
PAPERS

0 INTRODUCTION

Estimating the tempo of a musical piece is a complex
problem, which has received an increasing amount of
attention in the past few years. The problem consists of
estimating the number of beats per minute (bpm) at which
the music is played and identifying exactly when these
beats occur. Commercial devices already exist that attempt
to extract a musical instrument digital interface (MIDI)
clock from an audio signal, indicating both the tempo and
the actual location of the beat. Such MIDI clocks can then
be used to synchronize other devices (such as drum
machines and audio effects) to the audio source, enabling
a new range of “beat-synchronized” audio processing.
Beat detection can also simplify the usually tedious
process of manipulating audio material in audio-editing
software. Cut and paste operations are made considerably
easier if markers are positioned at each beat or at bar
boundaries. Looping a drum track over two bars becomes
trivial once the location of the beats is known. A third
range of applications is the fairly new area of automatic
playlist generation, where a computer is given the task to
choose a series of audio tracks from a track database in a
way similar to what a human deejay would do. The track
tempo is a very important selection criterion in this con-
text, as deejays will tend to string tracks with similar
tempi back to back. Furthermore, deejays also tend to per-
form beat-synchronous crossfading between successive

tracks manually, slowing down or speeding up one of the
tracks so that the beats in the two tracks line up exactly
during the crossfade. This can easily be done automati-
cally once the beats are located in the two tracks.

The tempo detection systems commercially available
appear to be fairly unsophisticated, as they rely mostly on
the presence of a strong and regular bass-drum kick at
every beat, an assumption that holds mostly with modern
musical genres such as techno or drums and bass. For
music with a less pronounced tempo such techniques fail
miserably and more sophisticated algorithms are needed.

This paper describes an off-line tempo detection algo-
rithm, able to estimate a time-varying tempo from an
audio track stored, for example, on an audio CD or on a
computer hard disk. The technique works in three succes-
sive steps: 1) an “energy flux” signal is extracted from the
track, 2) at each tempo-analysis time, several tempo and
beat candidates are calculated, 3) a dynamic programming
algorithm is used to determine the final tempo track and
downbeat locations. These steps are described in the next
section. We start with a brief overview of previous work.

An increasing number of contributions to the subject of
tempo detection and beat tracking can be found in audio
and music conferences and journals. Early work included
that of Allen and Dannenberg [1], where the assumption
was made that note onsets are readily available to the algo-
rithm (for example, via MIDI) and which focuses on real-
time performance. Scheirer [2] developed a technique for
on-line tempo estimation (that is, with limited access to
future samples), based on an array of low-order resonant

226 J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April

Efficient Tempo and Beat Tracking in
Audio Recordings*

JEAN LAROCHE

Creative Advanced Technology Center, Scotts Valley, CA 95066, USA

Automatic beat tracking consists of estimating the number of beats per minutes at which a
music track is played and identifying exactly when these beats occur. Applications range from
music analysis, sound-effect synchronization, and audio editing to automatic playlist genera-
tion and deejaying. An off-line beat-tracking technique for estimating a time-varying tempo
in an audio track is presented. The algorithm uses an MMSE estimation of local tempo and
beat location candidates, followed by a dynamic programming stage used to determine the
optimum choice of candidate in each analysis frame. The algorithm is efficient in its use of
computation resource, yet provides very good results on a wide range of audio tracks. The
algorithm details are presented, followed by a discussion of the performance and suggestions
for further improvements.

* Manuscript received 2002 October 21; revised 2003 January 28.

PAPERS TEMPO AND BEAT TRACKING IN RECORDINGS

filters with resonant frequencies corresponding to various
tempi, fed by a signal quite similar to the energy flux used
in our algorithm. Brown’s efficient autocorrelation-based
technique [3] also assumes a MIDI input, which is unsuit-
able for our problem. Goto and Muraoka [4] describe
fairly complex “multiagent” systems, where multiple
tempo/beat hypotheses are explored in parallel. The sys-
tems make use of high-level musical concepts such as
drum pattern matching or chord-change detection [5], but
require a very powerful computer. By contrast with our
algorithm, Goto and Muraoka’s techniques are based on a
note-onset extraction stage where discrete onset times are
estimated from the signal, a potential weak point. Dixon’s
algorithms [6]–[8] are also based on the analysis of time
differences between detected note onsets in the signal. An
extensive bibliography of additional work on tempo detec-
tion and beat tracking can be found in [9].

1 DESCRIPTION OF THE ALGORITHM

1.1 Calculating the “Energy Flux” Signal
To estimate the tempo of the track, an algorithm should

primarily use salient features from the audio, such as note
onsets, note changes, and percussion hits, because beats
tend to occur at these time instants. A simple way to do
that consists of locating fast variations in the frequency-
domain contents of the signal. This is usually better than
using the energy of the time-domain signal because note
onsets or percussion hits can be hidden in the overall sig-
nal energy by continuous tones of higher amplitude, such
as bass notes. Frequency-domain processing allows
detecting such events, even if they are of much lower
energy than other continuous signals in the audio. The
signal is analyzed using a short-time Fourier transform,
that is, short segments of audio are extracted at regular
instants, multiplied by an analysis window, and trans-
formed into the frequency domain via a Fourier transform.
Denoting by x(n) the signal, ti the frame time in seconds,
Fs the sampling frequency, and N the size in samples of
the analysis window h(n), the short-time Fourier transform
X(f, ti) at the normalized frequency f and frame i is

, .eX f t h n x n F t� � s
j

i i
n

N
2

0

1
�

�

�
πfn!_ ^ _i h i (1)

A suitable value for the window size is about 10 ms, and
the hop size (the interval between two successive FFT
analyses ti�1 � ti) can be set to 10 ms (no overlap is
needed). In the following steps only the magnitude of the
FFT is used. For each FFT a nonlinear monotonic com-
pression function G(x) is applied to the bin magnitude, so
high-frequency components (such as high hat hits) are not
masked by higher amplitude low-frequency components
(such as bass notes). A logarithmic function can be used,
but such a function does not behave well around zero. A
simple power function G(x) � x1/2 can be used instead,1 or
an inverse hyperbolic sinus G(x) � arcsin(x), which
behaves like a logarithm for large values of x, and is well
behaved around zero, but it has a slope of 1 at 0.2 Since
our goal is to locate areas in time and frequency where
there is a sudden energy increase, a first-order difference
from frame to frame is then calculated on the result. The
results for all the bins are summed together, and the result
is half-wave rectified to obtain a positive energy flux sig-
nal E(i), which exhibits sharp maxima at transients and
note onsets (Fig. 1),

(2), ,

>

otherwise

E i G X f t G X f t

E i
E i E i

0

0

� �

�

f f

f

i i 1
�

�
min

max

!t

t t

^ _b _b

^
^ ^

h i l i l

h
h h

* (3)

where fmin and fmax control the range of frequencies over
which the summation is carried out (typically from 100 Hz
to 10 kHz). This signal is used in the subsequent stage to
select tempo and downbeat location candidates.

1.2 Selecting Tempo and Downbeat Location
Candidates

A least-squares approach is used to determine the best
candidates at time ta for the tempo and downbeat location.
Under the assumption of a tempo R (in beats per seconds)
and a downbeat location t, an expected energy flux signal
ER, t(i) is defined, which represents our a priori knowl-
edge of what E(i) should look like. The Euclidian dis-
tance between the expected and the actual energy flux

J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April 227

1 Thanks to Miller Puckette for this trick.
2 Thanks to one of the reviewers for this suggestion.

Fig. 1. Energy flux for a pop song with a strong beat.

93 94 95 96 97 98 99 100 101 102 103
0

50

100

150

Time in seconds

E
ne

rg
y

flu
x

E
(n

)

LAROCHE PAPERS

signals Σi[E(i) � KER, t(i)]
2 can then be calculated, where

K is an unknown scalar, which accounts for the fact that
no assumption is made on the magnitude of E(i). A small
distance indicates a tempo and a downbeat location for
which the expected and the observed energy flux signals
match well, up to the gain factor K. The scalar K is
obtained by minimizing the L2 norm and is easily found
to be

Σ

Σ
K

E i

E i E i
�

,

,

i
M

R t

i
M

R t

0
1 2

0
1

�
�

�
�

^

^ ^

h

h h
(4)

where M is the horizon over which this distance is mini-
mized. The squared L2 norm can then be expressed as

Σ

Σ

Ε

Ε

E i KE i

E i
i

i E i

�

� �

,

,

,

i

M

R t

i

M

R t

R t

0

1 2

0

1
2

2

2

�

�

�

�

!

!

^ ^

^

^

^ ^

h h

h

h

h h

8

8

B

B

and if ER, t(i) is properly normalized, so that ΣiE
2
R, t(i) � 1

for all the values of R and t, we find the familiar result that
the values of R and t that minimize the L2 norm are the
ones for which the cross correlation C(R, t)

,C R t E i E i� ,
i

M

R t
0

1

�

�

!^ ^ ^h h h (5)

is maximum. To calculate this cross correlation, the tempo
is discretized into NR values Ri (for example, from 60 to
150 bpm every 1 bpm), and for each tempo candidate, the
downbeat location is also discretized into ND equidistant
times t i

j. Given the analysis time ta at which we need to
estimate tempo candidates, and a candidate beat period
Ti � 1/Ri seconds, the candidate downbeat locations t i

j are
defined by

, , , .t t T
N

j
j N0 1� � � �a

D
Dj

i
i f (6)

In other words, we consider downbeat locations every
NDth of the candidate beat period.

The expected energy flux signal ERi , tj
i is simply cho-

sen to be a series of discrete pulses, as depicted in Fig. 2.
Choosing a discrete pulse signal makes the calculation of
the cross correlation in Eq. (5) much less expensive, and
does not compromise the accuracy of the results. Main

pulses are located every Ti seconds, starting at the candi-
date downbeat location t i

j . In addition, a series of sec-
ondary pulses is added for events occurring on half-
beats. Finally a third series of pulses is added to account
for events that occur on the first and third quarter-beats.
The different pulse amplitudes reflect our expectation
that the energy flux signal should be larger at certain beat
subdivisions than at others. More will be said later on
how these amplitudes can be chosen. Of course, the
expected energy flux signals ERi , tj

i can be computed and
normalized in advance for each tempo and stored in
memory.

Since we are interested in an estimate of the tempo
around time ta, the sum in Eq. (5) is limited to include the
energy flux signal in the vicinity of ta. The horizon can
include 4 s or more. The longer the horizon, the clearer the
estimate of the tempo and the downbeat location will be in
the cross correlation, if the tempo is indeed constant over
that duration. On the other hand, if the tempo varies over
that horizon, the cross correlation might not give a good
indication of the local tempo. Note that since the signal
ERi , tj

i in Eq. (5) is discrete, most of the products in the sum
are null, except where ERi , tj

i (i) is nonzero. As a result it is
much more efficient to implement Eq. (5) as a sum over
the nonzero samples of ERi , tj

i (i).
At the end of this step we have a set of correlation val-

ues C(Ri, t i
j) for each tempo Ri and each corresponding

downbeat candidate t i
j. These correlation values can be

normalized by their maximum value to give a local score
S(i, j) no larger than 1 for each candidate pair Ri,t

i
j ,

,
,

,
.

max
S i j

C R t

C R t
�

,i j i j
i

i j
i

_

a

a

i

k

k

(7)

It would be possible to use the complete set of pairs of
candidates in the subsequent dynamic programming stage,
but that choice would increase the computation cost
unnecessarily. To avoid this, only the 10 to 15 best tempo
candidates are kept, and for each of these candidates, only
the best 10 to 15 downbeat locations are retained. Thus for
each tempo candidate Ri, the best score Smax(i) over all the
candidate downbeat locations is calculated,

, .maxS i S i j�max
j

^ _h i (8)

Smax(i) is searched for local maxima, and the 10 to 15
largest local maxima define the 10 to 15 candidate tempi.

228 J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April

Fig. 2. Impulse signal to be correlated with energy flux.

Timei
j

Candidate downbeat location

DownbeatDownbeatDownbeat

Quarter beat

Half BeatHalf Beat

iP

t

PAPERS TEMPO AND BEAT TRACKING IN RECORDINGS

Then for each of these pruned candidate tempi Ri k
, the 10

to 15 best candidate downbeat locations are selected
according to the values of S(ik, j). This preselection yields
100 to 225 candidates for each analysis frame (instead of
upward of 3200 if all the candidates were used). The local
scores of these candidates are then used in the dynamic
processing stage to be described. Fig. 3 gives an example
of Smax(i) for a rock song, analyzed over a 10-s horizon.
Tempi were discretized every 0.2 bpm. The figure indi-
cates a strong candidate at a tempo of 110.4 bpm. Other
candidates would include 73.4 bpm, 82.6 bpm, and so on.

Fig. 4 shows the variations of Smax(i) over time for 60 s
of a Bach fugue (the last fugue in the Toccata in E Minor
BWV 914 [10]). Dark areas indicate large values of
Smax(i). The moderately slow time evolution of the tempo
around 120 bpm is quite visible.

1.3 Finding the Best Tempo Track and Downbeat
Locations

At this point, for each analysis frame ta (such as every
second), we have a series of candidates for the tempo and
the downbeat locations. The final step consists of going
through the successive tempo analysis frames and finding
in each frame the best candidates, according to a set of cri-
teria to be defined. To that effect a dynamic programming
technique is used [11]. To simplify the notations, the
analysis frames will be indexed by a. At each frame, the
set of Na pairs of candidate tempi and downbeat locations
will now be denoted by {Ra

i , t a
i}, where Ra

i is the tempo
value and t a

i is the downbeat location for the ith candidate
pair at frame a. A path is defined by a series ia of selected
candidates for each frame: Ra

ia
is the selected tempo value

J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April 229

Fig. 4. Variations of Smax(i) for a Bach fugue.

Time in seconds

T
em

po
 in

 b
ea

ts
 p

er
 m

in
ut

e

0 5 10 15 20 25 30 35 40 45 50 55

170

160

150

140

130

120

110

100

90

80

70

Fig. 3. Smax(i) for a rock song.

60 70 80 90 100 110 120 130 140 150
0.4

0.5

0.6

0.7

0.8

0.9

1

Tempo in beats per minute

S
m

ax
(i)

LAROCHE PAPERS

at frame a and t a
ia

is the selected downbeat location at
frame a. The dynamic programming algorithm recursively
defines a score P(a, ia) for a path arriving at candidate ia
at frame a, and requires that this score be a function of
only three values:

• The score of the path at the previous frame P(a � 1,
ia�1), where ia�1 is the candidate through which the
path goes at the previous frame

• The local score S(ia) of candidate ia
• A transition score J(ia�1, ia) measuring the cost of tran-

sitioning from candidate ia�1 at frame a � 1 to candi-
date ia at frame a.

Mathematically we must have

, , , ,P a i F P a i S i J i i1� � ,a a a a a1 1� �_ _ _ `ai i i jk

where F(x, y, z) is any function used to combine the three
scores. In the present case a simple sum is used, F(x, y, z) �
x � y � z, but this is not a requirement.3

The dynamic programming algorithm allows us to find
the path with the best score in an efficient manner, that is,
without having to do an exhaustive test of all the possible
paths (which would be prohibitively expensive). Only
Na�1Na evaluations of function F are required at each
frame, which is quite reasonable in practice. An outline of
the algorithm is given in the Appendix.

For our tempo estimation problem, Eq. (7) is used for
the local score, and the transition score is defined to give
good (large) scores to paths that have a smooth tempo and
for which the downbeat locations are consistent with the
tempo. The reasoning is as follows. In standard music the
tempo varies slowly in time, with possible but rare sharp
jumps, and this a priori knowledge should be reflected in
our choice of the transition score. Furthermore, given a
local tempo R in beats per second, consecutive downbeat
locations should fall roughly every 1/R seconds. This
should be reflected in the transition score as well. Given a
candidate {Ri

a�1, t i
a�1} at frame a � 1 and a candidate

{Ri
a , t i

a} at frame a, the transition score can therefore be

defined as

, ,α β distJ i j M R R t t
R

1
� � � � �a

j
a
i

a
j

a
i

a
j1 1� �

J

L

K
KK

_ a

N

P

O
OO

i k

(9)

where dist(x, y) calculates the distance between x and the
closest integer multiple of y,

dist(x, y) ≡ x � y · round
y

xJ

L

K
K

N

P

O
O

with round (z) ≡ floor(z � 1/2) being the integer nearest to
z. M(x) is a nonlinear positive function, and α and β are
two positive constants that control the respective weights
of each term. M(x) can be chosen as

,

,

< ∆

∆

for

for
M x

x R

x R

0

1
�

$
^ h * (10)

in which case the first term in Eq. (9) is 0 when the tempi
at frames a and a � 1 are close enough, but becomes neg-
ative when they are significantly different. G(x) allows the
tempo to fluctuate within a small range �∆R and imposes
a fixed cost if the tempo jumps to a new value, because
jumping to a very different tempo is no more unlikely than
jumping to a closer tempo, if there is a tempo jump. The
second term checks that the elapsed time between the two
downbeat locations t j

a � t i
a�1 is close to a multiple of the

beat period T � 1/R j
a and penalizes transitions for which

this is not true. In practice it is better to give the downbeat
location some flexibility (especially if downbeat locations
are coarsely quantized). The second term in Eq. (9) can be
modified accordingly. Fig. 5 shows the output of the
dynamic programming algorithm for the Bach track used
in Fig. 4.

The time-varying tempo values in Fig. 5 were calcu-
lated based on the time difference between successive
beats in the path selected by the dynamic programming
algorithm. The tempo track follows very well the gen-
tle tempo variations of the performance, and is able to
track a relatively sudden rallentando about 40 s into the
piece.

230 J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April

3 F(x, y, z) can even be frame dependent; the same is true for
the transition cost J().

Fig. 5. Tempo track for Bach fugue used in Fig. 4.

0 20 40 60 80 100 120
100

105

110

115

120

125

130

Time in seconds

T
em

po
 in

 b
ea

ts
 p

er
 m

in
ut

e

PAPERS TEMPO AND BEAT TRACKING IN RECORDINGS

2 ADJUSTING THE ALGORITHM PARAMETERS

2.1 Adjusting the Pulse Amplitudes
As mentioned before, the expected energy flux signal

ER, t given the tempo R and the downbeat location t is a
series of discrete pulses of unequal amplitudes. The pulse
amplitudes can be determined by analyzing audio tracks
with known tempo and downbeat locations, and calculat-
ing the average values of the energy flux at half-beat or
quarter-beat times relative to the values at beat times.
Table 1 presents the results of such an analysis on a series
of seven tracks corresponding to seven different genres.
The table was assembled using a limited number of tracks,
and shows significant variability from genre to genre.
(There are also significant variations from track to track
within a genre.) The results should not be viewed as
“hard” data, but nonetheless help reveal trends. For all the
genres except latin and reggae, the downbeats collect the
largest average values, with the half-beats receiving the
second largest average values. This is consistent with the
intuitive (but simplistic) idea that salient musical events
fall primarily on the downbeat, then on the half-beat, and
much less often on quarter-beats. By contrast, latin music
consistently exhibits large values on the third quarter-beat,
often larger than on the downbeat. Careful listening
indeed reveals that many percussion accents tend to fall
right before the downbeat (that is, on the third quarter-
beat). Reggae also exhibits a very strong half-beat (often
stronger than the downbeat), caused by the consistent
snare-drum hits and guitar chords on the half-beat.

This primitive analysis helps us select reasonable values
for ER, t. A unity amplitude is selected for the downbeat, an
amplitude of 0.65 for the half-beat, and of 0.2 for the
quarter-beats. These settings are appropriate for various
genres (rock, pop, techno, dance, and r&b among others)
but are likely to yield wrong downbeat estimates for other
genres such as latin or reggae.

2.2 Adjusting the Dynamic Programming
Parameters

The parameters α and β in Eq. (9) can be adjusted by
trial-and-error, using a large set of tracks, although this is
a somewhat tedious task. A better solution consists of sys-
tematically testing a large number of parameter pairs for a
large set of tracks of known tempo and downbeat loca-
tions. For each track we find the (hopefully not empty)
region in (α, β) that gives the expected results. Any choice
of parameters within the intersection of all such regions

will yield accurate results for all the tracks tested. Of
course, there is no guarantee that the intersection will not
be empty, and that the chosen parameters will yield acc-
urate estimates for other tracks not in the training set.
Fortunately it was found in practice that the dynamic pro-
gramming stage is quite robust in that regard. Fairly large
relative parameter variations (such as multiplicative fac-
tors of 0.2 to 5) still yield accurate results.

3 RESULTS AND COMMENTS

As mentioned in several papers on the subject [9], [6],
a formal evaluation of a beat-tracking algorithm is not an
easy task to complete, because of the lack of available
“beat-labeled” audio tracks, the inherent ambiguity in the
definition of musical beat, and the lack of a “standardized”
set of test tracks. (It is always possible to test an algorithm
on tracks for which it performs well.) Beat-tracking and
tempo-detection algorithms can make roughly three kinds
of errors: 1) a wrong tempo is estimated, 2) the downbeat
is placed at the wrong beat subdivision, and 3) the down-
beat is slightly off (by a few percent of the beat period).
Informal tests show that the third type of error (slight mis-
estimation of the downbeat locations) can be minimized to
an arbitrary level if the energy flux signal is sampled fast
enough and if enough downbeat candidates are selected
prior to the dynamic programming stage. By contrast, the
gross tempo detection and downbeat misplacement errors
1) and 2) are much more difficult to avoid. These are the
kinds of errors we focus on in this paper, as they truly
reflect the practical reliability and usability of a tracking
algorithm.

3.1 Common Types of Errors
3.1.1 Tempo Octave Errors

Tempo octave errors (by analogy with pitch detection),
that is, an estimated tempo twice on one-half the “true”
tempo, do not necessarily matter, depending on the music
meter. For example, it is correct to tap every quarter-note
in a 4/4 meter, or every half-note (at half the previous
tempo), as long as the “right” half-note is selected (see the
following). In fact there may not be an absolute “true”
tempo in that case. However, while tapping every quarter-
note in a 3/4 meter is correct, tapping every half-note is
not (because that would be tapping the first and third beats
of measure 1, then the second beat of measure 2, and so
on). The same is true for time signatures such as 6/8, 12/8,
and so on. This, unfortunately, is a common problem with
beat-tracking algorithms, and this one is no exception.
This is probably why most beat-tracking algorithms are
tested on 4/4 music [9] (although it is also true that most
contemporary rock/pop/dance/techno music is in 4/4). An
example of such a track is Billy Joel’s “Piano Man” [12],
a 3/4 time signature for which the quarter-note is at about
175 bpm.

3.1.2 Downbeat Errors
The algorithm presented in this paper does not attempt to

locate measure boundaries (that is, estimate which down-
beat is the first downbeat in the measure), as this would

J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April 231

Table 1. Average relative amplitudes of downbeat,
first quarter-beat, half-beat, and third quarter-beat

for various genres, in the energy flux signal E(R, t).

Genre 0 1/4 1/2 3/4

Techno 1.0 0.1 0.6 0.4
Pop 1.0 0.1 0.8 0.2
R&b 1.0 0.2 0.5 0.2
Rock 1.0 0.2 0.7 0.2
Reggae 1.0 0.3 1.1 0.5
Latin 1.0 1.0 0.9 1.5

LAROCHE PAPERS

require estimating signal features more musically meaning-
ful than our simple energy flux (chord changes would be
good candidates [5]). Common downbeat errors include
placing the downbeat one eighth-note or one quarter-note
(if the detected tempo corresponds to half-notes) after or
before the true downbeat. In our algorithm, the culprit for
such mistakes is usually the assumption that is made on the
shape of the expected energy flux, given a tempo and a
downbeat. In rock music it is not rare for the half-note to
dominate the downbeat, because of the ubiquitous snare-
drum hits on 2, in which case our algorithm might select
to tap beats 2 and 4, rather than 1 and 3.

3.2 Performance of the Algorithm
The algorithm presented in this paper works very well

on a vast range of tracks, especially those that contain per-
cussion instruments, or instruments with fairly sharp
attacks (such as piano or string pizzicati), provided the
tempo does not vary too rapidly. The dynamic program-
ming stage is able to manage moderately slow or progres-
sive tempo changes4 (for example, a tempo that doubles in
the span of 30 s) as well as abrupt tempo changes5 (the
tempo switches instantly from 150 to 110 bpm). The algo-
rithm also handles tempo “gaps” very well (tracks where
the music stops for as long as 10 s), thanks to the overall
optimality of the dynamic programming stage. Broadly
speaking, the algorithm yields inadequate results on two
main types of tracks: tracks with a very flexible tempo
(such as classical music played rubato) and tracks that lack
clear transients or note onsets. Most expressive perform-
ances of pieces from the classical repertoire provide good
examples of tracks that are difficult to beat-track. In partic-
ular, rubato playing proves quite difficult to track because
beat durations can vary by very large amounts in the span
of a few beats. For example, it is not uncommon at the end
of a musical phrase to see the tempo drop by as much as
50% in the span of a few seconds. The current algorithm
does not track such changes well for two main reasons.
First the tempo is assumed to be constant over the “match
horizon” in Eq. (5), an assumption that is violated in such
cases. This will tend to smooth out Smax(i) and blur its local
maxima, possibly causing erroneous tempo and downbeat
candidates to be selected for the dynamic programming
stage. Second the algorithm allows notes to fall on any
subdivision of the beat (quarter, eighth, or sixteenth notes)
while attempting to keep the tempo somewhat smooth.
This means the dynamic programming stage is more likely
to pick a fairly constant tempo with note onsets cycling
through successive beat subdivisions than a fast varying
tempo with onsets falling on downbeats. Following such
rapid tempo variations is known to be a difficult task [1].

Signals that lack clear transients or note onsets cannot
possibly be tracked accurately, because the energy flux
signal does not exhibit maxima at beat times. Examples
include pieces played legato and voice-only tracks.6 In
that case a better front end would be needed, able to
extract more musically meaningful features such as pitch
or chord changes (as suggested in [5]).

From a computation point of view, the algorithm is mod-
erately costly, running about 50 times faster than real time (on

a Pentium III at 850 MHz, for a 44.1-kHz wave file, comput-
ing the tempo every second, with an analysis window size of
8 ms, a hop size of 8 ms, a tempo search range between 70
and 160 bpm every bpm, 30 downbeat candidates per tempo
candidate, and keeping 225 pairs of tempo and downbeat
candidates in the dynamic programming stage).

4 FUTURE WORK AND CONCLUSION

The algorithm presented in this paper yields very good
results on rhythmic contemporary music such as pop,
rock, dance, and techno, but it is less successful when the
rhythm is less pronounced or when the tempo is extremely
variable. In both cases, results should improve with an
improved front-end analysis able to better extract mean-
ingful musical events. Note, however, that systems that
have an ideal front end where all and only the relevant
musical events are used as input data (such as systems that
use MIDI input) still have difficulty tracking flexible
tempi [1]. An issue not addressed in this paper is that of
determining bar boundaries, which can be important in
practice. One application is the automatic segmentation of
songs into their parts (intro, chorus, versus) since such
subdivisions tend to fall on bar boundaries. Also, in the
context of beat mixing (transitioning from one track to the
next by aligning the beats via time scaling and crossfad-
ing), it is important to align not just the beats but also the
bar boundaries for the transition to sound good. The
energy flux signal E(i) used in this paper is probably too
primitive a feature to enable such a task. In fact, it is very
instructive to listen to the energy flux signal (for example,
by amplitude modulating a constant-frequency sinusoid
with E(i)). This experiment reveals how little information
is contained in the energy flux signal (at least, that can be
processed by a human brain)––enough in most cases to
detect the beat, but not much more than that. Future work
will attempt to identify and extract better signal features
for the beat-tracking task, and address the problem of
locating bar boundaries.

Finally, the algorithm can be modified for on-line
analysis, where the tempo is estimated in real time with
very limited access to the future of the signal (for exam-
ple, less than 500 ms). This is the subject of ongoing work
and will be reported in a future paper.

Sound examples can be found at www.atc.creative.com/
users/jeanl.

5 REFERENCES

[1] P. Allen and R. Dannenberg, “Tracking Musical
Beats in Real Time,” in Proc. Int. Computer Music Conf.
(San Francisco, CA, 1990), pp. 140–143.

[2] E. D. Scheirer, “Tempo and Beat Analysis of Acou-
stic Musical Signals,” J. Acoust. Soc. Am., vol. 104, pp.
588–601 (1998 Jan.).

232 J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April

4 As in the track “You Want It Back” [13].
5 As in the track “Tubthumping” by Chumbawanba [14].
6 However, this algorithm can track rhythmic solo vocal tracks

accurately, such as the ubiquitous “Tom’s Diner” song by
Suzanne Vega.

PAPERS TEMPO AND BEAT TRACKING IN RECORDINGS

[3] J. C. Brown, “Determination of the Meter of Mus-
ical Scores by Autocorrelation,” J. Acoust. Soc. Am., vol.
94, pp. 1953–1957 (1993 Oct.).

[4] M. Goto and Y. Muraoka, “Music Understanding at
the Beat Level––Real-Time Beat Tracking for Audio Sig-
nals,” in Proc. IJCAI-95 Workshop on Computational Aud-
itory Scene Analysis (1995), pp. 68–75.

[5] M. Goto and Y. Muraoka, “Real-Time Rhythm
Tracking for Drumless Audio Signals––Chord Change
Detection for Musical Decisions,” in Proc. IJCAI-97
Workshop on Computational Auditory Scene Analysis––
Int. Joint Conf. on Artificial Intelligence (1997), pp.
135–144.

[6] S. E. Dixon, “A Beat Tracking System for Audio
Signals,” in Proc. Conf. on Mathematical and Computational
Methods in Music (Vienna, Austria, 1999), pp. 101–110.

[7] S. E. Dixon and E. Cambouropoulos, “Beat Track-
ing with Musical Knowledge,” in Proc. 14th Eur. Conf. on
Artificial Intelligence (ECAI 2000) (Amsterdam, The Net-
herlands, 2000), pp. 626–630.

[8] S. E. Dixon, “An Interactive Beat Tracking and
Visualisation System,” in Proc. Int. Computer Music Conf.
(Havana, Cuba, 2001).

[9] M. Goto and Y. Muraoka, “Issues in Evaluating Beat
Tracking Systems,” in Working Notes of the IJCAI-97
Workshop on Issues in AI and Music (1997).

[10] J. S. Bach, “Glenn Gould” Bach, the Toccatas and
Inventions,” CBS Masterworks M2k42269 (1986).

[11] J. F. Silverman and D. P. Morgan, “The Application
of Dynamic Programming to Connected Speech Recog-
nition,” IEEE ASSP Mag., vol. 7, pp. 6–25 (1990 July).

[12] B. Joel, “Greatest Hits,” vols. I and II, Sony (1998).
[13] Propellerheads, “Decksanddrumsandrockandroll,”

Dreamworks (1998).
[14] Chumbawanba, “Tubthumper,” Universal (1997).

APPENDIX
DYNAMIC PROGRAMMING ALGORITHM

This appendix gives an outline of the successive steps in
a general dynamic programming algorithm. More details
can be found, for example, in [11]. The algorithm goes as
follows.

1) Initialize the best scores P̂(0, i) � pi for each of the
candidates i in the first frame.

2) At frame a � 1, calculate the scores of the best paths
arriving at candidate 0 of frame a, coming from candidate
k in the previous frame, using

, , , ,R k F P a k S J k1 0 0� �t^ ^ ^ ^`h h h hj (11)

where P̂(a � 1, k) denotes the score of the best path arriving
at candidate (a � 1, k). Do that for k � 0, 1, … , Na�1 � 1,
where Na�1 is the number of candidates in frame a � 1.

3) Find the candidate kmax for which R(kmax) is maxi-
mum. Set

,P a R k0 � max
t ^ _h i

and keep track of the candidate k this path originated from
at frame a � 1. We now know the best path arriving at
candidate 0 at frame a.

4) Repeat steps 2 and 3 for all the candidates 1, 2, … ,
Na � 1 in frame a.

5) Go to the next frame and do steps 2, 3, and 4, and so on.
6) At the last frame I, pick the candidate with the best

score P̂(I, i). This indicates the end of the best path (the
path with the best score). Then backtrack to retrieve the
candidates this path came from at frame I � 1, I � 2, … .

This algorithm only requires Na�1Na evaluations of
function F at each frame.

J. Audio Eng. Soc., Vol. 51, No. 4, 2003 April 233

THE AUTHOR

Jean Laroche was born in Bordeaux, France, in 1963.
He received an M.S. degree from the Ecole Polytechnique
in 1986 and a Ph.D. degree in signal processing from the
Ecole Nationale Supérieure des Télécommunications,
Paris, in 1989.

In 1990 he was a fellow of the ITT international grant
at the Center for Music Experiment, University of

California at San Diego. In 1991 he became an assistant
professor in the Signal Department at Telecom Paris,
teaching audio and speech processing and acoustics.
Since 1996 he has been a principal scientist at the
Creative Advanced Technology Center in Scotts Valley,
CA, helping to design techniques for advanced music
and audio processing.

