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ABSTRACT

A real-time synthesis engine is presented which models and predicts the timbre of acoustic instruments based on

perceptual features. The paper describes the modeling sequence including the analysis of natural sounds, the inference

step that �nds the mapping between control and output parameters, the timbre prediction step, and the sound

synthesis. Demonstrations include the timbre synthesis of stringed instruments and the singing voice, as well as the

cross-synthesis and timbre morphing between these instruments.

INTRODUCTION
Timbre is de�ned as the quality of a sound that distinguishes
it from other sounds of the same pitch and loudness. This
paper introduces a new technique for modeling and control-
ling pitched timbre. We present an expressive sound synthesis
engine that is driven by continuously changing perceptual pa-
rameters, namely pitch, loudness, and brightness. These per-
ceptual parameters are extracted from the audio stream of an
acoustic or electric monophonic instrument and are used as
controlling features for the prediction of spectral data.

In the o�ine analysis step, we extract perceptual features and
a sinusoidal representation from the audio data. In the model-
ing step, we infer a mapping between perceptual features and
spectral representation. In the synthesis step, the model is

used to predict a harmonic structure of di�erent timbre from
new control parameters. The new control input is either ex-
tracted o�ine from a sound database or generated in real time
on a muted instrument. The inference and prediction system
was implemented using Cluster-Weighted Modeling (CWM),
a probabilistic toolkit for the analysis and prediction of non-
linear time series [13, 3].

Unlike many other synthesis and modeling techniques, e.g.
physical modeling, our approach extracts essential perceptual
characteristics directly from the audio signal of a real acoustic
instrument, for example a Stradivarius violin. Therefore this
approach allows us to model arbitrary instruments based on
recordings of the instrument without redesigning our model.
Furthermore, we can easily exchange control and audio signals
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of di�erent instruments since our perceptual representation is
preserved across instruments and even instrument families.
Pitch, loudness, and brightness are considered perceptually
meaningful and are used as feature vectors for the predic-
tor. The underlying assumption of our approach is that any
two frames of sound have similar spectral properties if pitch,
loudness, and brightness are similar.

Additive synthesis is commonly recognized as a powerful tech-
nique for sound description and synthesis. Unfortunately it
is rather diÆcult to control, and only very few commercial
synthesizers exploit the potential of this technique. While
keyboards enable many synthesis applications, non-discretely
pitched musical controllers such as saxophone, trombone, vi-
olin, guitar, or voice, are typically not used for controlling
synthesis algorithms. This is mostly due to the fact that mu-
sical gestures like �nger position, blown air, or bow pressure
are diÆcult to measure and to interpret musically. Our ap-
proach uses additive synthesis for sound production and audio
based perceptual features as controls. It therefore overcomes
the mentioned limitations and is applicable to any acoustic
pitched instruments.

Our modeling approach enables several applications, includ-
ing the cross-synthesis of musical instruments. In this par-
ticular application, the perceptual control channel of an in-
strument is used to generate the sound of a di�erent instru-
ment. A second powerful application morphs between sounds
of di�erent instruments. The software environment has been
entirely implemented in Max/MSP. The library of novel Max
objects includes objects that extract perceptual parameters
as well as inference and prediction objects using CWM.

PRIOR WORK
Ever since the invention of neural networks, there have been
research e�orts to model the complexity of musical signals and
of human musical action by means of arti�cial neural networks
(ANNs). Connectionist tools have been applied to musical
problems such as harmonizing a melody line and recogniz-
ing and classifying instrument families from sound. However,
connectionist approaches to musical synthesis are not very
common.

M�etois introduces the synthesis technique Psymbesis, for
Pitch Synchronous Embedding Synthesis [6]. He de�nes a
vector of perceptual control parameters including pitch, loud-
ness, and brightness. He clusters this data in a control space
and assigns periods of sound to each cluster. Each cluster
period is resampled with respect to a reference pitch and is
characterized by the statistical mean and variance of each
sample. For synthesis, the chosen period is represented in
a low-dimensional lag-space rotating around a closed curve.
Depending on the sample variance of the output, samples are
slowly pulled back to the mean values ensuring that the tran-
sition between di�erent sampled periods happens smoothly.
The periods are re-sampled at the desired pitch and adjusted
for the desired loudness.

Wessel et al. presented a synthesis model which inspired our
approach [15]. A database of recorded sounds is analyzed and
parameterized with respect to pitch, loudness, and brightness
and is decomposed into spectral frames consisting of frequen-
cies and amplitudes. The perceptual parameters serve as in-
puts to the feed-forward network, whereas the spectral pa-
rameters serve as outputs. A network is trained to represent
and predict a speci�c instrument. The framework is tested
with an ANN using one hidden layer and independently with

a memory-based network. It was found that the ANN model
provides smoother output, while the memory-based models
are more 
exible { easier to modify and easier to use in a
creative context [15].

Schoner et al. used Cluster-Weighted Modeling to predict a
spectral sound representation given physical input to the in-
strument [13]. While the target data was similar to the data
used in [15], the feature vector consisted of actual physical
movements of the violin player. Special recording hardware
was needed to create the set of training data and to replay
the model. The model was successfully applied in the case
of violin family instruments. Special violin/cello bows and
�ngerboards were built to track the player motion, and these
input devices were used to synthesize sound from player ac-
tion.

This paper combines the eÆciency of Cluster-Weighted Mod-
eling with spectral synthesis and the idea of a perceptual con-
trol as feature vector.

TIMBRE ANALYSIS AND MODELING
Underlying our approach to timbre modeling are two funda-
mental assumptions:

1. We assume that the timbre of a musical signal is char-
acterized by the instantaneous power spectrum of its
sound output.

2. We assume that any given monophonic sound is fully
described by the perceptual parameters pitch, loudness,
and brightness and by the timbre of the instrument.

Based on these assumptions we conclude that a unique spec-
tral representation of a sound can be inferred given perceptual
sound data and a timbre model. In our approach we estimate
both perceptual and spectral representations from recorded
data and then predict the latter given the former.

A monophonic musical signal is represented in the spectral
domain. The sound recording is analyzed frame by frame
using a short-term Fourier transform (STFT) with overlap-
ping frames of typically 20ms at intervals of 10ms. Longer
windows (e.g. 2048-4096 points at 44.1KHz) and large zero-
padded FFTs may be used as latency is not an issue here.

A spectral peak-picking algorithm combined with instanta-
neous frequency estimation (see next paragraph) tracks the
partial peaks from one analysis frame to the next, resulting
in L (= 30 to 40) sinusoidal functions. The number of stored
harmonics L usually determines the sound quality and model
complexity. Since pitch is considered an input to the system,
not an output, the spectral vector contains 2L�1 components
ordered as [A0;M1; A1;M2; A2; : : : ;ML; AL] where Ai is the
logarithmic magnitude of the i-th harmonic and Mi is a mul-
tiplier of the fundamental frequency F0, i.e. pitch. F0 relates
to the frequency Fi of the i-th harmonic (Mi = Fi=F0).

For pitch tracking we �rst perform a rough estimation us-
ing the Cepstrum transformation [7] or an autocorrelation
method [11] and then operate on the harmonic peaks of the
STFT. An N-point FFT discretizes the spectrum into N=2
useful bins of resolution Fs=N Hz, where Fs is the Nyquist
frequency. We identify the peaks of the spectrum and iden-
tify the bins they fall into. The ambiguity associated with
the extraction of a bin versus a peak frequency may be much
bigger than a semitone, especially in the lower range of the
spectrum. We therefore use the instantaneous frequencies of
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the bins of highest energy to obtain a much higher resolution
with little extra computation [6].

Given X(k) the non-windowed discrete Fourier transform of
the signal s(n) for bin k is

X(k) =

n�1X
n=0

s(n)e�jwnk (1)

with

w =
2�

N

The estimate for bin k's instantaneous frequency is:

Finst(k) = Fs

�
k

N
+

1

2�
Arg

�
A

B

��
(2)

where

A = X(k)�
1

2
[X(k � 1) +X(k + 1)]

B = X(k)�
1

2

�
ejwX(k � 1) + e�jwX(k + 1)

�

Given the spectral decomposition we easily extract pitch as
the frequency of the fundamental component. We further-
more extract instantaneous loudness from the total spectral
energy. The power-spectrum bins are previously weighted by
coeÆcients based on the Fletcher-Munson curves in order to
simulate the ear frequency response. The output is in dB. The
spectral centroid of the signal is used as an estimator for the
brightness of the sound. In a second pass through the data,
estimation errors are detected and eliminated. Frames are
considered bad if no pitch could be detected or if it is outside
a reasonable range, in which case the frame data is simply
dropped. The peaks of the spectrum are used as an harmonic
representation of the audio signal and as target data for our
predictive model.
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Fig. 2: Spectrum of a singing voice (23.2 ms frame of

data). The stars indicate the harmonic peaks of the

spectrum as found by the peak tracking algorithm.

We summarize: the data analysis step provides us with un-
ordered vector-valued data points. Each data point consists
of a three-dimensional input vector describing pitch, loud-
ness, and brightness, and a 40 to 60-dimensional output vec-
tor containing frequency and amplitude values of 20 to 30
harmonic partials. We use this data to train a feed-forward
input-output network to predict frequencies and amplitudes
(see section Cluster-Weighted Modeling).
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Fig. 1: Analysis + Modeling step (top) and Analysis + Prediction + Synthesis step (bottom).
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TIMBRE PREDICTION AND SYNTHESIS
Timbre prediction and audio-driven synthesis are based on
a new stream of audio input data. This time, the percep-
tual control features are extracted in real time from the audio
stream. They are used as input to the nonlinear predictor
function which outputs a vector of spectral data in real time
(20 to 30 sinusoids depending on what level of sound quality
is desired).

The speci�c model consists of three input parameters (pitch,
loudness, and brightness), and L (= 40 to 60) output parame-
ters. In the case of cross-synthesis, the perceptual control fea-
tures are extracted and carefully rescaled to fall into a window
of dynamic range, which is kept consistent across di�erent in-
struments. This procedure does not apply to pitch but is
important for the loudness and brightness parameters. The
input vector is used with the predictor function on a frame
by frame basis, generating an output vector at intervals of
about 10ms. If our model is based on L sinusoidal parame-
ters, the predictor generates 2L � 1 output values consisting
of [A0;M1; A1;M2; A2; : : : ;ML; AL] where Ai is the logarith-
mic magnitude of the i-th harmonic and Mi is a multiplier of
the fundamental frequency F0.

The output vector is used with an additive synthesis en-
gine that modulates sinusoidal components and superimposes
them in the time domain, resulting in the deterministic com-
ponent of the signal:

d(n) =

LX
l=1

Al cos(!ln+ �l) (3)

where n is a discrete time index and Al and �l are ampli-
tude and phase of the partials l. This additive approach is
computationally less eÆcient than an inverse FFT, but much
simpler to implement.

In the next section, we show how a stochastic process will be
combined with the deterministic component d(n) of expres-
sion (3) to create a more accurate timbre (see Noise Anlay-
sis/Synthesis). The full signal model s(n) then becomes:

s(n) = d(n) + r(n) (4)

where r(n) represents the residual noise component of the
signal.

We observe that the timbre of any particular instrument or
instrument family is contained in the predictor model (see
Cluster-Weighted Modeling), whereas the musical intent is
contained in the parameterization of the perceptual control
data. By mixing control data from one instrument with the
timbre model of a di�erent instrument, the system allows a
skilled player of a non-discretely pitched instrument (e.g. vio-
lin, trombone, or voice) to play the (previously modeled) tim-
bre of any other pitched instrument without having to learn
this new instrument or controller (see section Applications).

NOISE ANALYSIS/SYNTHESIS
The sound quality of additive synthesis can be improved sig-
ni�cantly by synthesizing the residual nondeterministic com-
ponents of the sound in addition to the deterministic har-
monic components [14, 12]. The noise components are par-
ticularly important at the onsets of notes, which often is the
most characteristic element of the timbre of a musical instru-
ment. While the harmonic structure is usually described as
a sum of sinusoidal functions, the residue (commonly called
noise) can be modeled in several di�erent ways [4]. Here we

present a novel approach to noise modeling by means of a
polynomial expansion.
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basis functions).

In general, the noise characteristics of a signal are captured in
the shape of the power-spectrum of its non-harmonic compo-
nents. We extract this residual spectrum for each time frame
and approximate the spectral function (in a logarithmic scale)
using polynomial basis functions. The residue is obtained by
substracting the power-spectrum of the deterministic signal
d(n) from the power spectrum of the original signal s(n) as
described in expression (4). The approximation is of the form

f(x) =

KX
k=0

akx
k (5)

Since the spectrum is a one-dimensional function the number
of basis terms and coeÆcients equals the order of the polyno-
mial K plus one additional term for the constant component
a0. We use up to 30 basis functions and coeÆcients. The
coeÆcients ai form the output vector of a predictor model,
which, in synthesis, interpolates between the coeÆcients of
di�erent noise spectra. The input vector of this second pre-
dictor consists of perceptual parameters and, in addition, a
noise/signal ratio (noisiness) estimator and/or an indicator
for note onsets.

During synthesis, the predictor model generates polynomial
coeÆcients, which are used to reconstruct the noise spectrum
for every frame. White noise is modulated with the recon-
structed function in the spectral domain. The colored noise
spectrum is retransformed into the time domain after scram-
bling the perceptually irrelevant phase information using an
inverse FFT. The method accurately reproduces the noise
properties of natural sound and it is particularly successful
with breath noise that appears in the residue of instruments
like the 
ute, saxophone, and trumpet. The noise predictor is
currently being combined with the additive synthesis engine.
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The accuracy of the noise model depends on the number of
basis functions used and is easily scalable at synthesis.

This parameterization of sound is comparable to Serra's Sinu-
soids Plus Noise implementation [14]. However, our system
removes the temporal axis to dynamically control musical fea-
tures by generating new envelope functions in real time.

CLUSTER-WEIGHTED MODELING
We approximate the nonlinear mapping from the feature vec-
tor onto the harmonic target vector using the general inference
framework, Cluster-Weighted Modeling. CWM is a proba-
bilistic modeling algorithm that is based on density estimation
around Gaussian kernels. Unlike Arti�cial Neural Networks,
it is 
exible and easy to understand and has a transparent
network architecture.

Model Architecture
The descriptive power and algorithmic beauty of graphical
probabilistic networks is widely appreciated in the machine-
learning community. Unfortunately, the generality and 
exi-
bility of these networks are just about matched by their dif-
�culty of use. Unless the architectures are constrained ap-
propriately and are tailored for particular applications, they
are of little use in a practical modeling situation. Gaussian
mixture models, a subclass of graphical models, resolve some
of these de�ciencies. In this paper we use CWM, a Gaussian
mixture architecture that combines model 
exibility with fast
model design and ease of use.

CWM is a framework for supervised learning based on proba-
bility density estimation of a joint set of input feature and out-
put target data. It is similar to mixture-of-experts type archi-
tectures [5] and can be interpreted as a 
exible and transpar-
ent technique to approximate an arbitrary function. However,
its usage goes beyond the function �tting aspect, because the
framework is designed to include local models that allow for
the integrations of arbitrary modeling techniques within the
global architecture. CWM describes local data features with
simple polynomial models, but uses a fully nonlinear weight-
ing mechanism to build overall powerful nonlinear models.
Hence CWM combines the eÆcient estimation algorithm of
generalized linear models with the expressive power of fully
nonlinear network architecture.
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Fig. 4: One dimensional function approximation with

locally linear models weighted by Gaussian kernels.

We typically start with a set of discrete or real-valued input
features x and corresponding discrete or real-valued target
vectors y. x consists of measured sensor data, discrete classi-
�ers, or processed features (this application). It is composed

of independent observations or of time-delayed values of an
embedded time series. y may be the scalar-valued sample of
a time series, a classifying label, or independent target vec-
tor (this application). We consider the joint input-output
set fyn;xng

N
n=1, and it is our goal to infer the joint density

p(y;x), which is the most general, compact, and statistically
suÆcient description of the data set.

p(x;y) is expanded in a sum over clusters ck. Each cluster
contains an input distribution, a local model, and an output
distribution.

p(y;x) =

KX
k=1

p(y;x; ck) (6)

=

KX
k=1

p(yjx; ck) p(xjck) p(ck)

The input distribution is parameterized as an unconditioned
Gaussian and de�nes the domain of in
uence of a cluster.

p(xjck) =
jP�1

k
j
1=2

(2�)D=2
e�(x�mk)

T
�P
�1

k
�(x�mk)=2 (7)

where Pk is the cluster-weighted covariance matrix in the
feature space.

Given a continuous valued output vector y, the output dis-
tribution is taken to be

p(yjx; ck) =
jP�1

k;y
j
1=2

(2�)Dy=2
e
�(y�f(x;ak))

T
�P
�1

k;y
�(y�f(x;ak))=2

(8)
where the mean value of the Gaussian distribution is replaced
by the function f(x; ak) with unknown parameters ak. In
both (7) and (8) the o�-diagonal terms of the covariance ma-
trices can be dropped if needed.

Expression (8) is easily understood considering the condi-
tional forecast of y given x,

hyjxi =

Z
y p(yjx) dy (9)

=

PK
k=1 f(x;ak) p(xjck) p(ck)PK

k=1 p(xjck) p(ck)

Expression (9) is used as our predictor function. We observe
that the predicted y is a superposition of the local functions,
where the weight of each contribution depends on the poste-
rior probability that an input point was generated by a par-
ticular cluster. The denominator assures that the sum over
the weights of all contributions equals unity.
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data points and allocated clusters in a two dimensional

input space. The vertical and horizontal lines represent

the weight and variances of each cluster.

Model Estimation
The model parameters are found in an iterative search which
uses two estimators combined in a joint update: we use the
expectation-maximization algorithm (EM) to �nd the param-
eters of the Gaussian kernels and �t the local model parame-
ters by an inversion of the local covariance matrix.

The EM algorithm has been widely used as an eÆcient train-
ing algorithm for probabilistic networks [1]. Given some ex-
perimental data, EM assumes that there is a set of known
states (the observed data) and a set of hidden states, charac-
terizing the model. If the hidden states were known, model
estimation would be easy, because we would only need to
maximize a parameterized distribution. Yet, since we don't
know the hidden states we need an iterative search for a so-
lution that satis�es the constraints on the hidden states and
maximizes the likelihood of the known states. The EM al-
gorithm converges to a maximum of the likelihood of the
observed data, reachable from the initial conditions. Unlike
conventional kernel-based techniques, CWM requires only one
hyper-parameter to be �xed beforehand, the number of Gaus-
sian kernels K. Other parameters of the model are results of
the estimation process rather than an inputs to the training
algorithm. K is determined by cross-validation on left-out
data or in a boot-strapping approach.

A detailed description of the search updates is available in
[13] and [3].

REAL-TIME IMPLEMENTATION IN MAX/MSP
The analysis, prediction, and synthesis system has been com-
pletely implemented in the Max/MSP [9, 18] environment.
The new library of Max objects includes the following utility
functions:

1. CWM-model infers a CWM model from training data.
The function reads in multi-dimensional feature and

target data from two independent data �les. It then
optimizes the coeÆcients of the probabilistic network
to best �t the nonlinear function that maps the input
vector to the output vector. After convergence, the ob-
ject creates a third text �le that contains the model
data including a description of the speci�c architec-
ture, i.e. the dimensionality of the problem and the
coeÆcients of the network. The object takes the argu-
ments myModelName, numberOfClusters, NumberOf-
Iterations, and polynomialOrder. The object is generic
and can be used to model other nonlinear systems.

2. CWM-predict reads in the text �le containing the model
data at start-up. Given a stream of input data, that
is a list containing the elements of the feature vector,
the object continuously predicts output lists, which in
our application contain a spectral parameterization of
the predicted sound. The object takes one argument:
myModelName.

3. loudness� calculates energy and estimates loudness of
a signal in the time or the spectral domain giving the
user a choice of window (Rectangle, Hanning, Ham-
ming, or Blackman), window size N (default: 1024
points), and a percentage of window overlap (default:
50%). For loudness estimation, the object uses the
Fletcher-Munson curves to best approximate the spec-
tral response of the ear and outputs a loudness value in
a linear, logarithmic or dB scale. The frequency bins k
of the power-spectrum are weighted by coeÆcients Wk

obtained from the interpolation of the Fletcher-Munson
curves:

loudness =

N
2
+1X

k=2

�
Wk � jakj

2
�

(10)

where ak is the linear amplitude of frequency bin k up
to N=2 + 1 FFT bins. N=2 + 1 corresponds to the fre-
quency Fs=2. Note that the lowest bin is discarded to
avoid unwanted bias from DC component.

4. brightness� estimates brightness by calculating the
spectral centroid of a frame [16]. Like loudness�, the
object o�ers di�erent choices of FFT windows, window
sizes and overlaps.

centroid =

PN
2
+1

k=2
fk � akPN

2
+1

k=2
ak

(11)

where fk is the frequency in Hz of frequency bin k.

Both loudness� and brightness� use speci�cally op-
timized FFTs. As phase is irrelevant in our application,
we can perform the FFT twice as fast by considering
only the real component of the FFT. We exploit the
symmetry of the transform and split the audio data set
in half. One data set takes the even-indexed numbers
and the other the odd-indexed numbers, thereby form-
ing two real arrays of half the size. The second real
array is treated as a complex array [8].

5. The MSP extension fiddle� is used for real-time pitch
extraction [10].

6. The MSP extension sinusoid� is used for real-time
additive synthesis [2].
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Fig. 6: Max predictor subpatch screen shot.

The implementation requires modest amounts of computing
resources. A full timbre-prediction model needs as little as a
few tens of kilobytes of text in storage. For combined real-
time timbre prediction and synthesis using three perceptual
input features and thirty sinusoidal output components, less
than 15% of CPU time on a 500MHz Macintosh G4 is re-
quired.

Whereas the real-time synthesis is fast, the o�ine modeling
step is computationally intensive. Depending on the complex-
ity of the model, a few hours of computation at 100% CPU
load are needed for optimization of the model parameters.

APPLICATIONS

Timbre synthesis
Several timbre models were created including models of a male
and a female singing voice, a Stradivarius violin, and wood-
wind instruments. Up to 20 minutes of sound data covering
a range of possibilities of each instrument were recorded, i.e.
various pitches, dynamics, and playing styles. For instance,
we instructed the musicians to play long glissandi, various vol-
umes, sharp and soft attacks, vibratos, etc. Since the room
acoustics a�ect the timbre of the instruments considerably,
the recording room was kept as dry as possible and the mi-
crophone was placed carefully. In the case of the violin, we
used a directional Neumann microphone located about three

feet above the violinist's head. We used up to 100,000 data
points (time frames) for each timbre model.

We are able to control timbre synthesis dynamically. The
technique allows for continuous changes in articulation and
musical phrasing, and for highly responsive sound output.
The output sound doesn't su�er from undesired artifacts due
to sample interpolation (i.e. smooth transition from one sam-
ple to another), sample looping (in order to maintain sus-
tain), and pitch shift (e.g. when simulating a slide). The
sound quality scales nicely with the number of sinusoidal and
polynomial basis functions. The number of harmonics used
ranged from a few to up to 30 in di�erent experiments.

Figure (7 - left) shows the reproduction of the �rst seven har-
monics predicted by a violin model based on violin input. The
plain line represents the spectrum extracted from recorded
data and the dashed line represents the predicted data. The
predicted signal is close to indistinguishable from the original.

Cross-synthesis
Instead of driving an instrument model with control data gen-
erated on the same instrument, we mix controls and timbre
models from di�erent instruments. For example, the audio
signal generated on an electric violin controls the model of a
female singing voice. The resulting sound output imitates the
timbre of the singing voice, while it follows the musical inten-
tions and control encoded in the perceptual control signal.

As was pointed out earlier, we rescale the violin loudness and
brightness functions to fall into the loudness and brightness
range of the singing voice. However, in order to really sound
like the original voice, the violinist needs to imitate the ar-
ticulation and vibrato of the original singer. The pitch range
accessible to the violinist is essentially limited to the pitch
range of the recorded singer.

Figure (7 - right) shows an example of cross-synthesis between
a violin controller and a female singing voice model. Compar-
ing this �gure to �gure (7 - left), we observe that the predicted
harmonics signi�cantly di�er from the measured harmonics of
the violin. This indicates that violin and singing voice timbres
are highly distinguishable.

In order to extend the output pitch range, we interpolate be-
tween di�erent voice models, i.e. the model of a female and
a male voice. The interpolation (see section Morphing) is
strictly done in the frequency domain, which assures that the
resulting sound is artifact-free and does not sound like two
cross-fading voices.

Morphing
The timbre modeling approach enables morphing between dif-
ferent timbres. Because the structure parameterization is kept
equal across di�erent sounds, we can interpolate between pa-
rameterizations and models. In the applications discussed
above, the electric violin controls either the sound of a mod-
eled Stradivarius violin or the sound of a female singing voice.
We can choose to synthesize any timbre \in between" by run-
ning two predictions simultaneously and creating two spectral
frames, one representing a violin spectrum and the other one
representing a voice spectrum. We introduce a morphing pa-
rameter � to weight the two spectra (0 < � < 1):

Ci(n) = C1i(n) � �+ C2i(n) � (1� �) (12)

where C1i and C2i are the output components i of model 1
and 2, and Ci are the resulting components i of the morphed
spectrum for time frame n.
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Fig. 7: left: Violin-control input driving a violin model. The bottom �gure represents the three perceptual inputs and

the top �gure represents the �rst seven harmonics extracted from the recorded signal (plain line) and predicted using

the model (dashed line) - fundamental at the top, sixth harmonic at the bottom. right: Violin-control input driving

a female singing voice model. The bottom �gure represents the three perceptual inputs and the top �gure represents

the �rst seven harmonics extracted from the recorded signal (plain line) and predicted using the voice model (dashed

line).

� is speci�ed o�ine or is changed dynamically. For example
we can use a MIDI controller such as a volume pedal or a bow
sensor, to modify the percentage of each timbre in real time.

Compression
The proposed methodology of timbre modeling and synthesis

can be used for eÆcient audio compression and transmission.

Since the amount of input data for the sound model is very
small, i.e. three 
oats at 86Hz, the control parameters can be
easily sent over the internet in real time. Remote real-time
synthesis through an ethernet network was performed suc-
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cessfully by transmitting the control data with OpenSound
Control (OSC) [17]. The system handles missing data ro-
bustly because the client synthesizes the audio signal from
scratch. Missing frames can easily be replaced by previously
received information. The client continuously generates the
time domain signal based on the data that was last received
properly. Hence there are no audible artifacts.

Discussion
Our approach preserves the perceptual parameters of the au-
dio signal and only transforms the spectral content of the
musical message. The response sounds surprisingly close to
the target instrument while preserving the musical intents of
the player. From the musician's perspective, the playability
of the instrument is preserved and the instrument behaves
intuitively and predictably.

In the case of cross-synthesis, i.e. the control features of the
played instrument are used as inputs for the model of a dif-
ferent instrument, the resulting timbre may not always sound
exactly as expected. The perceptual control of one instrument
family may look very di�erent from that of another family.
In particular the attack characteristics of an instrument vary
strongly across di�erent instruments and the loudness curve
of instrument A may have a much sharper attacks at the on-
set of new notes than instrument B. For instance, a modeled
guitar sound generated from the stroke of a violin does not
have the very characteristic sharp attack and long logarith-
mic release as we could expect it but rather a slow attack, 
at
sustain, and shorter release, more characteristic of a violin en-
velope. This limitation is not necessarily a problem because
musicians usually agree that the expressivity of controls is
more important than the reproduction of speci�c wave forms.
In other words, the violin-guitar controller may not behave
exactly like a guitar but it provides the violinist with an ex-
pressive tool that expands his/her artistic space. Yet, the
design of a new computer instrument and controller should
not underestimate the familiarity and closeness between the
musician and his/her speci�c instrument controller. It should
also not underestimate the ability of the musician to adapt to
a new controller or feedback mechanism driven by the will to
achieve an artistic goal.

CONCLUSIONS AND FUTURE WORK
We have presented a perceptually meaningful acoustic timbre
synthesizer for non-discretely pitched acoustic instruments
such as the violin. The timbre is modeled based on the spec-
tral analysis of natural sound recordings using the probabilis-
tic inference framework Cluster-Weighted Modeling. The tim-
bre and sound synthesizer is driven by the perceptual features
pitch, loudness, and brightness which are extracted from an
arbitrary monophonic input audio stream. The perceptual
features can be thought of as controllers for the timbre model
predictor. The predictor model CWM outputs the most likely
set of spectral parameters which are then used in an additive
synthesis approach to generate an audio stream. The real-
time system is implemented in Max/MSP on a Macintosh
platform.

A noise model that is based on a polynomial expansion of the
noise spectrum is currently being integrated into the system.
This extension enables a more accurate model and represen-
tation of genuinely noisy instruments such as the 
ute or the
shakuhachi.

Future work will include algorithms that extract more per-
ceptual features. In particular a better indicator for noisiness

is needed. This can be achieved by considering high-level in-
sights into the music making, for example, considering note
onsets or bow changes in the case of a violin signal. Regard-
ing the computing infrastructure we will design an analyzer�

MSP extension that combines the extraction of pitch, loud-
ness, and brightness in a single object. We will also extend
the application with models of very di�erent instruments such
as trombone and 
ute.
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