving
respectively Soy: and 7,,¢. The SNR gain is then defined

as:
2 : 2 2 : 2
Sout Tin

Frame Frame

G = 10log . (15)
SR Y Y
Frame Frame

Itis calculated globally over the periods of speech activity.

Noise Reduction: When no speech energy is present in
a frame, the noise reduction is calculated in the same way
by:

2
E:rz’n

Frame

72 .
E : Tout

Frame

NR = 10log,, (16)

The separation between speech and silence zones has been
made through manual segmentation.

Distortion: A cepstral distance (CD) [43] between the
direct signal at the input and the output of the system is
used as a measure of distortion. Only the first 8 cepstral
coefficients, which are linked to the first LPC coefficients,
are taken into account. The distance used therefore reflects
the dissimilarity in term of the formant structure of the two
signals. This measure, along with the SNR gain, reflects
how the speech quality is affected by the algorithm.

Speech Recognition Scores: A commercially avail-
able isolated-words speech recognizer is first trained in
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anechoic conditions on a set of 240 isolated English words
uttered by a male speaker, so that it achieves 99% recogni-
tion. The recognition score is then measured on the same
set of words, artificially reverberated by convolution by
one of the RIR. Since this does not correspond to the
training conditions, the recognition rate drops dramati-
cally. The recognition scores are then measured on the
processed reverberated signal. The difference between the
two last measures reflects the benefits of the algorithm.

4.2. Performance

Each measure of performance is estimated both for the pre-
sented algorithm (referred to as “Monaural” algorithm) and a
reference algorithm, referred to as “Bloom” algorithm [44].

4.2.1. Objective Measurements

The lower panel of Figure 4 shows the waveform of the
French sentence ’Papa coupe l’herbe dans le jardin’, in
anechoic conditions. The upper panel shows the same sen-
tence when reverberation is added. The middle panel shows
the signal after is has been processed by our algorithm. The
attenuation of the reverberant tails is striking.

The performance of the Monaural algorithm is presented
in Table IT and III. Table II shows the results for the algorithm
without the on-line estimation of 7;. (the true value of T}. is
fed into the algorithm).

For comparison, the performance of the “Bloom” algo-
rithm, in exactly the same conditions, are presented in Ta-
ble L.

Table III shows the results for the algorithm including the
on-line estimation of 7.

The performance of the algorithm is not significantly dif-
ferent whether 7. is set to its true value or to the values
obtained from the on-line estimation. This shows that the
influence of the value of 7). is not critical, and the on-line
estimation provides sufficiently accurate estimates of 7. for
the purpose of the algorithm. Indeed if 7,. is overestimated,
this is equivalent to overestimating the average noise PSD,
which is classically done (eg. [41, 38]) in order to suppress
more noise.

The main improvement brought about by the algorithm is
the noise reduction over silence periods. In most cases, the
distortion of the signal remains fairly low. Informal listening
has shown that some musical noise remains after processing,
especially for the two longest RIR. This can be reduced
further by adjusting the parameters of the algorithm, to the
detriment of the noise reduction performance.

4.2.2. Automatic Speech Recognition Scores

Automatic speech recognition scores for the reverberated
signals processed by the algorithm are presented in Table IV.

The algorithm used for these tests is the one where 7. is
not estimated on-line, but fed into the algorithm. The results
are compared to the ones obtained with a classical algorithm
based on the spatial decorrelation of late reverberation: the
“Bloom algorithm”.

For the two longer room impulse responses, RIR1 and
RIR2, the monaural algorithm proposed outperforms the
classical Bloom algorithm by 30 points. RIR3 and RIR6
are somewhat milder in that they have a shorter reverbera-
tion time, but still a poor direct to reverberant ratio. Here,
the Monaural algorithm yields recognition performance su-
perior by 15 points. For RIR4, which corresponds to the
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smaller 7’., and RIRS5, which corresponds to the largest di-
rect to reverberant ratio, the performance of both algorithms
is equivalent.

In spite of the stronger distortion of the signal, the strong
improvement obtained in SNR gains and noise reduction is
beneficial for automatic speech recognition. It can be hypoth-
esized that the improvement in automatic speech recognition
performance reflects the monaural algorithm’s ability to re-
duce ’overlap masking’ by cancelling out the energy in the
signal which corresponds to the spreading by reverberation
of previous phonemes.

5. Discussion

The main drawback of the algorithm is the presence of a
residual musical noise. It can be efficiently reduced by the
use of a spectral floor, to the detriment of the SNR gain and
noise reduction performance. For automatic speech recog-
nition application, the signal is intended for machine use
only. Subjective quality of the speech signal is not relevant
in this case. However, for hearing aid applications, the signal
is presented to human ears after processing. A subjective test
campaign would be the only way to confirm whether benefits
can be brought about by the treatment whilst maintaining a
tolerable subjective quality.

The model of late reverberation on which the algorithm
is based is quite simplified. After the first echoes, the late
reverberation part of real RIRs such as RIR1 to RIR6 used
here, do exhibit an exponential decay behavior. However, the
decay rate can vary along frequency. Moreover, the noise-
like signal modulated by the exponential decay curve is only
approximately white.

Direction for future work on the algorithm could be to
improve this modeling. Differences in reverberation times
along frequency can be readily integrated into the model,
by estimating the reverberation time in sub-bands rather than
globally. However, since the value of 7;. used in the algorithm
appeared not to be critical, it is probable that the improve-
ment gained would be small if compared with the increase in
computational complexity.

An other limit of the model that could be addressed is the
hypothesis that the signal modulated by a decaying exponen-
tial in the RIR is a white noise. This is a first approximation
that does not account for the differences between RIR3, RIR5
and RIR6 for instance. The inversion of the minimum phase
part of the RIR results in a whitening of the RIR [8]. To keep
the algorithm blind, such a deconvolution could be realized
as a first stage processing by cepstral deconvolution, prior to
the monaural algorithm.

6. Conclusion

A novel algorithm for suppression of late reverberation from
speech signals has been presented. It is based on amplitude
spectral subtraction. Its novelty lies in the use of a model
of the exponential decay of late reverberation. This model
makes it possible to predict the PSD of reverberation, which

Table I. Bloom algorithm. NR- and G SNR-values are given in dB.

RIR 1 2 3 4 5 6
T, ins 1.01 1.7 0.55 0.34 0.55 0.55

NR 3.9 4.4 4 3.6 4.4 4.8
G SNR 1.3 1.2 1 1.2 1.5 1.7

CD 0.05 0.06 0.05 0.05 0.03 0.04

Table II. Performance without on-line estimation of 7T',.. NR- and G
SNR-values are given in dB.

RIR 1 2 3 4 5 6
T,ins || 101 | 17 | 055| 034 | 055 | 055

NR 168 | 135 | 133 | 84 | 134 | 118
G SNR 0.8 0.6 0.2 0.3 1 0.7

CD 009 | 0.12| 009 | 005 | 008 | 0.1

Table III. Performance with on-line estimation of 7',.. NR- and G
SNR-values are given in dB.

RIR 1 2 3 4 5 6
T, ins 1.01 1.7 0.55 | 034 | 055 | 0.55
estimated 1’ 0.88 1.1 0.64 | 046 | 054 | 0.70
NR 16 103 | 145 | 105 13 13.2

G SNR 0.7 0.3 0.3 0.3 1 0.9
CD 0.08 0.1 0.09 | 0.06 | 0.08 0.1

Table IV. Speech recognition scores, Monaural and Bloom algo-
rithms. “None” means . . .

‘ RIR H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘
None || 41% | 25% | 49% | 58% | 59% | 49%
Monaural || 78% | 65% | 75% | 76% | 73% | 77%
Bloom | 48% | 32% | 62% | 76% | 78% | 63%

can be then subtracted from the total PSD of the reverberated
signal, yielding an estimate of the direct signal.

The system designed uses only one sensor. It can be added
as a front end to other types of algorithms, such as auto-
matic speech recognizer or cocktail party processors. Since
the parameter of the model (A) can be estimated on-line,
the algorithm can automatically adapt to different rooms and
acoustical situations. Moreover, A is related to 7;., the rever-
beration time, which is a characteristic of the room. There-
fore, changes in the acoustic channel within the same room
do not affect dramatically the performance of the algorithm.
For applications such as distant sound pick-up automatic
speech recognition, this means in practice that the user can
move about the room while dictating to the speech recognizer,
without it impairing the performance of the dereverberation
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front end. It also means that the dereverberation will be the
same whatever the position of the speaker. Hence in a cocktail
party situation, the speech from people at different locations
in the room will be equally dereverberated.

The algorithm achieves a strong reduction of the reverber-
ant energy. It results in significant improvements in speech
recognition scores, leading for all the RIR considered to
recognition scores from 65% to 78%. For RIRs with long re-
verberation time and poor direct to reverberant ratio, signifi-
cant improvements in speech recognition scores are achieved
compared to a classical reference algorithm.
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