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Introduction

.....
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Transcription of digitally recorded polyphonic music

requires the use of a technique to determine notes. The

algorithm presented here is based upon a signal processing

techniques capable of handling multiple voice.

has been achieved using modern spectrum analysis

When these techniques

attack determination,

the

techniques

and pitch

Some success

eithermusic,Western

tracking for single line melodies[lJ.

for pitch segmentation,

are applied to polyphonic

computation exceeds reasonable bounds or the output does not

identification. The presence of overlapping partials,

have sufficient resolution to allow clear note

time

varying spectra, and time varying tempi combine to make

analysis a difficult problem. The method presented in this

paper was developed as a front end of an intelligent system

for music transcription developed at CCRMA

Computer Research in Music and Acoustics)

(Center for

at Stanford

University[2J. It is based upon the FFT (Fast Fourier

Transform) and produces short time spectral information at a

variety of resolutions. It is hope that the information

generated by the algorithm will allow effective note

determination by the music analysis system.

Basis for the Algorithm

Audio signals can be analyzed by breaking them down
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into sinusoidal waves of arbitrary onset and decay. An

ideal algorithm would generate an exact frequency/time map

and require very little computational effort. Most likely

the algorithm would be a filter bank composed of many narrow

band filters which span the audible range. The time window

of the filters should be sufficiently small to precisely

delineate note attacks and decays. Unfortunately there are

limits to the quality of resolution and computational

efficiency an algorithm can achieve. Furthermore extremely

fine resolution of the entire spectrum may provide too much

information for the computational cost. The algorithm

should be structured to extract the required information at

low cost without excessive extraneous information. To this

end it is beneficial to examine the spectral and timing

characteristics of the digitized music we use for input.

In this project we concentrated on polyphonic Western

music generated by harmonic instruments using a 12-tone

chromatic scale. The information in the frequency spectrum

of this music is not evenly distributed. The critical

information for note determination ·lies in the frequencies

of the fundamentals and partials generated by the

instruments when playing scale tones.

thescale,chromatic12-tone

are exponentially spaced by a

2
n/12

,multiplicative factor of where n is an integer.

Other tuning system are used in Western music, such as the

just tuning and mean tuning. This system are based on

In the well-tempered

fundamentals of the notes

integral ratios but share the precise 2:1 interval of the

octave with the well-tempered system.

If we examine a harmonic tone, it contains partials at

approximately

frequency. It

integral

can be

multiples

shown that

of the

the partials

fundamental

relatively



Therefore it should be sufficient
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closely match the scale

percent of a semitone 1 •
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frequencies, i.e. within a few

to concentrate on generating a filter bank to distinguish

the scale tones.

It would seem logical to organize the filters in the

bank so that they are centered on the well-tempered scale.

One might try an exponential spacing by powers of 2 1 / 12 , one

filter per semitone. Unfortunately, we do not know prior to

the analysis to what absolute pitch the music will be tuned.

Notes may excite two more neighboring filters and provide

ambiguous frequency results. Furthermore spectral smearing

or noise may occur. To handle these effects we opted for

about a minimum of three filters per semitone.

It is desirable that the filter bank should span the

spectrum. The easiest arrangement, which we chose, is to

have the filte~ cover the desired range but not overlap each

other. If the filters are exponentially spaced apart as

mentioned previously, this requirement forces the bandwidth

of each filter to be a proportional -to the center frequency

Thisof the filter.

fractional bandwidth

type of

filter bank

filter bank,

is called a

a constant
2constant-Q

filter bank. Since bandwidth and time window size are

inversely related, the scaling of the bandwidth results in

inversely exponentially sized windows, i.e. a smaller window

for a filter with a higher frequency. Fortunately this

scaling of the window size is exactly what we want. In

harmonic instruments the high frequencies attack and decay

faster than the low frequencies. Smaller windows are

required to the accurately identify the occurrences of the

high frequencies.

Based upon this discussion, it would seem that a

constant-Q filter bank is the best solution for our problem.

Unfortunately, current implementations of the constant-Q



filter bank are not computationally efficient enough for us

to process our data quickly.

The implementation of a constant-Q filter bank requires

separate calculation of each filter response. This arises

out of the fact that each of the windows for the filters are

different sizes. Current implementations of constant-Q

filter banks are essentially DFTs (Discrete Fourier

Transforms) with exponentially spaced windowing. The input

signal must be separately convolved with each of the

windowed sinusoids. The OFT method can be slow and

computationally expensive to run on a
3computer If parallel processing is

serial processing

processing times can be achieved[3J.

available,

At our

shorter

location

parallel processing was not easily obtained, so the OFT

implementation was not attractive. There have been attempts

to simulate a constant-Q short-time filter bank using

frequency warping of a single FFT or using the chirp z

transform[3J. Neither of these methods seemed to be easily

applicable to the requirements particular to our situation.

The Algorithm

We decided develop a new algorithm which is similar to

the constant-Q transform but achieves greater computational

efficiency through the FFT (Fast Fourier Transform). The

algorithm we generated is a compromise between the linear

spacing of the filters of a single FFT and the exponential

spacing of the constant-Q. In our arrangement the filters

but from octave toare linearly space within an octave,

octave the filters are in a 2:1 ratio (see figure 1). In

this way filters which are exactly an octave apart have the

same Q. The Q values extend through a fixed range. Hence

the name "boundec:l-Q."

The algorithm centers around an iterative procedure
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described as follows: an FFT is taken of a fixed number of

input samples and then the signal is downsampled by a factor

of two (see figure 2). The upper half of the FFT, one

octave, is output to the music analysis system. The

procedure is repeated for two more sets of input data.

Again the upper half of the FFTs are sent to the music

analysis system. The three downsampled signals are now

dovetailed into one signal (see figure 3). The procedure is

now used on the downsampled data. Because the downsampling

eliminated the highest octave of the spectrum, the output of

the FFT is now the next second highest octave of the

spectrum (see figure 4). The input window is twice as large

and the frequency resolution is twice as fine. The

procedure is applied further to provide short-time spectra

over the desired time interval and desired octaves.

A Detailed Description of the Procedure

In our implementation the input signal is grouped

sets of 256 points. The sampling rate is 22028 Hz.

into

The

first time window window is 11.62 milliseconds. A 512-point

FFT is performed on the data with zeros filling in the 256

other points. The padding of zeros is to prevent aliasing
4

during the downsampling. No windowing nor weighting is

performed on the data prior to the FFT because it would make

the downsampling more difficult. The output spectrum is

every other point from the upper half of the spectrum, 32

complex points. The 32 point linear spacing is equivalent

to 2.72 filters per semitone at the low end and 5.28 filters

per semi tone on the high end.

The next step is lowpassing and downsampling the

original data by a factor of 2. We first lowpass the signal

with a halfband filter to prevent aliasing when we

downsample. Normally we would convolve the input signal

with an FIR filter to accomplish this, but since we have the
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FFT available we can simple complex multiply the FFT by the

complex frequency response of the lowpass filter. This new

spectrum is changed back to the time domain by an inverse

FFT. The computational savings are significant. The filter

we used is the frequency response of a 256-point symmetric

non-causal FIR filter with about an 80 dB cutoff. If we

were to implement the same filter in the time domain it

would require 256x256 or 65,536 real multiplications for the

convolution. This method requires 257 complex

multiplications for the lowpass filter" plus (512/2)1092512

or 2304 butterflies for the inverse FFT. This totals 2561

complex operations, a significant savings. Because the

filtering process spreads the energy of the input signal

ahead and behind the original signal, the extra zeros we

placed in the FFT prevent them from overlapping or aliasing.

The pre-"ringing" and post-"ringing" are saved and combined

with the appropriate downsampled data from previous and

follOWing iterations (see figure 3). This energy spread is

the same as that which would occur if we were using an FIR

filter in the time domain. Downsampling is now performed on

lowpassed signal and the ringing by dropping every other

point.

The procedure is repeated to cover the entire input

signal and also to cover the desired number of octaves.

Since the downsampling halves the sampling rate but we keep

doubling the window size the number of samples used in the

FFT remain fixed. The hop size in our implementation is one

full data group of 256 points. Better time resolution could

be achieved if we halved the hop size, but computations

would double.

Due to the sharp cutoff that we are able to achieve

with the lowpass filter, the algorithm has the added benefit

of the ability to invert the process and reconstruct the

original signal nearly distortion free.
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A Discussion on Computational Efficiency

How many computations does the algorithm require to

produce a spectrum on the average per data set interval?

In our implementat ion an 512 point FFT is taken. The number

of complex operations for an FFT is n/2 lo92n . In this case

it means 2304 operations. The lowpass filtering requires

n/2 + 1 or 257 operation. The inverse FFT takes another

2304 operations.

or n + n +

Each iteration of the procedure takes 4865

1 operations.

Since we are examining the number of computations on

the average over a fixed time period, the number of

computations for each new octave of resolution requires half

as many computations. Therefore we can approximate the

average number of computations as [1 + 1/2 + 1/4 +

or 2 * 4865 = 9730 operations per data set interval.

••• J4865

The equivalent OFT filter bank has 32 filters per

octave. If we assume six octaves of information are in the

Since we looking for the

interval the number of
6

or 12.6 x 10 operations.

music, there needs to be 192 filters.
2 .

order of n operatIons to perform.

average operations per data set

operations is given by 192(256
2

)

The OFT takes on the

It is significantly more expensive.

Downsampling can be used to reduce the number of

computations in the OFT implementation. Using the same

logic as above, the total number of operations for a OFT

with downsampling once per octave for the same configuration

is [32(256
2

) + LJ[l + 1/2 + 1/4 + ••• J = 4.2 x 10
6

+ 2L.

Even if the number of lowpass filtering is inexpensive, the

cost is still significantly more than the bounded-Q

approach.

Conclusion
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We have presented here an efficient alternative to

current constant-Q implementations. The advantages of this

"bounded-Q" transform is that it effectively uses current

FFT techniques and provides relevant information for musical

analysis. Further work will determine whether the

information generated by this algorithm will be sufficient

to accurately transcribe polyphonic Western music. Further

work may expand into other types of music. There are plans

to implement this algorithm on a Lisp workstation with the

intelligent music analysis system.
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Footnotes

1 One can compare the exponential tuning of a

well-tempered scale to integral ratios of partial. The

following table list the first 11 partials and the

corresponding well-tempered scale note.

Partial Ratio Well-Tempered Interval

1 2: 1 2(12/12) = 2: 1 p8va

2 3: 1
2(19/12) = 2.99661:1 p12th = 8va + 5th

3 4: 1 2(24/12) = 4: 1 p15th = 2 8va

4 5: 1 2(28/12) = 5.03968:1 M17th = 2 8va + M3rd
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2(31/12) = 5.99323:1 p19th = 2 8va + p5th
5 6: 1
6 7: 1 2(34/12) = 7.12719: 1 m21st = 2 8va + m7th

7 8: 1
2(36/12)

= 8: 1 p22st = 3 8va

8 9: 1
2(38/12)

= 9.97970:1 M23rd = 3 8va + M2nd

9 10: 1
2(40/12)

=10.07937:1 M24th = 3 8va + M3rd

---- 2(41/12)
=10.67872:1 p25th = 3 8va + p4th

10 11 : 1 ------- -----

-- -- 2(42/12)
=11.31371:1 d26th = 3 8va + d5th.

11 12: 1
2(43/12)

=11.98646:1 p26th = 3 8va + p5th

One can notice that not until we get to the 10th partial

does a large difference occur. For example if the narrow

band filters are centered on the scale tones and have a

bandwidth of a 1/3 of a semi tone they will easi ly capture

most of the partials.

2 The Q value of a filter is the ration of the bandwidth

to the center frequency. A constant-Q filter bank is a set

of filters in which all the Q values are equal.

3 No window is the same as a rectangular window in this

case. If windowing is required convolution by the frequency

representation of the filter can be performed on the FFT

complex spectrum. Some example of such window are the three

point Hamming window (0.23, 0.54, 0.23] and the Blackman

(second order Hamming) window (-0.0492125, 0.2992125, 0.5,

0.2992125, -0.0492125]. These filters smooth the sidelobes

effects. In our implementation of the FFT is causal so that

zero time corresponds to the first data sample. In order

for the smoothing window to be centered over the data window

it is necessary to rotate the windows by a phase factor of

pi. The Hamming window is a raised cosine, so it becomes

(-0.23, 0.54, -0.23]. The Blackman window is a raised

cosine with another cosine of twice the frequency as a

correction factor, so it becomes (-0.0492125, -0.2992125,

0.5, -0.2992125, -0.0492125].
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