24

- provides-a succinct re-

_ processing research and

he special series for the 50th anniversary
of the Signal Processing Society contin-
ues in this issue with an article that covers
the domain
of the Speech Process-
ing Technical Commit-

tee. -~ This -article
view of the history and
current status of the

field of speech-

describes future contri-
butions speech process-
ing will make to society.

Because speech is the most natural form of hu-
man communication, speech processing has been
one of the most exciting areas of signal processing.
In the last several decades, speech research has
drawn scientists and engineers together to form an
important discipline. It has created many technical
impacts on society. Speech-coding algorithms have
made voice communication.and the storage of voice
data effective and efficient. Speech-recognition
technology has made it possible for computers to
follow human voice commands -and even under-
stand human languages. Speech-synthesis tech-
niques have created many interactive systems that
correspond with humans with a natural voice. As
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computers become faster and more ubiquitous,
these and other areas in speech processing are ex-
pected to flourish further and bring about an era of
true human-computer
interaction.

To summarize the ex:
citing developments in
thisfield; the article
presents -an - insightful
review and reports the
authors’ views in-the
various areas of speech
processing. Topics cov-
ered in this article in-
clude speech analysis
and synthesis, speech

coding, speech enhancement, speech recognition,
spoken-language understanding, speaker identifica-
tion and verification, and multimodal communica-
tion. In addition, a sidebar reviews the history of
secure voice coding. ;

I invite you to read this article to review the his-
tory of speech processing, to understand its current
trends, and to foresee its future prospects envisioned
by experts in the field. Enjoy!
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s part of the celebration for the 50th anniver-
sary of the IEEE Signal Processing Society,
this article intends to providc a succinct re-
view of speech research, in particular its his-
tory, current trends, and prospects for the future. The
research areas covered are speech analysis and synthesis,
speech coding, speech enhancement, speech recognition,
spoken language understanding, speaker identification
and verification, and multimodal communication. We
omit from this discussion such topics as speech percep-
tion and production and related physiological aspects,
not because they are not a part of speech research, but in
order to bound the scope of the effort and to cover those
topics most related to readers of this magazine. We hope
readers of IEEE Signal Processing Magazine as well as
members of the IEEE Signal Processing Society will be
able to draw a picture of this important area of research
and to apprcqate its significance, particularly from the
signal-processing perspecnve We must caution the
reader that such a review is cursory at best and may suffer
from errors of judgement and omission.

This article was commissioned by the Speech Techni-
cal Committee of the Signal Processing Society. Many re-
nowned speech-communication researchers were invited
to contribute to this article. The list of authors represents
those who submitted written contributions.

Speech Analysis and Synthesis

Research in speech processing and communication, for
the most part, was motivated by people’s desire to build
mechanical models to emulate human verbal communica-
tion capabilities. The earliest attempt of this type was a
mechanical mimic of the human vocal apparatus by Wolf-
gang von Kempelen, described in his book published in
1791 [1]. Charles Wheatstone, some 40 years later, con-
structed a machine based on Kempelen’s specification us-
ing a bellows to represent the lung in providing a
reservoir of compressed air [2]. The vocal cords were re-
placed by a vibrating reed that was placed at one end of a
flexible leather tube—the “vocal tract”—whose cross-
sectional area could be varied to produce various voiced
sounds. Other sounds could be produced by the machine

Contributing Authors
Don Childers, University of Flovida, Gainesville, USA
R.V. Cox, AT T Labs-Research, USA
Renato DeMort, University of Avignon, France
Sadacki Furui, Tokyoe Institute of Technologies, Japan
B.H. Juang, Bell Labs, Lucent Technologies; USA
J.J. Mariani, LIMSI, France
Patti Price, SRI, USA
Shigeki Sagayama, NTT, Japan
M.M. Sondhi, Bell Labs, Lucent Technologies, USA
Ralph Weischedel, BBN/GTE, USA

MAY 1998

as.well, e.g., nasals by opening a side branch tube (the
“nostrils™), fricatives by shutting off the reed and intro-
ducing turbulence at appropriate places in the vocal tract,
and stops by closing the tube and opening it abruptly. It
appears that Wheatstone was able to produce a fairly large
repertoire of vowels and consonants and even some short
sentences using this simple mechanical device.

Interest in mechanical analogs of the human vocal ap-
paratus continued into the 20th century. While several
notable people (Faber, Bell, Paget, and Riesz) followed
Kempelen and Wheatstone’s speech-production models,
Helmholz, Miller, Koenig, and others pursued a different
design principle. They synthesized vowel sounds by su-
perimposing harmonically related sinusoids with appro-
priately adjusted amplitudes. These two fundamentally
different approaches, source-tract modeling (motivated
by physics) and sinusoidal modeling (motivated by
mathematics), have dominated the speech signal-
processing field for more than 100 years.

Research interest in speech processing today has gone
well beyond the simple notion of mimicking the human
vocal apparatus (which still intrigues many researchers).
The scope (both breadth and depth) of speech research
today has become much larger due to advances in mathe-
matical tools (algorithms), computers, and the almost
limitless potential applications of speech processing in
modern communication systems and networking. Con-
versely, speech research has been viewed as an important
driving force behind many of the advances in computing
and software engineering, including digital signal proces-
sors {DSPs). Such a synergetic relationship will continue
for years to come.

Source-Tract and Source-Filter Modeling

Source-tract modeling by electrical circuits, realized in
the form of a source-filter system, was first proposed by
Homer Dudley at Bell Laboratories in the 1930s [3]. As
an electrical engineer, Dudley exploited his insights in
modulated-carrier radio transmission to construct an elec-
trical speech synthesizer that dispensed with all the me-
chanical devices of von Kempelen’s synthesizer. A highly
simplified, but accurate, schematic of Dudley’s synthe-
sizer is shown in Fig. 1. The electrical excitation source
had two components—a “buzz” source (for voiced
speech) and a “hiss” source (for unveiced speech). The
buzz source was a relaxation oscillator that generated a se-
quence of pulses with a controllable repetition rate (the
fundamental frequency) and provided the voiced carrier.
The hiss source was the shot noise gencrated by a vacuum
tube, and it provided the unvoiced carrier. The message
(i.e., the time-varying characteristics of the vocal tract)
was modulated on the source carrier by passing the out-
put of the source through a filter whose frequency re-
sponse was adjustable. This variable filter was realized by
a bank (10 channels) of bandpass filters covering the
range of speech frequencies. Any desired vocal-tract
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A ]. Schematic diagram of the VODER synthesizer (after Dudley,
Riesz, Watkins and Flanagan [2]).

frequency-response characteristic was achieved by adjust-
ing the amplitudes of the outputs of the bandpass filters.

With the collaboration of Riesz and Watkins, Dudley
implemented two highly acclaimed devices, the VODER
(VOice DEmonstration Recorder) and the VOCODER,
based on this principle. The VODER (a schematic dia-
gram of which is shown in Fig.1) was a system in which
an operator manipulated a keyboard with 14 keys, a wrist
bar, and a foot pedal to generate the control parameters
required to control the sound source and the filter bank.
This system was displayed with great success at the New
York World’s Fair in 1939. According to Dudley, it took
a few weeks of training to be able to operate a VODER
and produce intelligible speech on demand.

The VOCODER [4] derived its control parameters
from a speech signal recorded using an attached micro-
phone. From the speech signal the machine automatically
determined the fundamental frequency (for voiced
speech) as well as the gains for the bandpass filters; A
value of zero for the fundamental frequency indicated
that the hiss source was to be used. These control parame-
ters, when used in the manner described above, produced
a signal that was perceived to be similar to the input
speech signal. It is worth noting that the waveform of the
reconstructed signal generally was quite different from
the waveform of the input signal. However, the time-
variation of the distribution of speech energy with fre-
quency was similar enough to fool the ear into judging
the two signals to be similar in sound.

Dudley’s demonstration that a speech signal could be
represented in terms of a set of slowly varying parameters
that could later be used as control parameters to re-
synthesize an approximately matching speech signal
opened up the possibility of compressing the bandwidth
of a speech signal. In modern digital telephony; this prin-
ciple led to a series of methods for efficient digitization of
speech for transmission (see the Speech Coding section).

From Tract Modeling to Spectral Estimation
Dudley used a bank offilters to control the sound spectrum
in the VODER system. In order to produce the intended
sound, the gain or attenuation of the filters at various fre-
quencies had to be commensurate with the power of the:
mput speech sound at those frequencies. Thus, the func-
tion of the filter bank was to model (nonparametrically)
the vocal-tract response and, therefore, the need to meas-
ure proper attenuation values required sophisticated tech-
niques for, in modern terms, spectral estimation [5].. The
VOCODER, as proposed by Dudley, aimed at the very
same purpose; namely, efficient estimation of the time-
varying spectrum of the input speech signal.

Spectral estimation using a filter bank (i.e., in essence
the reverse of the VODER system) is depicted in Fig: 2.
Each filter in the bank attempts to estimate the speech sig-
nal energy at and around the center frequency of the filter.
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A 2. A block diagram for spectral estimation with filterbank.
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The nonlinearity that follows the filter measures the en-
ergy of the filtered signal. The result across the filter bank
is an estimate of the spectral profile, or frequency re-
sponse, that can be used to characterize the signal ata par-
ticular time:

The extraction of spectral control parameters: from a
speech signal has many other applications besides speech
synthesis and bandwidth compression. Dudley himself re-
alized that the pattern of variation of these parameters with
time is characteristic of the utterance. This idea was ex-
plored by Dudley, and by many other researchers, for
automatic recognition of speech by machine. The parame-
ters could also be used to recognize the identity of aspeaker
from his or her voice. Finally the realization of the funda-
mental importance of these parameters led to the construc-
tion of the sound spectrograph [6] for displaying the
time-varying spectra of speech (see Fig. 3). This in turn led
to attempts at using the principles of the sound spectro-
graph (the sonogram) as a means for communication with
the deaf, by teaching them how to recognize spoken words
from displays of their time-varying spectra [7].
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ent, they made an identical assumption; namely, that the
speech signal at time ¢ could be approximately predicted
by a linear combination of its past values. In a discrete
time implementation of the method, this concept is ex-
pressed as

where p is called the order of the analysis. The task is to
find the coefficients {aj} that minimize some measure of
the difference betweens; and §, over a short-time analysis

window. To retain the time-varying characteristics of the
speech signal, the analysis procedure updates the coeffi-
cient estimation process progressively over time. This
process. is generally referred to as short-time spectral
analysis.

The linear prediction analysis method has several inter-
esting interpretations. In the frequency domain, the com-
puted coefficients {#;} define an all-pole spectrum
o/A(#*)where A( z) = 1 2 a2 ' withz = ¢° Sucha
spectrum is essentially a shott-term estimate of the spec-
tral envelope of the speech signal, at a given time, as
shown in Fig. 4. The “envelope” models the frequency re-
sponse of the vocal tract while the fine structure in the
Fourier spectrum is a manifestation of the source excita-
tion or driving function: This spectral envelope estimate
can be used for many purposes; €.g., as the spectral mag-

A 3. Broadband sound spectrogram of the utterance “That you
may see synthesizer (after Dudley, Riesz; Watkins and Flana-
gan2]).

Linear Prediction

Representation of the vocal-tract frequency response, in-
dependent of the source parameters (e.g., voicing and
fundamental frequency), captured researchers’ interest in
the 1960s. One approach to this problem was to analyze
the speech signal using a transmission line analog of the
wave-propagation equation. This method allows use of a
time-varying source signal as excitation to the “lincar”
system of the vocal tract.

To make analysis of the vocal-tract response tractable,
one often assumes that the vocal tract 1s an acoustic sys-
tem consisting of a concatenation of uniform cylindrical
sections of different areas with planar waves propagating
through the system. Each section can be modeled with an

equivalent circuit with wave reflections occurring at the
junctions between sections. Such a model allows analysis
of the system from its input-output characteristics 4, 8].
In the late 1960s, Atal [9] and Itakura [10] independ-
ently developed a spectral analysis method, now known
as linear prediction. While the motivations were differ-
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The nonlinearity that follows the filter measures the en-
ergy of the filtered signal. The result across the filter bank
is an estimate of the spectral profile, or frequency re-
sponse; that can be used to characterize the signal at a par-
ticular time,

The extraction of spectral control parameters from a
speech signal has many other applications besides speech
synthesis and bandwidth compression. Dudley himself re-
alized that the pattern of variation of these parameters with
time is characteristic of the utterance. This idea was ex-
plored by Dudley, and by many other researchers, for
automatic recognition of speech by machine. The parame-
ters could also be used to recognize the identity of a speaker
from his or her voice. Finally the realization of the funda-
mental importance of these parameters led to the construc-
tion of the sound spectrograph [6] for displaying the
time-varying spectra of speech (see Fig. 3). This in turn led
to attempts ‘at using the principles of the sound Spectro-
graph (the sonogram) as a means for communication with
the deaf, by teaching them how to recognize spoken words
from displays of their time-varying spectra [7].
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Linear Prediction

Representation of the vocal-tract frequency response, in-
dependent of the source parameters (e.g., voicing and
fundamental frequency), captured researchers’ interest in
the 1960s. One approach to this problem was to analyze
the speech signal using a transmission line analog of the
wave-propagation equation. This method allows use of a
time-varying source signal as excitation to the “linear”
system of the vocal tract.

To make analysis of the vocal-tract response tractable,
one often assumes that the vocal tract is an acoustic sys-
tem consisting of a concatenation of uniform cylindrical
sections of different arcas with planar waves propagating
through the system. Each section can be modeled with an
equivalent circuit with wave reflections occurring at the
junctions between sections. Such a model allows analysis
of the system from its input-output characteristics {4, 8].

Tni the late 1960s, Atal [9] and Ttakura [10] independ-
ently developed a spectral analysis method; now known
as linear prediction. While the motivations were differ-
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ent, they made an identical assumption; namely, that the
speech signal at time ¢ could be approximately predicted
by a linear combination of its past values. In a discrete
time implementation of the method, this concept is ex-
pressed as

?
= 2 @S,

7=l

where p is called the order of the analysis. The task is to
find the coefficients {a;} that minimize some measure of
the difference between s; and §; over a short-time analysis

window. To retain the time-varying characteristics of the
speech signal, the analysis procedure updates the coefti-
cient estimation process progressively over time. This
process is generally referred to as short-time spectral
analysis.

The linear prediction analysis method has several inter-
esting interpretations. In the frequency domain, the com-
puted coefficients {2} define an all-pole spectrum
O/A(d“’)wherc Alz)=1- Z a2 withz = ¢ Sucha
spectrum is essentially a shott-term estimate of the spec-
tral envelope of the speech signal, at a given time, as
shown in Fig. 4. The “envelope” models the frequency re-
sponse of the vocal tract while the fine structure in the
Fourier spectrum is a manifestation of the source excita-
tion or driving function. This spectral envelope estimate
can be used for many purposes; €.g., as the spectral mag-
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analog networks were serial or parallel combinations of
second-order resonators. A series of impulse-like wave-
forms, or white noise, was applied to the resonators in or-
der to generate vowels or fricative sounds.

In the 1960s, the discrete domain realizations of for-
mant synthesizers were proposed [8, 34]. The resonators
 for the formant synthesizer were arranged in either a cas-
cade or parallel manner [8,35,36]. Flanagan concluded
that the serial form was a better model for non-nasal
voiced sounds, while the parallel structure was superior
for nasal and unvoiced sounds. The reason was that the
vocal tract is considered as an all-pole filter for non-nasal
~ voiced sounds and as a pole-zero system for other phona-
tions. Thus, it is quite simple to use the cascade structure to
simulate an all-pole system and the parallel form to imple-
~ment a pole-zero system. Klatt’s system combined the cas-
cade and the parallel structures. Anti-resonances were
added to the cascade branch to enhance the ability of the
cascade configuration to model nasal and unvoiced
sounds. When the synthesis

mentation, they allow one to trade off accuracy, the
number of multiplications and additions, and complexity

 [40]. These are important considerations in the realiza-
tion of synthesis technology. ‘

Related Topics ,

In the early and mid 1980s, Hanson et al, [41] as well as
McAulay and Quatieri [42] developed a sinusoidal model
for specch analysis/synthesis. This method has found use for
speech transformations, such as time-scale and pitch-scale
modifications. Molines and Charpentier [43] suggested the
pitch-synchronous overlap-add (PSOLA) approach for
text-to-speech applications. This approach can modify the
prosody of the speech and is able to concatenate speech
waveforms. The speech is modified in either the time do-
main or the frequency domain. Other applications of speech
synthesis include reading e-mail, fax, and webpages, and as a
proofing tool for previewing text in word processors.

variables are properly specified [
and the correct configuration is
used, this synthesizer is capable
of synthesizing high-quality, in-
telligible speech [37].

Linear Prediction (LP) synthesis
The linear predictive synthe-
sizer is a mathematical all-pole
realization of the linear source-
tract model [9]. The linear pre-
diction all-pole filter is an IR
(infinite impulse response) fil-
ter, and a wide range of struc-
tures were proposed for digiral
_ implementation of lincar pre-
diction synthesizers [38, 39].
Aside from the usual digital
filter implementations (direct
form, parallel form, cascade

form, etc.), structures devel- (b)
oped for linear prediction syn- .
thesis include: 1) a 2-multiplier

lattice; 2) a 4-multiplier ladder Section m
(having the form of the 1

Kelly—Lochbaum modet [21]);
3) a I-multiplier form; and 4) a
4-multiplier normalized form
[40]. These implementations
are shown in Fig. 5. These
structures were developed for
two major reasons: (a) they al-
low the synthesis filter to be im-
plemented directly from the
reflection coefficients, and (b)
in an actual computer imple-
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Speech Coding

Homer Dudley’s pioneering work [3] was motivated by
the need to increase the communication capacity
(number of channels) in a telephone network (which was
analog then). The term “bandwidth compression” was
generally used to refer to such a task. Today, most if not
all of the telephone network is digital and, hence, speech
bandwidth compression translates into speech coding,
which aims at representing the speech signal in binary
digits (bits) with highest efficiency (i.e., highest quality of
the reconstructed signal with least number of bits).

Digital encoding of speech begins with an analog-to-
digital conversion device that samples the analog speech
waveform at an appropriate rate (usually 8,000 samples
per second for telephone bandwidth speech) and then
represents the amplitude of each sample digitally. In com-
munication systems, this is ‘the so-called pulse-coded
modulation (PCM). Typically, each waveform sample is
represented by 12-16 bits, resulting in a rate of 96-128
thousand bits per second (kbps or kb/s). Research in
speech coding attempts to find methods to increase the
efficiency in transmission and storage while maintaining
the speech quality.

Aside from efficient transmission, speech coding; is
also essential for achieving secure communications. This
is the main reason that speech compression and coding
rescarch benefited from strong government support in
the past five decades. The “A History of Secure Voice
Coding” sidebar presented with this article provides a
brief, chronological perspective of this work:

In general, speech-codér attributes can’be described'in
terms of four classes: bit rate, complexity, delwy, and quality.
The it rate is the communication channel bandwidth at
which the coder operates. Digital network: telephony
generally operates at 64 kb/s, cellular systems operate
from 6.7 to 13 kb/s, and secure telephony at 2.4 and 4.8
kb/s. Systems can also be designed to take advantage of
the natural silences that take place during speech. CDMA
digital cellular telephony employs variable-rate speech
coders that operate at maximum rate during a talk-spurt
and minimal rate during silence.

Complexity refers to the computational complexity of
the speech coder. For most applications, speech coders
are implemented on either special-purpose devices (such
as DSP chips) or on general-purpose computers (such as
a PCfor Internet telephony). In either case, the important
quantities are the number of (million) instructions  per
second that are needed to operate in real-time and the
amount of memory used. The greater the memory usage
and the greater the number of instructions per second, the
more expensive and power consuming the implementa-
tion platform. This has important consequences for most
applications:

Delay refers to the communications delay caused by
the coder. One component of the delay is due to the algo-
rithm and the other to the computation time: Individual
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sample coders have the lowest delay, while coders that
work on a block or frame of samples have greater delay.
Too much delay can have serious repercussions on a con-
versation. Excessive delay creates critical challenges on
the network echo canceler and also forces speakers into an
inconvenient “push-to-talk”™ mode, making conversation
ineffective, The practical limit of round-trip delay for te-
lephony is about 300 ms. With the advent of packet te-
lephony, other sources of delay may be present, affecting
the design of the speech codet:.

Ouality refers to a large number of attributes. As bit
rates are lowered, speech coders become more speech
specific and give less-faithful renditions of other sounds.
While music can be transmitted through 64 kb/s PCM, it
may be unrecognizable over some 2.4 kb/s coders. Back-
ground noises such as babble; traffic noise; or noise in-
side a car, office; shopping mall; etc.; can all affect the
perceived quality of a speech coder. For many applica-
tions, speech coders are tandemed. For example, access-
ing a voicemail system from a cellular phone may involve
two different encodings. Quality and even intelligibility
may suffer: '

In selecting a speech coder for a given application, the
designer can make tradeoffs among these four classes of
attributes.

Today, speech coding finds a diverse range of applica-
tions such as cellular telephony, voice mail; multimedia
messaging, digital answering machines, packet teleph-
ony, audio-visual teleconferencing, and of course many.
other applications in the Internet arena.

From Quantization to Model-Based Coding
Digital representation of a signal requires quantization of
the amplitude; i.c., an analog sample of infinite precision
needs to be converted to a discrete number that can be
represented by a fixed number of bits. This is the first step
in speech coding. Early research focused on the design of
a quantization table (the set of values used to represent
speech) that minimizes the average quantization noise
(discrepancy between the original value and the repre-
sented one) [44-47]. Signal companding (compression
and expansion) [48] such as u-law or A-law is often used
to transform the signal statistics (on a sample by sample
basis) for improved coding efficiency [44]. In digital te-
lephony, p=law and 4 -law PCM [44, 48] are the schemes
that were adopted for transmitting speech at 64 kbps (or
56 kbps):

Minimization of quantization noise requires: critical
knowledge of the signal statistics. Since speech characteris-
tics vary with time, improvements (further reduction ‘of
quantization noise) can be achieved by adaptive quantizers
{49, 50]; which adjust the quantization table according to .
the time-varying signal properties. Adaptation can be im-
plemented in either a forward or backward manner (or in
more sophisticated systems; a combinationof both) [44].
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The speech signal (due to its generation in an articula-
tory process) typically has a low-pass characteristic with
roughly a 6 dB/octave roll-off. This property is the basis
of a differential quantization scheme that encodes the dif-
ference between successive samples rather than the origi-
nal sample value. The differentiator essentially equalizes
the long-term speech spectrum (makes it flat across fre-
quency) and reduces the signal variance for easier quanti-
zation: The method is generally referred to as differential
PCM (DPCM) [49, 51] coding. When the coefficient of
the differentiator and the quantization table are made
adaptive to the local signal characteristics, it is called
adaptive DPCM (ADPCM) [52, 53].
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A differential coding scheme can be further elabo-
rated; rather than coding the difference between suc-
cessive samples, it can code the output of a
higher-order filter involving a fixed number of past
sample values. The scheme then becomes that of adap-
tive predictive coding (APC) [54], which shares a simi-
lar interpretation to linear predictive coding (LPC) [9]
in terms of vocal-tract response modeling. That is, the
predictor filter tracks the time-varying characteristics
of the vocal tract. The effect of prediction in coding is
reduction of signal variance (the prediction error signal
or residual has a smaller variance than that of the origi-
nal signal) and whitening of the signal spectrum (the
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error signal is essentially uncorrelated since most of
the signal redundancy is represented by the predictor
coefficients).

In the 1970s, researchers started to explore the possi-
bility of incorporating our perceptual knowledge of audi-
tory masking in coding schemes, in addition to
attempting. to-invent new . coding structures.  Atal ‘and
Schroeder [55] proposed the concept of error signal
shaping with the implication that the coding error can be
made imperceptible. (masked by the coded signal) if its
spectrum is properly shaped and stays below the audible
threshold in the presence of the co-existing signal. This
concept led to the use of perceptual weighting in the etror
criterion used by most of the analysis-by-synthesis coding

32 IEEE SIGNAL PROCESSING MAGAZINE

MOTOROLA

structures [56]. The same concept has also been used in
bit-allocation schemes [57].

Figure 6 is a block diagram of a generic analysis-by-
synthesis coding structure. The speech 1s first analyzed to
obtain the LPC'synthesis filter for a frame of speech. A
perceptual weighting filter is derived from the LPC filter.
The speech is passed through the perceptual weighting
filter to form the target signal. The possible excitation se-
quences are passed through the combination of the LPC
filter and perceptual weighting filter. The excitation sig-
nal that minimizes the mean square error (MSE) between
the weighted output signal and the target signal is se-
lected. The pitch properties of the speech signal can be ex-
ploited prior to sclecting the excitation.
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Analysis-by-synthesis
coders “are -essentially
waveform-approximating
coders because they produce
an output waveform that fol-
lows  closely the original
waveform. (The minimiza-
tion of the MSE in the per-
ceptual space via perceptual
weighting causes a slight | -
modification = to " the
waveform-approximation
principle.) This avoids the
old vocoder problem of clas-
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sifying a speech segment as
voiced or unvoiced. Such de-
cisions can-never  be made
flawlessly and many speech segments have both voiced
and unvoiced properties.

Today’s vocoders also have found ways to avoid mak-
ing the voiced/unvoiced decision. The multiband excita-
tion (MBE) [58] and sinusoidal transform coders (STC)
[42], also known as harmonic coders, divide the spec-
trum into a set of harmonic bands. Individual bands can
be declared voiced or unvoiced. This allows the coder to
produce a mixed signal: partially voiced and partially un-
voiced. Mixed-excitation LPC (MELP) [59] and wave-
form interpolation (WI) [60] produce excitation signals
that are a combination of periodic and noise-like compo-
nents. These modern vocoders produce excellent-quality
speech compared to their predecessors, the channel vo-
coder [61] and the LPCvocoder {62]. However, theyare
still less robust than higher-bit-rate waveform coders.
They are more affected by background noise and cannot
code music well.

Vector Quantization

Advances in coding theory suggest that optimal coding
efficiency can be attained asymptotically as the number
of signal samples encoded simultaneously is increased
[63]. This motivated speech-coding researchers in the
late 1970s and 1980s to explore the use of the methods
of vector quantization (as opposed to scalat, or single
sample) schemes.

Vector quantization aims at encoding an entire vector
of samples or coefficients simultaneously. The technique
was applied to spectral-parameter [64, 65] as well as to
waveform quantization [66]. Today, vector quantization
1s-used in most speech coders.

Research in vector quantization focused on methods
for generating the codebook [67], the type of distortion
measures [64], and efficient structures to achieve high-
rate; low-distortion VQ [68]. Vector quantization was
also essential in achieving extremely low-bit-rate (less
than 1000 bps) vocoders [65].
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A 6. A block diagram of a general-analysis:by-synthesis coding structure.

Speech-Coding Standards

For speech coding to be useful in telecommunication ap-
plications, it has to be standardized (i.e., it must conform
to the same algorithm and bit format) to ensure universal
interoperability. Speech-coding standards are established
by various standards organizations: for example, the Inter-
national Telecommunications Union (ITU); the Telecom-
munications Industry Association (TIA), the Research
and Development Center for Radio Systems (RCR) in Ja-
pan, the International Maritime Satellite Corporation (In-
marsat), the European Telecommunications - Standards
Institute (ETSI), and other government agencies.

The ITU (formerly CCITT) defined the “first”
speech-coding algorithm for digital telephony in 1972. It
is the 64 kb/s companded PCM coder. In North America
and Japan, u-law PCM is used. In the rest of the world,
A-law PCM is used. These coders use 8 bits to represent
cach sample of the speech signal with a sampling rate of 8
kHz (i-e:; maximum signal frequency of 4 kHz). The
standard is referred toras G711 [69]-

In 1984, Recommendation-G.721 [70], which is
based on ADPCM coding operating at 32 kb/s, was stan-
dardized for digital circuit multiplication equipment. As-
sociated with G.721 were 1) G.723 [69], which extends
G.721 to two additional bit rates, 24 and 40 kb/s; 2)
G.726 [69], which unifies and replaces G.721 and G.723
and extends it to 16 kb/s; 3) G.727 [69], which has an
even number of levels for all associated coders.

The' low-delay, code-excited-linear-prediction (LD-
CELP) coder was standardized in 1992 and 1994 for 16
kb/s applications. It is designated as Recommendation
G.728 [71]. Furthermore, G.729 (8 kb/s) and G.723.1
(5.3 and 6.3 kb/s) were subsequently standardized in
1995. Both coders are based on the analysis-by-synthesis
striicture. For wideband (7 kHz bandwidth) speech, Rec-
ommendation G.722 [72] was established in 1988 for bit
rates of 48, 56 and 64-kb/s.

For digital cellular applications, the European Groupe
Special Mobile (GSM) of CEPT defined a 13kb/s coder in
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1987 based on the regular-pulse-excitation with long-
term-predictor (RPE-LTP) coding algorithm [73]. An-
other coder defined by ETSI in 1994 was the 5.6 kb/s
vector-sum-excited-linear-prediction” (VSELP) coder
[74], known as GSM Half-Rate. In North America;
VSELP was also adopted in 1989 as the TIA 1S54 [54]
coder at 8 kb/s (7.95 kb/s) for digital cellular telephony.
In 1993, 15896 [75], the CELP-based coder, was recom-
mended for CDMA cellular systems operating at bit rates
8.0,4,2,and 0.8 kb/s. Most recently, 1S-641 was recom-
mended as an improved coder at 8 kb/s for TDMA cellu-
lar systems and 1S-127 (or EVRC; enhanced variable
bit-rate coder) for CDMA applications.

Finally, the U.S.: Department of Defense (DoD) an-
nounced FS1015 [76] based on linear prediction as the
standard coder at 2.4 kb/s for secure voice applications in
1984. In 1991, the DoD further adopted a CELP based
coder at 4.8 kb/s as the FS§1016 standard [77]. A new 2.4
kb/s coder based on MELP was announcedin 1996 at IC-
ASSP in a session dedicated to Tom Tremain [59].

New Challenges

Most of the low-bit speech coders designed in the past im-
plicitly assume that the signal is generated by a speaker
without much interference. These coders often demon-
strate degradation in quality when used in an environ-
ment in which there 1s a competing speech or background
noise. A recent research challenge is to make coders per-
form robustly under a wide range of conditions, includ-
ing noisy automobile environments.

Another challenge is the coder’s resistance to transmis-
sion errors, which are particularly critical ‘in’ cellular -and
packet communication applications, Methods that combine
source and channel coding schemes or conceal errors are im-
portant in enhancing the usefulness of the coding system.

As packet networking is becoming more and more
prevalent, a new breed of speech coders is emerging.
These coders need to take into account and negotiate for
the available network resources (unlike the existing digi-
tal telephony hierarchy in which a constant bit rate per
channel is guaranteed) in order to determine the right
coder to use. They also have to be able to deal with packet
losses (severe-at times). For this reason, the idea of em=
beddedand scaleable (in terms of bit rates).codersis being
investigated, with much interest [78].

Speech Enhancement

The idea that vocoder principles could be used to improve
the quality of a speech signal corrupted by additive noise
was first introduced by M.R.'Schroeder in 1960 [79].
The basic idea was to generate a signal with a fine struc-
ture as close as possible to that of the original speech sig-
nal; but. with -an  envelope -that attenuates the signal
between formant peaks. This idea, with several modifica-
tions, was first simulated by Sievers and Sondhi [80] in
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1964. Although the idea was shown to be feasible, the
quality attained was not very good.

Since those early days, variants of this idea have been
proposed and implemented by several authors, notably
Weiss, Aschkenasy, and Parsons [81]; Boll [82],
McAulay and Malpass [83]; Ephraim and Malah [84];
and Lim and Oppenheim [85]. The common features of
all these implementations are to split the noisy speech sig-
nal into frequency regions by passing it through a filter
bank and attenuating the output of each channel by a fac-
tor depending ‘on the estimated signal-to-noise ratio in
that channel. The main differences between these various
proposals are the methods used to estimate the level of
noise and of speech in various frequency bands.

A method proposed by Ephraim, Malah, and Juang
[86] might formally be classified as belonging to this cate-
gory. However, it differs from the rest in that it bases its
selective attenuation of the various frequencies on hidden
Markov models (HMM:s) of the noise and the speech.

Enhancement of speech signals in noise has been quite
useful in telephony applications. Some recent implemen-
tations of Etter [87] and Diethorn [88] are some of the
best examples-of this application.

Speech Recognition

Speech recognition by machine in a limited and strict sense
can be considered as ‘a problem of converting a speech
waveform into words. It requires analysis of the speech sig-
nal; conversion of the signal into elementary units. of
speech such as phonemes or words, and interpretation of
the converted sequence in order to-allow correction of the
misrecognized words/units or-for other linguistic process-
mg such as parsing and speech undérstanding,

A Brief History of the Research (after [89])

Research in automatic speech recognition by machine has
been done for almost four decades. The earliest attempts
to devise systems for automatic speech recognition by
machincwere made in'the 1950s; when various research-
ers tried to exploit the fundamental ideas of acoustic-
phonetics: In 1952, at Bell Laboratories; Davis, Bid-
dulph; and Balashelk-built a system for isolated digit rec-
ognition for a single speaker [90]. The system relied
heavily on measuring  spectral resonances during the
vowel region of each digit. In an independent effort at
RCA Laboratories in 1956, Olson and Belar tried to rec-
ognize 10 distinct syllables of a single speaker, as embod-
1ed 1n 10 monosyllabic words [91]. The system again
relied on spectral measurements (as provided by an ana-
log filter bank) primarily during vowel regions. In 1959,
at University College in England, Fry and Denes tried to
build a phoneme recognizer to recognize four vowels and
nine consonants [92]. They used a spectrum analyzer and
a pattern matcher to make the recognition decision. A
novel aspect of this research was the use of statistical in-

MAY 1998



formation about aﬂowable sequcnces of phonemes m‘ ;

English (a rudimentary form of language syntax) to im-

- prove overall phoneme accuracy for words. con51st1ng of

- two or more phonemes. Another effort of note in this pe-

- riod was the vowel recognizer of Forg1e and Forgu: con-
structed at MIT Lincoln Laboratories in 1959, in Wthhm

10 vowels embedded in a /b/-vowel-/t/ format were rec-

_ ognized in a speaker-independent manner [93]. Againa

- filter-bank analyzer was used to provide spectral informa-

_tion, and a time-varying estimate of the vocal-tract reso-

.~ nances was made to decide which vowel was spoken.

In the 1960s several fandamental ideas in speech recog? ‘

- nition surfaced and were pubhshcd However, the decade :
_any given point was hmlted to the synonyms of the possi-

started with scveral Japanese laboratones entering the rec-

- ognition arena and building specml—purpose hardware as

 part of their systems. One early Japanese system, described

by Suzuki and Nakata of the Radio Research Lab in Tokyo
- [94], was a hardware vowel recognizer. An elaborate

-~ filter-bank spectrum analyzer was used along with logic

-~ that connected the outputs of each channel of the spectrum S

' analyzcr (in a weighted manner) to a vowel-decision cir-
 cuit, and a2 majority-decision logic scheme was used to

-~ choose the spoken vowel. Another hardware effort in Ja-
~ pan was the work of Sakai and Doshita of Kyoto Univer-

sity in 1962, who built a hardware phoncme recognizer
= [95] A hardware speech segmenter was used along with a

 zero-crossing analysis of different regions of the spoken in-
' putto provide the recognition output. A third Japanese ef-

 fort was the digit recognizer hardware of Nagata and

- coworkers at NEC Laboratories in 1963 {96]. This effort
- was pcrhaps most notable as the initial attempt at speech
. rccognmon at NEC and led toa long and hlghly produc— ;

. tive research program.

 Inthe1960s three key research pro;ects were mmatcd ~
that have had major -implications on the research andde- .
 velopment of speech recognition for the past 20 years.
_ The first of these projects was the efforts of Martinand
. his colleagues at RCA Laborarories, beginning in the

-~ late 1960s, to develop realistic solutions to the problcms

- associated with nonumforxmty of time scales in speech
events. Martin developed a set of elementary time-

- normalization methods, based on the ability to reliably
~ detect speech starts and ends, thdt mgmﬁcantly reduced

 the variability of the recognition scores [97]. Martin ul-

o timately devclopcd the method and founded one of the .

_first companies, Threshold chhnology, which built,

- marketed, and sold speech-recognition products. At
~ about the same time, in the Soviet Union, Vintsyuk pro-
} posed. the use of dynam1c programming methods for

time aligning a pair of speech utterances [98]. Altheugh
the essence of the concepts of dynamic time warping, as

~well as rudimentary versions of the algorithms for ,
- connected-word tecognition, were embodied in Vint-  plish a task such a
~ syul’s work, it was largely unknown in the Westand did =
. not come to light until the early 1980s; this was. long af
- ter the more formal methods were proposed and 1mple-

“"‘mented by others.
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wvariations of differer ;
: across a Wlde user populauon Thm research has been re-

A fmal achlevemcnt of note in \ the 19603 was the pio-
nccrmg rescarch of Reddy in the field of continuous
speech recognition by dynamic tracking of phonemes
[99]. Reddy’s research eventually spawned a long and

 highly successful speech-recognition research program at
Carnegie Mellon University (CMU) (to which Reddy

moved in the late 1960s). One of the first demonstrations
of spoken-language understanding at CMU was in1973.

‘The Hearsay I System, developed at CMU, was able to
e semantic information to significantly reduce the“‘{

number of alternatives considered by the recognizer, In

the Voice Chess task domain used by Hearsay 1, the

number of alternative sentences that could be spokenat

ble moves. There are not yet many systems ‘that effectwely o

demonstrate the role of semantics in reducing the com:
k;;kplemty of search. However, the prmc1ple that syntactic,

semantic, and contextual knowledge sources can be used

to reduce the number of possible alternatives to be con-

sidered in decoding appears to be central to the desxgn of -
spoken—language-understandmg systems. :
~ In the 1970s speech-recognition research achleved a.
number of significant milestones, First, the area of

isolated-word or discrete-utterance recognmon becamea

viable and usable technology based on fundamental stud-

des by Velichko and Zagoruyko in the Soviet Union
- [100], SakocandChlbam]apan[101],andItakuramthe ﬁ
_ United States [102]. The Russian studies helped advance

the use of pattern-recognition ideas in speech recogni-
tion; the Japanese rescarch showed how dynamic pro-
gramming methods could be successfully applied; and
Ttakura’s research showed how the ideas of LPC, which -

' had already been succcssﬁllly used in low-bit-rate speech -

coding, could be extended to speech recogmuon systems

_ through the use of an appropriate dxstancc measure based‘ o

on LPC spectral parameters. :

Another milestone of the 1970s was the begmnmg ofa
longstandmg, hlghly suceessful group effort in large-
vocabulary antomatic speech dictation at IBM 1in which
researchers studied three distinct tasks over a period of al-

~ most two decades (namcly, the New Ralmgh language‘

[103] for simple database queries, the laser patent text

language [104] for transcribing laser patents, and the of-
 fice correspondence task) with a system called Tangora .

[104], for dictation of simple memos. o
Finally, at AT&T Bell Labs (now Bell Labs, Lucent ,

_fTechno]oglcs and AT&T Labs-Research), researchers

began a series of experlments aimed at makmg speech-

_recognition systems that were truly speaker-independent

[106] for telecommunication apphcatlons The intended

‘ apphcanon was telecommunication services, where hu-

mans and machmes cc nduct dlalogues in order to accom-
g a call, or making a reservation

on cars ot flights. To achieve this goal, a wide range of so-

phisticated algonthrhs were developed to deal with all
rent words and different expressions |
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A 7. Dimensions of automatic-speech-recognition applications
and the current capabilities (shaded line).

fined over a decade so that the techniques for creating
speaker-independent speech models are now well under-
stood and widely used.

Just as isolated word recognition was a key focus of
research in the 1970s; the problem of connected-word
recognition was a focus of research in the 1980s. Here
the goal was to create a robust system capable of recog-
nizing a fluently spoken string of words (e.g., digits)
based on matching a concatenated pattern of individual
words. A wide variety of connected-word-recognition
algorithms were formulated and implemented, includ-
ing the two-level dynamic programming approach of
Sakoe at Nippon Electric Corporation (NEC) [107],
the one-pass method of Bridle and Brown  at Joint
Speech Research Unit (JSRU) in England [108], the
level-building approach of Myers and Rabiner at Bell
Labs [109], and the frame-synchronous level-building
approach of Lee and Rabiner at Bell Labs [110]. Each of
these “optimal” matching procedures had its own imple-
mentational advantages, which- were exploited for a
wide range of tasks.

Speech research in the 1980s was characterized by a
shift in technology from template-based approaches to
statistical modeling methods—especially the HMM ap-
proach [111, 112} (discussed later).

The success of hidden Markov modeling gave rise to a
major impetus in the 1980s to large-vocabulary,
continuous-speech-recognition systems by the Defense
Advanced Research Projects Agency (DARPA) commu-
nity. (For ARPA efforts in speech understanding in the
1970s, see [113].) Major research contributions resulted
from efforts at CMU (notably the well-known SPHINX
system) [114], BBN with the BYBLOS system [115],
Lincoln Labs [116], SRI [117], MIT [118], and AT&T
Bell Labs [119]. The DARPA program has continued
into the 1990s, with emphasis shifting from air-travel in-
formation retrieval to a range of different speech-
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understanding applications areas, in conjunction with a
new focus on transcription of broadcast news. At the
same time, speech-recognition technology has been in-
creasingly used within traditional telecom networks to
automate: as: well as enhance operator services [120].
Figure 7 shows a plot-of various applications of
speech-recognition technologies along the dimensions
of vocabulary size and speaking style. The level of diffi-
culty increases roughly along the diagonal line away
from the lower-left corner; and the shaded bar repre-
sents a threshold of applications that can be supported
by the current technology. Many challenges are still
ahead of us.

From Speech Analysis to Statistical Modeling
Until the 1970s:and 1980s, automatic speech recogni-
tion was mostly considered to be a speech-analysis
problem. The fundamental belief was that if a proper
analysis method were available that could reliably pro-
duce the identity of a speech sound, recognition of
speech would be readily attainable. Such a determinis-
tic view of the speech-recognition problem was advo-
cated by researchers in acoustic-phonetics by citing
such examples as “A stitch in dime saves nine” (in con-
trast to “A stitch in time saves nine”), which they be-
lieve ‘can only be recognized correctly by deriving
acoustic-phonetic features. This view may be appropri-
ate in a microscopic sense but does not address the mac-
roscopic question of how a recognizer should be
designed such that, on average (in dealing with all the
input sounds), it achieves the least errors or error rate.
Similarly, template-matching in most practical systems
without a proper statistical foundation does not pro-
vide a rigorous answer to this question, which is best
addressed by Bayes’ decision theory. (Template-
matching with asymptotically dense reference patterns
certainly would fall into the category of nonparametric
statistical-pattern-recognition approaches whose opti-
mality can be analyzed in reference to the Bayes deci-
sion theory formulation.)

Bayes Decision Theory

Bayes decision theory deals with random observations
from an information source consisting of M classes of
events where the goal is to identify which class of event
the observation belongs to. Let the joint probability of X
(the observation) and C, (the class identity), P(X, C) be
known to. the designer of the classifier. In other words,
the designer has full knowledge of the random nature of
the source. To measure the performance of the classifier;
for every class pair (7,4), a cost or loss function, ¢, is de-
fined to signify the cost of classifying (or recognizing) an
observation from class 7 as belonging to a class j event.
The loss function is generally nonnegative with ¢, = 0
representing correct classification.
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Given an arbittary observation, X, a cdndmoriél loss
for classifying X as belongmg toa cla«;s I eventcan, be de-

ﬁned as.

;R(c,»lx)éf_{:eﬁlé(C,lx) -

. the expected loss, deﬁned as

£= R(C(X)lX)p(X)dX Ea e
where C (X) represents the classﬁer s d,ecis’,ion,y asstlmihg E
. one of the M *values,” Cp, C, ... Gy

f"‘R(C IX)’ ZP(C |X)

The opnmal clasmﬁer that achieves minimum 2 | 1s thus
. theone that 1mp1ements the following: '

kC(X) c if P(C |X)-maxP(C 1X)

In other words, for m'm’imum error-rate classification, :

- the classifier employs the decision rule of Eq. (4), whichis
called the maximum a posteviovi (MAD) dec131on The
minimum error achieved by the MAP decision is called

- Bayes risk. (It's worth being somewhat mathematical here
~ since formulating the recognizer’s performance in terms

of minimum expected loss is the basis of the paradigm

~shift from deterministic pattern rnatchm 10 stattsncal- S
' b 8 techmque because the more the chosen form of the distri-

pattern TECOgNItion:. )

- The required knowledge for an opttmal dassxﬁcanon
decision is, thus, the @ posterions probabilities for the im- likely it is to be able to achieve Bayes® optimal perform-
~ plementation of the MAP rule. These probabilities, how- 5
el e Koo 1n advaice and g?“@?“Y hatctobe -~ rithm to elliprically symmetric densities. In 1984, Juang

estimated from a training data set with known class labels. -
Bayes decision theory thus effectively transforms the clas- -
sifier design problem into a distribution estimation prob: :

lem. ‘This is the basis of the statistical approach to pattern

recognition:

as

P(CilX)‘fk:P(Xici)P(Cii)/~~P(X);~ Hee
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'WhereP (G X) is the @ posterion probabthty This leads 0 proper, ustally parametric, distribution form for the ob-

4 reasonable performance measure for the clasmﬁer L& ianonshe chosenin orderto implement the MAP de-
- aision. A key issue is what is the right dlstnbutlon form
_ for speech utterances? This question involves two essen-
 tial aspects: i) finding the speech dimensions that carry
 the most pertinent linguistic information, and ii) decid-
inghow to statistically charactenze the mformatxon alongt -

- the chosen dimensions.
~ Hor speech recognition, the loss ﬁmctton €, s usually

- chosen to be the zero-one loss fanction deﬁned by £,=0 posed [15 121, 122] as simple means to chamcteﬂze ,

fori=j and 1 forz#;, by=1, 2 M Whlch assngns no

Then poxtmom probablhty P( C } )Qcan be reertten

Since P(X) is not a functlon of the class index and thus

has no effect in the MAP decision, the needed probablhs-
ric knowledge can be represented by the class prior, P(C,) .

~and the conditional probablhty PX l C ).

Probab:llty Dlstnbutfons for Speech
The statistical method, as discussed above, requlres that a

Based on empirical observanons, the HMM was pro-t -

speech signals, For detailed. discussions of the HMV ref- :

. erences [112] and [122} prowde good 1ns1ghts
‘ gardless of the class. With this type of loss funcncm, the

expected loss £, 1s, thus, the error probabxhty of c1a331fi— -

‘catlon or. recogmuon The cond1t1onal loss beeomes‘__ e Developmgnts af HMM

The statistical method of hldden Markov modelmg for,

speech recognition encompasses several i interesting prob-

 lems, particularly the estimation pmblem[lll 123,124,

1 (C IX) " S ,(3) - quences),X the estimation problem involves ﬁnchng the

“right” model parameter values that specxfy a source

125]. Given an observation | sequence (of a set of se-

model (probability distribution) most likely to produce ,
the given sequence of: observations. Insolving theestima-

 tion problem, we usually use the method of maximum

e

“ 1s maximized for the given “training” sequenee X

likelihood (ML); that is, we choose X such that P (X | 7»)

Several major advances have been made since Baum
[123] proposed the original idea of HMM. Baum’s work

 allows estimation of parameters associated with a discrete

HMM (i.e., a model in which the probablhty distribution

of observauons in each Markov stare is discrete) or a con-

tinuous density HMM in which the observation density

in a state satisfics a log-concavity assumption. This is a se-
rious limitation on this otherwise powerful modeling

bution dev1ates from that of the true dlstnbutlon the less

ance. In 1982, Liporace [124] broadened the class of
HMMs that can be estimated by the re-estimation algo-

[125] (and subsequently Juang, Levinson, and Sondhi
[126]) was successful in eliminating these prior assump-

_tiohs and limitations on the form of the distribution and

showed a method for estimating HMMs with mixture

 densities (which allow arbitrarily close approximation to
the true data dJstr1but10n) _This advance gave HMM a

firm foundation for use as a probablhty distribution of
speech for statistical- recogmnon system designs.

; lexture-densmy HMM has since become the prevalent
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speech-modeling method and is being used in most
speech-recognition systems.

The Search Problem

Hidden Markov models are finite-state automata in na-
ture and form a powerful union when combined with
finite-state networks to represent a language (from pho-
nemes to words to grammars that specify the word se-
quence relationship), particularly for large-vocabulary
continuous-speech-recognition systems [127, 128].
Such networks are often very large, and it becomes im-
portant to find efficient search methods that evaluate the
likelihood that a “path” in such a vast network produces
the observed acoustic signal and then find the best among
all possible paths.

In the early development of speech recognition, dy-
namic programming (DP) techniques [107-109] were
the focus of the efforts (discussed earlier). Along with the
development of the HMM, the fundamental DP tech-
nique is now often called the Viterbi algorithm [89].

To deal with large-vocabulary, continuous-speech-
recognition  problems, the techniques often used are
beam search [129], which prunes unlikely events from
the search list to achieve efficiency, and the stack algo-
rithm [130], which attempts to find the best path first.
New algorithms such as the tree-trellis algorithm [131]
which combines a Viterbi forward search and an A4*
[132] backward search are very efficient in generating
N-best results.

From Bayes to Neyman-Pearson
Bayes’ formulation of the pattern-recognition problem
assumes that each unknown observation belongs to one
of M classes. The maximum a posteriori (MAP) decision
rule -guarantees -optimal performance, i.e.; minimum
Bayes risk or error, if the joint distribution of the observa-
tion and the class, P(X,C;), is known. In many speech-
recognition applications, however, the speech pattern to
be recognized may not belong to any of the registered
classes. This may appear in the form of so-called “out-of-
vocabulary” (OOV) words or as a result of disfluency
such as repair or partially spoken words. Another exam-
ple occurs in a particular telecommunication call-routing
application [120] in which the speaker is allowed to em-
bed “keywords” (“collect,” “person-to-person,” “opera-
tor,” “credit card,” etc.) in naturally spoken sentences
(e.g., “T'd like to make a collect call.?). T such cases the
recognizer needs to be able to distinguish keywords from
nonkeywords as well as to identify which keyword has
been spoken. For this kind of task, namely detection of
target event, a formulation based on hypothesis testing
becomes necessary [133, 134].

Let us denote the target event (e.g., a keyword) by E
and the nontarget event by E. The likelihood ratio test
performed on an unknown observation; X; is defined-as
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P(X|E) (21, then X €E
P(X|E) |<1, then XeE

The likelihood ratio is an important parameter for the
calculation of a confidence measure. The threshold de-
fines an operating point on the ROC (receiver operating
characteristic) cutve for a desired tradeoff between mis-
detection and false-alarm (false-triggering) errors. For
many voice command and control applications, the abil-
ity to avoid false triggering by spurious sounds is criti-
cally important.

The Neyman-Pearson formalism is also the basis of a
new approach to speech understanding focusing on key
words and key phrases that carry the main intention or
meaning that the speaker would like to deliver [135].

Language Modeling

Just as the goal of acoustic modeling is to find the regu-
larities and variability in the realization of words and
phrases, the aim of a language model is to find and repre-
sent the relationship among words in sentences. Tradi-
tionally, word relationships are expressed in terms of a
grammar (e.g.; [136]). Shannon’s information theory
spawned a new perspective in language modeling in
which word sequence relationships are expressed as con-
ditional probabilities. If W is a sequence of words:

W=ww, w,

then

P(W)=P(ww,w,)
= P(w YP(w,|w )P(w,|w,w,)

"'P(WQ ’Wg‘l"‘wl)

The ensemble of the conditional probabilities ‘(often
truncated to length N, P(w,, [ wy, ;... wq 1), the so-called
N-gram) forms a probabilistic model of the language.
Specific values of the conditional probabilities can be esti-
mated fromalarge text data set via methods such as maxi-
mum likelihood training [104]. This corresponds to
modeling a language with a finite-state stochastic gram-
mar that can be effectively used in practice. Although
such a grammar often overgenerates with respect to a
natural language grammar, it has the advantage of com-
plete coverage of natural sentences. If the model is well
trained; then ungrammatical sentences would have lower
probabilities than the grammatical ones.

The statistical language model has been shown to be
effective dn large-vocabulary speech recognition. How-.
ever, its interaction with the acoustic model, i terms of
the overall accuracy for speech-to-text conversion, is still
not well understood. A language model that achieves
lower perplexity (average word-branching factor) for a
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parncular (text) database may not necessarlly 1ead tokk'p

hrgher recogmnon accuracy.

The Robustness Problem

 The statistical approach to speech recogmtlon rehes heav-
ily on the training data that is available for creating the sary in the following scenarios: =~
reference models. The closer the COHected‘trainingdata 1§ '
to the actual signal encountered during operation, the
higher the recognition accuracy is expected to be. The

: kvarlabﬂlty in speech, however, comes from many factors

and is so large (and at times heterogeneous) that only in

~signed on a data set in the laboratory does not performas

- wellin the field. In other words, a mismatch between the

~ modeling (training) and the operating (testing) condi-
tions usually exists and causes degradatlon in the recog- :

- mizer’s performance [137].

~ Besides the mismatch, several adverse condmons are%
- also often present durmg operation, such as ambient and |
transmission noise, distortions due to room acoustics and
transducers, and even changes in speech characteristics
_due to psychological awareness of talking to a machine
[137]. These conditions need to be dealt with in order for
- therecognizer to be able to deliver reliable results. This is
the so-called “robustness” problem in automatrc speechi

recognmon

One method that aChICVCS robust results is to coﬂect an
, extremely large amount of data that reﬂects the actual op-

tation {142, 143}, and stochastic matching [144]. |

~In spite of these developments the robustness problem;u
remains today an active research areain speech recogmnon :

Other Advances

While the paradlgm shift to statxstlcal methods putf
speech recognition research on a mathematically sound
 basis, it also exposed the limitation of our knowledge in -

pursuing the Bayes minimum error. Recall that the opti-

mal performance of a recognition system, in terms of the

error tate, is attainable only when complete, accurate

- knowledge on the joint observation-class distribution is

available to the designer. Practically, the distribution can
only be approximated and, therefore, the distribution es-

- timation approach cannot guarantee any optlmahty To
circumvent this problem, in order to obtain best accuracy

given the choice (form) of the recogmzer structure (or
dlstrrbutron function), the method of minimum classifi-
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- trol apphcauon
~ words spoken) is not nearly as useful as speech under-
_ standing (interpreting those words). Although spoken

cation etror with a generahzed probablhstrc descent algo- .

 rithm [122, 145] was shown to be extremely effective and.

suitable for specch-recognition apphcatrons This process;
is known as discriminative training. =~ :
- Another i important methodologrca] advance is adap e
tive trarmng Adaptatron of system parameters is neces—

A A speaker-dependent system trained on a partrcular

speaker is to be used by another speaker;

AA speaker-mdependent system needs to dehver im-

proved performance for a specific speaker

4 A system needs to adapt to the operatmg envxronment

i - to deliver high, robust, performance;or
ered to be rehably sufficient. What is often observed in

speech-recognmon apphcauons is that a recognizer de-

A A speaker-dependent system needs to track changes in

_ the speaker’s speech charactensncs (e g, as S a result of 5

catching a cold) ,

The maximum 4 posteriori formulanon s been pro~ :
posed asa framework [142, 143] Thrs is alsoan active re-
search area at present , o ,

& Spoken-!.anguage Understandmg

Except for dictation and some sunple command and con-
“speech recognition ( transcrlbmg the

language has been used for centuries by humans to inter-

 actively solve problems, it is only in recent yearstharithas
“begun to be used in human-machine interfaces. It is also
_ onlyin recent years that itis possible to envision technol-

ogy that makes specch as accessible as text as an  informa-

~ tion source. This section outhnes ‘progress in
set, multi- -style tranung [138] was shovvn to be cffective.

When the distortion is mostly linear, cepstral compensa-
tion in the form of cepstral mean subtraction [139] and.
cepstral bias removal [ 140] is simple and works well. More
- recent advarces in robust speech recogmt1on include paral-
- lelmodel combination [141], maximum a posteriori adap-

spoken»language understandmg over the past 50 years,

~ summarizes current applications in database query and

mformatlon extraction, and dlscusses future posmblhues

A Bﬂef Htstary

_ Spoken-language understandmg as undertaken at present .

involves integrating speech recognition (what are the

- words?) and natural language understanding (what do

those words mean?) The past 50 years have witnessed

~ dramatic changes in cach of these compornent technolo-

gies. Some of these changes in speech recognition have al-
ready been reviewed in this article. Dramatic changes

havealso taken place in language understanding. Twoim- -

portant books crystalizing a formal approach to language
appeared in 1951, one more influenced by algebra (Zelhg
Harris’s Methods in Structural Linguistics appeared in
1951) and one more influenced by psychology and the
processing of information by humans (George Miller’s
Longuage and Communication). Taken together, these
works made it possible to imagine the posmblhty ofauto-

- maric speech uoderstandmg as the compurationofan ab-

stract representatron and extraction of mformatlon -
In the late 1950s and early 1960s, one of Harris’s stu-
dents, Noam (,homsky promoted a4 new view - of the
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proper study of linguistics. This view built on the formal
methods developed by Harris but replaced the previous
focus on language analysis with a new focus on language
genevation. This work was influential in advances in speech
synthesis, and it could have served as an important comple-
ment to the earlier analytical work (since, normally, people
both generate and understand langnage). However; the im-
pact was to define linguistics for a large share of language
researchers as the study of how to generate speech from the
“perfect” speaker-hearer. This dramatically limited the use-
fulness of linguistics in language understanding since
analysis (not just generation) is required for understand-
ing, and since understanding of “imperfect” input needs to
be accounted for. A side-effect was the interpretation of
“data”: instead of being what people actually said, data
came to be interpreted as the linguist’s intuitions: about
what the ideal speaker would say. Such methods and goals
that are so different from those of engineers led to some-
what of a cultural gap between “linguistic knowledge” and
“speech knowledge.” Successful speech understanding re-
quires the bridging of this gap.

In the 1960s and 1970s, as socio-linguists and anthro-
pological linguists remained focussed on observing actu-
ally occurring language, computational linguists began
linguistically relevant computations. However, it was
only about 10 years ago that the natural-language-
understanding community began to change the trend
from the use of “typical” examples based on intuitions to
test their systems to the use of data from humans produc-
ing language in a communicative setting.

Efforts over the last 10 years show an increasing im-
pact of the two fields on each other (sce, e.g.,
[146]-[151]). Although the use of linguistic knowledge
and techniques in engineering may have lagged the use of
statistical methods in computational linguistics, there are
signs of growth in this area as engineers tackle the more
abstract linguistic units (with and without collaboration
with natural language experts). These more-abstract units
are more rare, and therefore more difficult to'model by
standard, data-hungry engineering techniques. How-
ever, perhaps the biggest recent development for both
speech and language understanding has been the use of
more realistic data, This focus, partially driven by funding
sources (e.g., DARPA) in search of more near-term ap-
plications, has led to some basic research toward theories
that can accommodate the broadest class of language use:
we will be able to “generalize” more of what we learn
from working on conversational speech to recognizing
isolated digits than we would be able to generalize from
digits to conversational speech.

Present Focus: Database Query and

Information Extraction

Natural-language understanding presently focuses on'ap-
plications of the following two classes: database query
systems and information extraction systems. A natural-
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language-database query system formulatesa query, usu-
ally based on one ora few sentences, into a specification of
information fields and values in the context of the particu-
lar database’s structure. An information-extraction sys-
tem aims at detecting or summarizing information of
interest from a report (e.g., a newswire stoty or broad-
cast) in general domains. A pioneering effort that utilized
formal models of linguistic structure for “database query”
was the work by Levinson and Shipley [152], which pre-
ceded much of the current focus and taxonomy of ap-
proaches.

Evaluation of spoken-language-understanding sys-
tems is required to estimate the state of the art objectively.
However, evaluation itself has been one of the challenges
of spoken-language understanding. The only systematic
program with broad participation for assessing speech
understanding has been the (D)ARPA benchmarks fo-
cussed on the air travel planning domain (see
[153]-[155]). Since it has not yet been possible to agree
on a representation for meaning, these evaluations were
carried out by human assessment of the results of a data-
base query. Trained annotators translated the human
queries into formal database queries with additional an-
notations for ambiguities and context dependencies. For
example, a query, “I want flights from Boston to DC” is
expected to produce a table of flights, listing carriers,
flight numbers, departing times, and arrival times, etc.
Annotation of this type proved to be an expensive propo-
sition; and yet it did not allow for the evaluation of the in-
teractive aspect of the task, since systems were evaluated
only on the results returned from a database. Although
one test set was set aside for fiiture evaluations, these tests
have not been used since 1994.

In the last ‘Air Travel Information Service (ATIS)
evaluation of DARPA (December 1994) [155] the
speech-recognition word error rate in the best system was
under 2% utterance error rates were about 13% to 25%.
The utterance-understanding error rates ranged from 6%
to 41%; although about 25% of the utterances were con-
sidered impossible to evaluate in the testing paradigm
(the trained annotator could not determine what the cor-
rect response should be). Hence, these figures do not con-
sider quite the same set. For limited domains, these error
rates are probably adequate for many potential applica-
tions. Since conversational repairs in human-human dia-
logue can often be in the ranges observed for these
systems, the bounding factor in applications may be not
the error rates so much as the ability of the system to man-
age and recover from errors.

The state of the art in information extraction, based on
the DARPA Message Understanding Conference
(MUC) evaluations, spans a wide range [156]. Informa-
tion extraction addresses the problem of updating struc:
tured databases (relational or object-oriented) from
speech or text. For instance, suppose one needs to update
a database of the officers of a corporation with the posi-
tions that they hold from broadcast news or newswire

MAY 1998



stories that report changes in the company officers. The
goalis not only to scan source speech and text for such an-
notncements, but also to automatically update the data-
base. For the “named entity” application, where the
system has to find all named organizations, locations, per-
sons, dates, times, monetary amounts, and percentages,
 theerror rate from text is 5%. For the “scenario template”
application, where the system has to extract complex (but
prespecified) relationships in well-defined domains (such
as changes in corporate officers) in an open source (such
as the Wall Street Journal);, the error rate for finding the
correct elements of the templates is around 45%.

Researchers are still discussing possibilities for some
type of limited speech understanding that would be less
costly and more relevant in applications. Part-of-speech
tagging has been discussed, but it has not been shown
that good part-of-speech tagging is either necessary or
sufficient for good understanding. Other possibilities in-
clade dividing spoken conversations into linguistic units
more like sentence and phrase boundaries, finding the
main verb (if any) in that unit, and/or indicating words
with extra emphasis.

Future Challenges

Speech-understanding research was nonexistent 50 years
ago. The dramatic changes in speech recognition and in
language understanding during the past 50 years, com-
bined with political changes and changes in the computing
infrastructure, led to the state of the art that we observe to-
day. Challenges remain in several areas (see [157]):

A Integration. There is much evidence that human
speech understanding involves the integration of a great
variety of knowledge sources; including knowledge of the
world or context, knowledge of the speaker and/or topic,
lexical frequency, previous uses of a word or a semanti-
cally related topic; facial expressions (in face-to-face com-
munication), prosody, in addition to the acoustic
attributes of the words. Our systems could do much bet-
ter by integrating these knowledge sources.

A Prosody. Prosody can be defined as information in
speech that is not localized to a specific sound segment, or
information that does not change the identity of speech
segments (see, e.g., [158]; [159], [160]). Such informa-
tion includes the pitch, duration, energy, stress, and other
supra-segmental attributes. The segmentation (ot group-
ing) function of prosody may be related more to syntax
(with some relation to semantics), while the saliency or
prominence function may play a larger role in semantics
and pragmatics than in syntax. To make maximum use of
the potential of prosody will likely require a well-
integrated system, since prosody is related to linguistic
units not just at and below the word level, but also to ab-

‘stract units in syntax, semantics, discourse, and pragmat-
ics. Our systems make quite limited (or no) use of
prosody at present.
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A Spontaneous Speech. The same acoustic attributes
that indicate much of the prosodic structure (e.g., pitch,
stress; and duration patterns ) are also very common 11 as-
pects of spontaneous speech that seem to be more related
tothe speech planning process than to the structiire of the
utterance. For .example; “a-long ‘syllable followed by a
pause can indicate either an important syntactic boundary
or that the speaker is planning the rest of the utterance.
Similarly, a prominent syllable may mark new or impor-
tant information, or a restart intended to replace some-
thing said in error. Although spontaneous speech effects
are quite common in human communication and may be
expected to mcrease urhuman machine discourse as peo-
ple become more comfortable conversing with machines;
modeling of speech disfluencies is only just begmmng
(see, e.g., [161], [162]). :

Much of our thinking about spoken language has been
focused on its use as aninterface in human-machine inter-
actions mostly for information access and extraction.
With increases in cellular phone use and dependence on
networked information resources, and as rapid access to
information becomes an increasingly important eco-
nomic factor; telephone access to data and telephone
transactions will.no-doubt rise dramatically. There is a
growing interest, however, in viewing spoken language
not just as a means to access information, but as, itself, a
source of information. Important attributes that would
make spoken language more useful in this respect in-
clude: random access, sorting (e.g., by speaker, by topic;
by urgency); scanning, and editing. How could our lives
be changed by such tools? Enabling such a vision chal-
lenges our systems still further in noise robustness and in
spontancous speech effects. Further, the resulting in-
creased accessibility to information from conversational
speech will likely also raise increased concern for privacy
and security, some of which may be addressed by control-
ling access by speech: speaker identification and verifica-
tion (see the next section).

While such near-term application possibilities are ex-
citing, we can envision an even greater information revo-
lution on par with the development of writing systems if
we can successfully meet the challenges of spoken lan-
guage both as a medium for information access and as it-
self a source of information. Spoken language is still the
means of communication used first and foremost by hu-
mans, and only a small percentage of human communica-
tion is written. Automatic-spoken-language
understanding can add many of the advantages normally
associated only with text (random access, sorting, and ac-
cess at different times and places) to the many benefits of
spoken language. Making this vision a reality will require
significant advances.

Speaker Verification and identification

Speaker recognition is the process of automatically recog-
nizing a speaker by using speaker-specific information in-
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cluded in his or her speech [163-166]. This technique can
be used to verify the identity claimed by people accessing
systems;.- that is, it-enables control of access to. various
services by voice. Applicable services include voice dial-
ing, banking over a telephone network, telephone shop-
ping, database access services, information and
reservation services, voice mail, security control for confi-
dential information, and remote access to computers.

Speaker recognition can be- classified into. speaker
identification and speaker verification. Closed-set speaker
identification is the process of determining which of the
registered speakers a given utterance ‘comes from.
Speaker verification is the process of accepting or reject-
ing the identity claim of a speaker. Most of the applica-
tions in which voice is used to confirm the identity claim
of a speaker require speaker verification.

Speaker-recognition methods can also be divided into
text-dependent and text-independent methods. The
former requires the speaker to provide utterances of key
words or sentences that are the same text for both training
and recognition, whereas the latter does not rely on a spe-
cific, prescribed text. The text-dependent methods are
usually based on template-matching techniques in which
the time axis of an input speech sample and each reference
template or reference model of the registered speakers are
aligned, and the similarity between them is accumulated
from the beginning to the end of the utterance [164, 167,
168]. Since this method can directly exploit voice indi-
viduality assoctated with each phoneme or syllable, it gen-
erally achieves higher-recognition performance than the
text-independent model.

However, there ate several applications, such as foren-
sic and surveillance applications, in which predetermined
keywords cannot be used. Moreover, human beings can
often recognize speakers irrespective of the content of the
utterance. Therefore, text-independent methods have re-
cently attracted more attention. Another advantage of
text-independent recognition is that it can be done se-
quentially, until a desired level of significance is reached,;
without the annoyance of the speaker having to repeat the
key words again and again.

Both text-dependent-and text-independent methods
have a serious weakness. These systems can easily be de-
feated, because someone who plays back the recorded
voice of a registered speaker uttering key words or sen-
tences into the microphone can be accepted as the regis-
tered speaker. To cope with this problem, a
text-prompted speaker-recognition method has recently
been proposed.

Basic Structures of Speaker-Recognition Systems
The fundamental techniques, such as signal analysis,
modeling and pattern matching, ina speaker-identifica-
tion/verification system are essentially identical to those
used in a speech-recognition system. What differentiates
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themis the need to find speaker-specific information and
the explicit use of hypothesis analysis and thresholding.

In the closed-set speaker-identification task, a speech
utterance from an unknown speaker is analyzed and com-
pared with speech models: of known speakers. The un-
known speaker is identified as the speaker whose model
best matches the input utterance. In speaker verification,
an identity claim is made by an unknown speaker, and an
utterance of this unknown speaker is compared with the
model for the speaker whose identity is claimed. If the
match is-good enough, that is, above a threshold, the
identity claim is accepted. A high threshold makes it diffi-
cult for impostors to be accepted by the system, but at the
price of falsely rejecting valid users. Conversely, a low
threshold enables valid users to be accepted consistently,
butat the price of accepting impostors. To set the thresh-
old at the desired level of customer rejection and impostor
acceptance, it s necessary to know the distribution of cus-
tomer and impostor scores.

The effectiveness of speaker-verification systems can
be evaluated by using the receiver operating characteris-
tics (ROC) curve, which shows the system performance
in terms of two probabilities: the probability of correct
acceptance -and the probability of incorrect acceptance.
By varying the decision threshold, a point on the ROC
curve can be selected for operating purposes. (to achieve
the desired tradeoff between the two probabilities)
[169]. The equal-error rate (EER) is commonly accepted
as an overall measure of the system performance. It corre-
sponds to the threshold at which the false acceptance rate
is equal to the false rejection rate.

From Spoken Language
to Multimodal Communication

Human-machine communication (HMC) is evolving
from text interface (i.e., keyboard and screen display) to
spoken language (automatic speech recognition and un-
derstanding) to multimodal communication involving
different senses (audio, visual, tactile, or even gestural)
with synergy [170,:171]. Human ‘communication -in-
cludes the perception or production of a message or of an
action as an explicit or implicit cognitive process. For per-
ception, there are the “five senses™: hearing, vision,
touch, taste, and smell, with reading as a specific visual
operation, and speech perception as a specific hearing op-
eration. For production, it includes sound (speech, or
general sound production) and vision (generation of
drawings, graphics or, more typically, written messages).
Cogpnition includes the means to understand or to gener-
ate a message or an action from a knowledge source.
The machine serves as a means for the human being to
commumicate with:the world. In the domain of HMC;
the computer has various artificial perception abilities:
speech, character, graphics, and gesture or movement
recognition. This recognition function can be accompa-
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nied by the. recogrunon of the 1dent1ty of the person

through the same modes. Gesture or movement recogni-
tion is made through the use of special equipment (such

~ asthe VPL DataGlove or DataSuit, or the Cyberglove),

which includes position sensors. Other sensors allow for
recognizing the direction of viewing (through an oculo-

can produce messages using various modes ranging from
 thedisplay of a textual o graphxcal (including icons) mes-
Sage to concept-to-text generation or summary genera-

tion, speech synthesis, and static or animated image
synthesis. The visual information can be produced in
stereovision or within a complete: environment in which
~ theuser is immersed. (“v1rtual” reality), or it can be super-
imposed on the real environment (“augmented” reahty),f :
~ which would require the wearing of special equipment. -
- The provided information can be multimedia, mcludmg -
 text, real or synthetic i images, and sound. It is also possi-

ble, in the gestural communication mode, to produce a

kinesthetic feedback, allowing for the generauon of s1mu—' :

 lated solid objects.

must take into account a model of the user, of the world
~on which he acts, of the relationship between those two

‘elements, but; also ofthe task that has to be carried outand

‘of the structures of the dialogue. It must be able to reason,

- to plan a linguistic or nonhngmstlc actinordertoreacha
- target, to solve problems and 2id in decision making, to
~ merge information coming from various sensors, and to

learn new knowledgc or new structures. Multimodal

- communication raises the problem of co-reference (e.g.,
_ when the user designates an object, or a spot, on the com-
_ puter display and proneunces a sentence relanve toan ac-

 tion on that object). - :
To accomplish thc goal of multnnodal human~
machine communication, while it is important to under-
stand the human functlons in order to get some inspira-

~ tion when designing a system, of greater importance is
the ability to model in the machine the user with whom it
has to communicate. It is also necessary to model the -
- world in which they occur. This extends HMC to various
research domains such as room acoustics, physics, or op-

tics, and also physiology and cognitive psychology (for
= gcneratmg mtellzgmt agmts or avatars) '

- Linking Language and lmage ,
- With the coming of “mtclhgenr" 1mages, the relanon
between language and image is getting closer [17

is dxrectly mvolved in human—to—machme communica-

tion (e.g., for recognizing the user or the expressions on
'his face), but also indirectly involved in the building of a

visual reference that will be shared by the human and the
machine, allowmg for a common understandmg of the

- messages that they exchange: (for example, in the under-
. meter or through a camera). Reciprocally, the computer' -

standing of the command “Take the knife which is on the -

-~ small marble table” addressed to a robot). Instead of con-
 sidering the user on one side and the machine on the other
side, the user himself may become an element of the simu-
: ,lated world: actlng and movmg in thls world and gemng' ,
reactions from it. '

There are several mmﬂarmes in the research concern-
ing these different communication modes. In speech, vi-
sion, and gesture processing, similar methods are used for

. sxgnal processing, coding and pattern recognition. The

same approach based on statistical rnodehng has been ap-

- phed with similar algom:l*nns to various domains of HMC

such as speech recognition, visual recognition of charac-

ter or object, or gesture [173]. This approach requires
, : large databases, which are now available for speech, char-
The machine also needs to have cognmve abllmes I
 visual, gestural, and multimodal data.

acters and text data, but have yet to be made avaxlable for

Humans use multimodal communication when, they '

speak to each other, exceptin the case of pathology or of
telephone communication. Movements of the face and

 lips, as well as expression and posturo, will be involved in
 the spoken language communication process. Studies in
_ speech intelligibility also showed that having both visual

~ and audlo information i improves the information com- -
,mumcatlon, espccmlly When the message is complex or

- when the communication takes place in a- Doisy environ-
ment [174], [175]. This has led to studies in bunodal

_ speech synthesis and recognition.

In the field of speech synthes1s ““x‘ﬁoc‘ikels of spcakmg k
faccs were designed and used in speech dialogue systems

~ [176]. The face and lip movements were synthesized by
studying those movements in human speech production
through image analysis. It resulted in text-to-talking

heads synthes1s systems. Studies in using the visual infor-

_mation in speech communication (e.g., using the image
 of the lips only, or the bottom of the facc or the entire
, face) showed that the 1ntelhg1b111ty of the synthesized

speech was 1mproved for the human “listener,” especially

~ in a noisy environment. In the same way, the use of the

. visual face information, and especially the lips, in speech
_ recognition was. studied, and results showed that using
- both ques of mformanon glves bctter recogmtxon per-;

justifies advanced human-machine communication  for

- modes, In an “intelligent” synthetic 1 image (which nnphcs:_ .
_the modeling of physical characteristics of the real world), -
a sentence such as “Throw the ball on the table” will in-
duce a complex scenario where the ball w1ll rebound on
~ thetable, then fall on the ground. This scenariowouldbe
difficult to describe to the machine with usual low-level
‘computer languagcs or mterfaces V;sual cornmumcatlon’
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 process, othertyp

Whﬂe tl'ns v1sual mformauon on the human nnage can’; :
ed as part of theE spoken—languagc—cormnumcauon :
' alinformation related to the hu-
man user can also be considered by the machine. The fact
that the user th 00m, O IS seated in front of the com-
puter display, as w e direction of hls/her gaze canbe

, ‘used in thc commum ation process (egs wamng for thc

1EEE SIGNAL PROCESSING MAGAZINE 43



presence of the human in the room to synthesize a mes-
sage, or choosing between a graphic or spoken mode for
delivering information, depending of whether the user is
it front of the computer or somewhere ¢lse in the room;
adjusting the synthesis volume depending on how far he
is from the loudspeaker, adapting a microphone array on
the basis of the position of the user in the room [1797,
checking what the user is looking at on the screen in order
to deliver information relative to that-area [180]; etc)

Multimodal Multimedia Communication
Communication can also involve several verbal and non-
verbal media. Berkley and-Flanagan [181] designed the
AT&T Bell Labs HaMaNet system for multipoint con-
ferencing over the public telephone network. The system
features hands-free sound pick up through microphone
arrays, voice control of call set-up; data access and display
through speech recognition, speech synthesis, speaker
verification for privileged data, still image and stereo im-
age coding. It has been extended to also include tactile in-
teraction, gesturing and handwriting inputs, and face
recognition [182]. In Japan, ATR has a similar advanced
teleconferencing program, including 3D object model-
ing, face modeling, voice command, and gestural com-
munication. At IRST; Stringa et al. [ 183] have designed,
within the MATA project, a multimodal interface (speech
recognition and synthesis, and vision) to communicate
with a “concierge” of the institute, which answers ques-
tions on the institute and its researchers; and with a mo-
bile robot, which has the task of delivering books or
accompanying visitors.

In the ESPRIT “Multmodal-Multimedia Automated
Service Kiosk” (MASK) project, speech recognition and
synthesis -are used in parallel with other input (touch
screen) and output (graphics) means [184}. The applica-
tion is to provide railway travel information to railway
customers, including the possibility of making reserva-
tions. The users get both visual (graphics) and audio
(speech synthesis) information, and they may choose to
either use speech or tactile input. First studies show that
subjects tend to use one mode or the other, based on its
apparent reliability or on their own preference, but they
will not mix them up during the dialog.

In the closely related domain of multimedia informa-
tion processing, interesting results have been obtained in
the Informedia project at CMU on the automatic index-
ing of TV broadcast data (news), and multimedia infor-
mation query by voice. The system uses continuous
speech recognition to transcribe the speech. Tt segments
the video' information in sequences, and uses natural-
language-processing techniques to automatically index
those sequences from the result of the textual transcrip-
tions. Although the speech recognition is far from being
perfect (about 50% recognition rate), it seems to be good
enough for allowing the user to get a sufficient amount of
multimedia information from his queries {185].
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Conclusion

We attempted to provide a comprehensive, albeit cur-
sory, review of how speech signal-processing technolo-
gies progressed in the past as well as the challenges ahead.
Speech processing is one of the most intrigting areas of
intelligent signal processing because humans generate,
use, and appreciate speech on a daily basis. Speech re-
search has attracted scientists as an important discipline
and has created technological impact on society and is ex-
pected to further flourish in this era of machine intelli-
gence and human-machine interaction. We hope this
article brings about understanding as well as inspiration.
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