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RASTA Processing of Speech

Hynek Hermansky, Member, IEEE, and Nelson Morgan, Senior Member, IEEE

Abstraci— Performance of even the best current stochastic
recognizers severely degrades in an unexpected communications
environment. In some cases, the environmental effect can be
modeled by a set of simple transformations and, in particular,
by convolution with an environmental impulse response and
the addition of some environmental noise. Often, the temporal
properties of these environmental effects are quite different from
the temporal properties of speech. We have been experimenting
with filtering approaches that attempt to exploit these differences
to produce robust representations for speech recognition and
enhancement and have called this class of representations relative
spectra (RASTA). In this paper, we review the theoretical and
experimental foundations of the method, discuss the relationship
with human auditory perception, and extend the original method
to combinations of additive noise and convolutional noise. We
discuss the relationship between RASTA features and the nature
of the recognition models that are required and the relationship of
these features to delta features and to cepstral mean subtraction.
Finally, we show an application of the RASTA technique to speech
enhancement.

I. INTRODUCTION

PEECH carries information from many sources. Not

all information sources are relevant for a given task.
Conventional short-term, spectrum-based speech analysis
techniques blindly and faithfully represent most information-
carrying components in the signal. Then, data-intensive
stochastic techniques are commonly applied to reduce the
effects of the irrelevant information. However, the sources of
nonspeech components are often deterministic, their effect
on the speech signal is predictable, and the application
of stochastic techniques appears wasteful; the reduction of
irrelevant information in the speech analysis module of the
recognizer can increase the efficacy of finite amounts of
training data.

Take as an example a change in the frequency characteristics
of a communications channel caused, e.g., by switching to a
new microphone. The linear microphone characteristics show
as a convolutional component in the signal and therefore as
an additive component in the logarithmic spectrum of speech.
Any metric based on a short-term logarithmic spectrum (or
cepstrum) of speech will reflect this microphone change. When
the speech from this new microphone is not represented in the
training data, the performance of a recognizer that employs the
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short-term spectral representation of speech will be typically
severely impaired.

However, the frequency characteristic of a communications
channel is often fixed or only slowly varying in time. If our
speech representation was invariant to slow changes in the
logarithmic spectrum of speech, the problem would not have
arisen. The blind deconvolution of signals [23] is one way of
addressing the problem; the long-term average is subtracted
from the logarithmic spectrum of speech to make it insensitive
to changes in the long-term average. A variant of this approach
was used for speech recognition by Ney [20] and more recently
under the name of cepstral mean subtraction {22]. This method
does require a long-term average, which may be difficult to
obtain in real-time implementations.

In another case, assume that speech is corrupted by additive
noise. If the noise is uncorrelated with the original speech,
the noise component is additive in the power spectrum of the
signal. Again, most conventional speech representations will
be affected by such additive noise. If the noise is changing
slower than speech, one accepted way of dealing with the
noise is spectral subtraction [1], in which the estimate of
noise power spectrum (obtained in nonspeech intervals of the
signal) is subtracted from the power spectrum of the signal. At
least two problems arise: 1) A speech detector is required to
determine intervals from which a reliable noise estimate can
be obtained. 2) The subtraction process can result in negative
power spectral values. This is typically handled in some ad
hoc manner (e.g., by setting the negative values to zero or a
small positive constant).

In automatic recognition of speech (ASR), the task is to de-
code the linguistic message in speech. This linguistic message
is coded into movements of the vocal tract. The speech signal
reflects these movements. The rate of change of nonlinguistic
components in speech often lies outside the typical rate of
change of the vocal tract shape. The relative spectral (RASTA)
technique presented in this paper takes advantage of this fact. It
suppresses the spectral components that change more slowly
or quickly than the typical range of change of speech. We
demonstrate that RASTA processing improves the performance
of a recognizer in presence of convolutional and additive noise.
Finally, we discuss an application of RASTA processing for
enhancement of noisy speech.

II. HUMAN AUDITORY PERCEPTION

The fact that human perception tends to react to the relative
value of an input (rather than to its absolute values) is quite
obvious in vision (how else you could see the black-and-white
movie on a white screen?), but the literature on perception
of very slowly varying auditory stimuli seems to be rather
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scarce. Some circumstantial evidence indicates that there is a
preference for sounds with a certain rate of change. Green {5]
cites early experiments of Riesz [21] that were later confirmed
by Zwicker [26] and Green [5], which indicate a greater
sensitivity of human hearing to modulation frequencies around
4 Hz than to lower (or higher) modulation frequencies.

More convincing evidence comes from some speech experi-
ments. Some years ago, a simple but striking' experiment was
carried out [2]: A whole spoken sentence was processed by a
filter that approximated the inverse of the short-term spectral
envelope of the center of one of the vowels in the sentence.
Thus, the spectrum of the given vowel became roughly white.
In spite of this, the sentence remained perfectly intelligible,
and the given vowel was still perceived, in spite of its lack of
any formant structure. More formal experiments supporting
this notion were done by Summerfield and his colleagues
[241 who showed that a perception of speech-like sounds is
dependent on the preceding sound, namely, that it depends
on the spectral difference between the current sound and the
preceding sound.

III. PRINCIPLE OF THE RASTA METHOD

The relative insensitivity of human hearing to slowly vary-
ing stimuli may partially explain why human listeners do
not seem to pay much attention to a slow change in the
frequency characteristics of the communication environment
or why steady background noise does not severely impair
human speech communication.

However, even when the experimental evidence from human
perception may give us only limited support, the suppression
of slowly varying components in the speech signal makes good
engineering sense. Thus, to make speech analysis less sensitive
to the slowly changing or steady-state factors in speech, we
have replaced a conventional critical-band short-term spectrum
in PLP speech analysis [6] with a spectral estimate in which
each frequency channel is band-pass filtered by a filter with a
sharp spectral zero at the zero frequency. Since any constant
or slowly varying component in each frequency channel is
suppressed by this operation, the new spectral estimate is less
sensitive to slow variations in the short-term spectrum [7],
[11].

The steps of RASTA-PLP are as follows (see [6] for
a comparison to the conveniional PLP method). For each
analysis frame, do the following: .

1) Compute the critical-band power spectrum (as in PLP).

2) Transform spectral amplitude through a compressing
static nonlinear transformation.

3) Filter the time trajectory of each transformed spectral
component.

4) Transform the filtered speech representation through
expanding static nonlinear transformation.

5) As in conventional PLP, multiply by the equal loudness
curve and raise to the power 0.33 to simulate the power
law of hearing.

6) Compute an all-pole model of the resulting spectrum,
following the conventional PLP technique.

! Unfortunately unpublished, to- the best of our knowledge.
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The key idea here is to suppress constant factors in each
spectral component of the short-term auditory-like spectrum
prior to the estimation of the all-pole model.

The most important research issues are in steps 2) and 3),
ie.

« in which domain is the filtering done

« which filter to use.

As for the filter used, we started with an IIR filter with the
transfer function®

2427 —z73 - 2274

_ 4
H(z) = 012"« —= (g1

1

The low cut-off frequency of the filter determines the fastest
spectral change of the log spectrum, which is ignored in
the output, whereas the high cut-off frequency determines
the fastest spectral change that is preserved in the output
parameters. )

The high-pass portion of the equivalent band-pass filter
is expected to alleviate the effect of convolutional noise
introduced in the channel. The low-pass filtering helps to
smooth some of the fast frame-to-frame spectral changes
present in the short-term spectral estimate due to analysis
artifacts. In (1), the low cut-off frequency is 0.26 Hz. The
filter slope declines 6 dB/oct from 12.8 Hz with sharp zeros
at 28.9 and at 50 Hz.

Note that the RASTA filter has a rather long time constant
for the integration (about 500 ms for the filter (1) and 160 ms
for more recent implementations). It means that the current
analysis result depends on its history (i.e., on previous outputs
stored in the memory of the recursive RASTA filter).> For
example, the analysis result is dependent on where in the signal
the analysis starts, i.e., how is the RASTA filter initialized. In
our experiments, we typically address this issue by starting
analysis as far as possible in silence preceding the speech.

The whole RASTA process is illustrated in Fig. 1.

IV. EXPERIMENTS ON DATA FROM
DIFFERENT RECORDING ENVIRONMENTS

A. Logarithmic RASTA

In the first set of experiments, we were concerned about the
effect of convolutive distortions as caused, e.g., by variable fre-
quency characteristics of different communication channels or
by using different microphones. Such distortions should appear
as an additive constant in the logarithmic spectrum of speech.
Thus, we have used logarithmic amplitude transformation as
a compressing static nonlinearity in Step 2 of the RASTA-
PLP method. The expanding static nonlinearity (Step 4 of the
method) was an antilogarithmic (exponential) transformation.

2The pole was modified for later experiments; see Section IV-D.

3In one of our experimental runs, we have accidentally included a part of a
file header in the analyzed signal. Although this caused only a minor problem
for the conventional frame-by-frame PLP analysis (only the first frame was
affected, and it was cut off prior to pattern matching), it had a major effect on
the RASTA analysis since the effect of the first corrupted frame propagated
(due to the memory of the RASTA filter) over a significant part of the analysis
output.
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Block diagram of RASTA speech processing technique.

Fig. 1.

B. Isolated Digit Recognition Experiments

A database was derived from connected digits recorded over
dialed-up telephone lines. One hundred and fifty five male and
female speakers were used for the recognizer, and data from an
additional 56 male and female speakers formed the test. The
data were recorded at the Bellcore facility in Morristown, NJ,
and represented channel conditions in the New Jersey area. An
isolated-utterance continuous-density HMM recognizer was
used in the experiment. Additional details of the experiment
can be found in the Appendix and are given in [9]. Three
experiments were carried out. In all experiments, the system
was trained on the training part of the Bellcore database.

In the first experiment, the test set was a subset of the
Bellcore database. Thus, we assume that both the test set
and the training set were recorded under similar channel
conditions. The first column of Table I shows the percentage
error rates on this test data. RASTA-PLP performs about as
well as the standard PLP technique.

In the second experiment, the Bellcore test data set was
corrupted by a simulated convolutional noise (preemphasis by
the first-order differentiation of the signal). The recognizer that
had been trained on the uncorrupted data was still used. The
recognition tests were run on this data set, using the models
obtained from Bellcore data. The results are tabulated in the
second column of Table I. The standard PLP technique yielded
almost an order of magnitude higher error rate than the error
rate on the original Bellcore data. RASTA-PLP can be seen to
be far more robust to such simulated channel variation.

To extend the result to an experiment with realistic changes
in channel conditions, digit strings spoken by four (two male
and two female) speakers were recorded over the local tele-
phone lines in the US WEST speech laboratory in Colorado.

TABLE 1
ISOLATED DIGIT ERROR RATES
method same controlled different
environment | modification | environment
PLP 4.08% 31.35% 31.10%
RASTA-PLP 3.81% 5.0% 7.64%
TABLE II
SPEAKER INDEPENDENT CONTINUOUS SPEECH WORD ERROR RATES
method | unfiltered [ filtered
_ PLP 17.9% 67.5%
RASTA-PLP 18.6% 33.0%

The recognition errors on this set are shown in the third column
of Table I

As with the previous experiment, the conventional PLP
technique yields a very high error rate. A similar test showed
that a standard LPC-based system degraded even further, to a
60.7% error tate. The performance of RASTA-PLP degrades
only moderately.

C. Large Vocabulary Continuous Speech Experiments

As a followup to the work reported above, we applied a
simple low-pass filter (a single complex pole pair with a 3-
dB point at 2 kHz) to 300 development test sentences from
the October 1989 Resource Management speaker independent
continuous speech recognition corpus. This filter was chosen
to implement an approximation to the effect of muffled speech
that we had observed with a small obstacle between the
microphone and the talker’s mouth. Both eighth-order PLP
and eighth-order RASTA-PLP were computed on these data as
well as on unfiltered versions of the standard 3990-sentence
training set. The recognizer used was a hybrid recognizer with
a neural network trained on the 3990 sentences to predict
monophones for each frame and then used in recognition to
estimate likelihoods for a simple context-independent HMM
system.

The word error results, which are shown in Table II, show
that RASTA processing causes only slight degradation of
performance for the clean data but cuts the error in half for
the filtered case.

Informally, we have observed that RASTA-PLP gives a
substantial advantage in our on-line recognition experiments;
while the conventional short-term spectrum-based front end
is very sensitive to the choice of the microphone or even to
the microphone position relative to the mouth, RASTA-PLP
makes the recognizer much more robust to such factors.

D. Some Optimizations of the RASTA Filter

In the experiments reported above, we used an AR integra-
tion constant (real pole at z = 0.98) corresponding to a time
constant of 500 ms. Later runs with these same data showed
that a smaller pole value (z = 0.94) corresponding to a 160-ms
time constant appeared to be optimal.

Results of the optimization experiment are shown in Fig.
2. The recognition vocabulary was 11 isolated digits plus
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Fig. 2. Results of pilot experiments with telephone-quality digits.

two control words (“yes” and “no”) recorded by 30 speakers
over dialed-up telephone lines. Digits were hand end-pointed.
The recognizer was a DTW-based multitemplate recognizer.
Twenty seven speakers out of 30 were used for training of the
recognizer in a jack-knife experimental design, thus yielding
52780 recognitions trials per experimental point. (See the
Appendix for further a description of this experiment).

To introduce convolutive distortion, test data were filtered
by a linear filter simulating the inverse spectral envelope of
a sustained vowel /a/. To investigate the effect of low-pass
filtering by the MA part of the RASTA filter (1), two different
MA polynomials were used, namely

Mi(z) = 2% (0.5 -0.5z71)
and our original
M(z) =2 % (0.2+0.1z71 —0.127% - 0.227%)

for the two-point MA filter (which is denoted in the figure as
“high-pass”) and the five-point MA filter (which is denoted
in the figure as “band-pass”), respectively. The experiment
described above indicates that the most important feature for
alleviating the harmful effects of variable environment transfer
function seems to be the sharp spectral zero at zero frequency.
However, using the five-point MA filter seems to yield a
consistent advantage. The position of the spectral pole, which
determines the high-pass cut-off frequency (around 0.9 Hz for
the pole at z = 0.94) exhibits a broad optimum.

Fig. 3 shows the frequency response of our current RASTA
filter. This frequency response compares well with the outcome
of Green’s experiments with detectability of FM signals (see
p. 917 of [17]). Fig. 4 shows its impulse response. The filter
step response has a single time constant around 160 ms, which
compares well with the “nervous integration time” of Liang
and Chistovich (see p. 903 of [17]) and is also roughly in the
range of estimates of an integration time constant observed in
some auditory enhancement experiments [24].
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V. EXPERIMENTS WITH DATA CONTAINING
BOTH ADDITIVE AND CONVOLUTIONAL NOISE

A. Recognition in Additive Noise

As noted earlier, an operating acoustic environment for a
practical recognizer (room, microphone, telecommunication
channel, ...) not only has variable frequency characteristics
but may also be noisy. Table III shows the results of an
isolated word recognition experiment in which the recognizer
was operating on data that were subject to linear filtering (con-
volutional noise) and to which the noise was added (additive
noise). (Details of the experimental setup and recognition task
are described in the Appendix).

Section I of Table 1II shows the recognizer accuracy when
training is on data with an environment that is identical to that
for the test data, that is, the recognizer was always trained on
the data that were subject to the identical distortion as was the
test. As long as each operating environment is well represented
in the training, the recognizer typically performs well.
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TABLE III

ISOLATED DIGIT ERROR RATES USING DTW-BASED SYSTEM.

IN THE FIRST ROW, TRAINING AND TESTING WERE BASED ON

THE SAME NOISE CONDITION (AS A BEST-CASE COMPARISON). FOR ALL OTHER CASES, THE RECOGNIZER WAS TRAINED ON
CLEAN SPEECH. NOISE INDICATES TEST DATA WITH SNR=10 dB, AND NOISE-FILTERED INDICATES TEST DATA WITH
THE SNR=10 dB AND WITH AN ADDITIONAL CONVOLUTIONAL LINEAR DISTORTION INTRODUCED BY FILTERING.

clean | noise | clean-filtered | noise-filtered

PLP same environment || 12.0 | 17.2 14.0 21.5

PLP 12.0 | 434 39.7 67.5

RASTA 12.2 | 42.1 19.9 49.2

Unfortunately, the noise characteristics are seldom known in 1 0—9 1 0-8 -7 -6

advance. When the data from different environments is used in , 10 10
training and test, the same recognizer typically performs much v v v v
worse. This situation is illustrated in all remaining sections of 100 | : , —

Table III, which show recognition accuracies for the recognizer S/N > 20dB
trained on the clean data and used on the noisy data. o
Our goal is to understand and eliminate variance in the 20dB
speech signal due to the environmental changes and thus ulti- — N |

mately reduce the need for extensive training of the recognizer z = Z O~

in different environments. In this section, we show that our
new method is comparable to training on noisy data.

B. Lin-Log RASTA

‘When operating in the logarithmic spectral domain, RASTA
effectively diminishes spectral components that are additive
in the logarithmic spectral domain, in particular, the fixed or
slowly changing spectral characteristics of the environment
(which are convolutive in the time domain and, therefore,
additive in the log spectral or cepstral domain). However,
uncorrelated additive noise components that are additive in
the power spectral domain became signal dependent after
the logarithmic operation on the spectrum and cannot be
effectively removed by RASTA band-pass filtering in the
logarithmic domain. Thus, as shown in Table HI, the original
RASTA processing on the logarithmic spectrum or cepstrum is
not particularly appropriate for speech with significant additive
noise.

Hirsch et al. [13], using a high-pass filtering approach
primarily in the power spectral domain, achieved encouraging
results in suppressing additive noise on a different set of
speech recognition problems. Their experience appeared to
confirm the effectiveness of the RASTA class of techniques.
Therefore, we decided to study RASTA processing in an
alternative spectral domain, which is linear-like for small
spectral values and logarithmic-like for large spectral values.

In [18], we have proposed as a substitute for the logarithmic
transform in Step 2 of RASTA processing the function

y=1n(1+ Jz) 2)
where J is a signal-dependent positive constant. The
amplitude-warping transform is linear-like for J < 1 and
logarithmic-like for J >> 1. The exact inverse of (2)

ey -1
J

(where e is the base of the natural logarithm) is not guaranteed
to be positive for all y and, as in conventional spectral

T

3

additive and convolutive -
20 i | : i |
1 0-1 1

RECOGNITION ACCURACY [%)]

-5
J 10

Fig. 5. Digit recognition.

subtraction, would require some ad hoc procedure to ensure the
positivity of the processed power spectrum. To avoid this, we
use an approximate inverse transform as an expanding static
nonlinearity in the Step 4 of RASTA processing.

ey
r= —.

7 “

This inverse is equivalent to the sum of the exact inverse and

additive constant 1/J. It is therefore less accurate for small
spectral values than for the larger ones.*

C. Isolated Digit Experiment

We repeated the earlier isolated word recognition experi-
ments using the nonlinearities (2) and (4). The results shown
in Fig. 5 were generated using a number of different values
of J. There is a distinct optimal value of J for each particular
noise level. The optima are always better than either the PLP
or RASTA-PLP result.

4We have observed similar results with a piecewise transform y = JE—’ for
Jr < e,y =log(Jx) for Jx > e, using the approximate inverse x = %.
This inverse is exact for Jx > e. Results using either transformation are
generally very similar and, throughout the paper, we only give resuits using
the first one (see (3) and (5)). This comparison suggests that the exact form
of the nonlinearity may not be crucial as long as it is roughly linear for smail
arguments and logarithmic for large arguments.
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Fig. 6. Large vocabulary continuous speech recognition.

D. Large Vocabulary Continuous Speech Experiment

The experiments above were done with a simple DTW
recognizer on a small isolated word recognition task. This
recognizer and task were chosen for the exploratory research
where we had to repeat the recognition experiment many times.
To see whether our approach would scale to large tasks, we
used a standard DARPA Resource Management recognition
task and hybrid neural network/ HMM recognizer (see the
Appendix for a further description). Fig. 6 shows the results
for additive noise. About the same pattern as was observed
in the earlier digit experiment can be seen here: There is an
optimal value of J for each particular SNR. Smaller values of
J are preferred for noisy speech.

1) Rationale for the Optimal J: Results shown in Figs. 5
and 6 indicate that there is an value optimal of J for each
particular SNR case in the test data. Fig. 7 shows histograms of
logarithmic auditory-like spectral energies x for all four SNR’s
that were used. Spectral values for which Joptimaiz = e for all
four investigated SNR’s are indicated in the figure by arrows.
Supporting [25], the histograms are multimodal. Assuming that
the strongest mode represents noise, the optimal value of J is
such that it puts most of the signal into the logarithmic-like part
of our nonlinearity and most of the noise into its linear-like
part.’

E. Adaptive Adjustment of the Optimal J

In the experiments described above, the same value of J was
used in both the training and the operation of the recognizer.

5The RASTA function of (2) may also be written as
1
y:ln(])+lu(7+z). 5)

The first term is constant and is filtered out by the band-pass filter. Therefore,
lin-log RASTA may be also viewed as a noise-masking technique in which
a fixed amount of additive noise (inversely proportional to an overall noise
estimate) is added to every spectral component prior to the RASTA processing
in the logarithmic domain.
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TABLE IV
ISOLATED DIGIT ERROR RATES USING DTW-BASED MULTITEMPLATE
SYSTEM. THE RECOGNIZER WAS TRAINED ON CLEAN SPEECH. NOISE
INDICATES TEST DATA WITH SNR=10 dB, AND NOISE-FILTERED
INDICATES TEST DATA WITH THE SNR=10 dB AND WITH AN ADDITIONAL
CONVOLUTIONAL LINEAR DISTORTION INTRODUCED BY FILTERING.

{ [ clean T noise | clean-filtered [ noise-filtered |
Tinlog RASTA | 114 | 151 | 209 | 257 |

Since the particular value of J influences the shape of the
resulting all-pole model spectrum, it would be desirable from
the model-matching perspective to use identical J on both
the training and the test data. However, as shown in Fig. 6,
the J depends on the level of noise in the signal that can
“vary during the operation of the recognizer. This would then
‘require that the analysis for both the training and the operation
of the recognizer would change, depending on the noise level
during the operation. It would be impractical to reanalyze the
training data and retrain the recognizer every time the noise
level changes. Therefore, we have followed a different strategy
in this work. We have measured the mean critical band energy
in the first 125 ms of the utterance (there was no speech in
this part of utterance in our data). Then, we made J inversely
dependent on such measured mean noise energy Enoise, ie.

1.0
CE, noise
In the training of the recognizer, we have used four different

sets of templates, where each set is trained with an order-of-
magnitude different Cirain, namely

Cirain = 3 x 10%,3 x 10,3 x 10}, and 3.

Thus, compared with the fixed J recognizer (which could be
used if there was no change in the S/N conditions during the -
operation), our recognizer for the operation under variable S/N
conditions requires four times as many templates.

J =
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TABLE V
ISOLATED DIGIT ERROR RATES USING HTK-BASED GAUSSIAN MIXTURE SYSTEM. IN THE FIRST ROW, TRAINING AND TESTING
WERE BASED ON THE SAME NOISE CONDITION (AS A BEST-CASE COMPARISON). FOR ALL OTHER CASES, THE RECOGNIZER
WAS TRAINED ON CLEAN SPEECH. NOISE INDICATES TEST DATA WITH SNR=10 dB, AND NOISE-FILTERED INDICATES TEST
DATA WITH THE SNR=10 dB AND WITH AN ADDITIONAL CONVOLUTIONAL LINEAR DISTORTION INTRODUCED BY FILTERING.

clean | noise | clean-filtered | noise-filtered
PLP same environment 5.0 10.0 7.2 10.1
PLP 50 | 37.0 24.9 50.4
RASTA 3.3 | 50.0 3.6 40.4
PLP cepstral mean removal 4.3 42.0 5.0 46.7
Lin-log RASTA 3.7 | 137 5.6 17.1

During the operation of the recognizer, C' was fixed at
Ctest =3.

Results from such an automatically adaptive system are
shown in Table IV and indicate a substantial improvement
compared with the performance of PLP or RASTA shown in
Table III.

F. Compensation for the Variable Static Nonlinearity

As shown in the previous Sections D and E, different SNR’s
require different static nonlinearities, which in turn result in
different all-pole models. To compensate for this deterministic
variability in the analysis result, we applied a linear mapping
to the RASTA processed auditory-like spectrum based on the
multiple regression model

N
B = o5 4 3 S/ ©
k=1

where

Y; multiple-regression estimate of the ith element
of a RASTA-filtered auditory-like spectrum that
would use the static nonlinearity optimal for the
noise level in the training data (typically for the
clean speech)
kth element of the true RASTA-filtered auditory-
like spectrum using the static nonlinearity optimal
for the given SNR in the test utterance (quantized
to seven levels of S/N, i.e., >25 dB, 25 dB, 20
dB, 15 dB, 10 dB, 5 dB, and 0 dB)
multiple regression coefficients for the given
SNR

N number of elements of the auditory-like spec-

trum.

As in the work described in the preceding section (where
we have used multiple templates derived for different values
of .J), we have quantized J and thus derived three different
mapping matrices (the mapping for the low-noise speech is
unity) using speech from 10 speakers not used for the training
or test sets. In addition, in contrast to the previous experiments,
a larger set of 200 speakers was used. Additionally, the
HMM Tool Kit (HTK) from Cambridge University with four
Gaussian mixtures per state was used instead of a DTW
recognizer. Finally, a noise estimate was performed on-line

el

g

by a histogram-based technique developed by Hirsch [14] that
does not require explicit speech/nonspeech detection. Details
of the experiment are described in the Appendix.

Results shown in Table V compare this technique trained
on clean speech (last row of the table) with the following:

1) conventional PLP trained on the speech from identical

environment

2) PLP trained on the clean speech

3) logarithmic RASTA trained on the clean speech

4) PLP with cepstral mean removal [22].

Both logarithmic RASTA and cepstral mean removal help
for convolutional noise. However, PLP, logarithmic RASTA,
and cepstral mean removal all degrade severely in additive
noise. Lin-log RASTA with a linear mapping yielded good
robustness over both convolutional and additive noise.

While cepstral mean subtraction performed equivalently or
better for a purely convolutional noise, it was not as effective
as the lin-log RASTA approach when additive noise was
present.

VI. CONSEQUENCES OF RASTA PROCESSING

As already briefly discussed in the Section III, one of the
most important differences between conventional frame-by-
frame speech analysis and RASTA-based techniques is that
the RASTA result depends on its history. Employing some
larger part of the signal against which the current analysis
frame is compared is a strategy that is also used in in other
channel equalization techniques such as the blind deconvolu-
tion (cepstral mean removal), and it is the very reason why
all such techniques can differentiate between relative steady
disturbances and the varying speech components of the signal.
However, while cepstral mean subtraction typically compares
the current analysis frame against the average of the whole
utterance, RASTA uses a relatively short history of the signal
on the order of several hundred milliseconds (as implied by
the time constant of the RASTA filter). Such a short history
employed in RASTA effectively enhances transitions between
different speech segments and makes the result dependent
on the previous short segment of speech such as phoneme
or syllable. This property, which is illustrated in Fig. 8,
which shows spectrograms of five sustained Czech vowels
produced by a) conventional FFT, b) PLP, and c) RASTA-PLP,
makes RASTA less suitable for most current phoneme-based
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recognizers that assume steady or piecewise steady phoneme-
sized models.

In a recent experiment, we observed how the choice of
recognition model can strongly change the apparent effect
of RASTA processing. We compared the effects of model
complexity on PLP performance with and without RASTA pro-
cessing. Specifically, we tested the difference between RASTA
PLP and PLP results for a complex (clustered triphone, five
mixtures) and a simple (single mixture monophone) model.
HTK software simulation of a continuous density HMM
recognizer was used on the Credit Card portion of the Switch-
board corpus (see [27] and Appendix for more details of the
experiment).

Since cepstral mean removal used in both cases (where
the mean was computed over long utterances) was apparently

©)
Spectrograms of five sustained Czech vowels derived by (a) conventional FFT, (b) PLP, and (c) RASTA-PLP, respectively.

sufficient to remove the effect of the variable communication
channel in the data, and the additive noise was not a significant
problem in this task, the RASTA processing did not yield
any advantage. However, the experiment is interesting since it
shows how an insufficient model (single-mixture monophone)
does not account for the effect of the left context enhanced by
the RASTA processing.

VII. RELATION OF RASTA PROCESSING TO SOME
OTHER CHANNEL EQUALIZING TECHNIQUES

A. Comparison of RASTA Processing to Delta Features

Furui [4] correctly observed that convolutional distortions
will be also alleviated in the so-called “delta” cepstral features
of speech. As a matter of fact, it was this property of delta
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TABLE VI
WORD ERROR RATES FOR CONTINUOUS SPONTANEOUS SPEECH
RECOGNITION ON CREDIT CARD PORTION OF THE SWITCHBOARD
DATABASE, 1102 TRAINING UTTERANCES, 258 TEST UTTERANCES,
‘WORD-PAIR GRAMMAR DERIVED FROM THE TEST SET.

Model PLP | RASTA-PLP
1-mixture monophone 64.2% 76.2%
5-mixture clustered triphone | 41.3% 41.9%

features that originally motivated us to develop RASTA pro-
cessing, and this influence is apparent in the numerator of our
current RASTA filter-taken by itself: It is a transfer function
of the delta feature calculation. As Furui also observed, the
delta cepstral features do not perform too well by themselves.
Therefore, they are typicaily appended to the vector of static
cepstral features, which once again makes the representation
vulnerable to convolutional distortions.

The RASTA method differs from the delta feature calcu-
lation in using a filter with a broader pass-band. In addition,
the general form of RASTA processing does filtering between
two static nonlinearities that are not necessarily the inverse
of one another. The delta features can be viewed as a special
case of temporal RASTA processing in which the RASTA
filter is a five-point FIR filter applied to temporal trajectories
of cepstral coefficients (linear transformation of logarithmic
spectral domain) and in which the second static nonlinearity
is absent.

Comparing Fig. 9, which shows frequency characteristics
of several FIR filters that have been used in the past for the
computation of delta features, with Fig. 3 (showing frequency
characteristic of the RASTA IIR filter) shows that the band-
pass RASTA IIR filter has a fairly flat frequency response
within the 1 to 10 Hz frequency range, thus passing relatively
undisturbed those components of the signal that we postulate
to be the most relevant for carrying the linguistic information
in the speech signal. On the other hand, the delta feature
filters have rather selective frequency responses, emphasizing
a small range of modulation frequencies and attenuating the
rest, therefore modifying the relative importance of various
linguistically relevant components in the speech signal. This
is true for all delta-feature FIR filters. As seen in the figure, the
delta-feature filter with a time constant of 170 ms (comparable
with the time constant of our RASTA filter) still has a selective
frequency response, in this case, with a maximum at about 2
Hz instead of 10 Hz for the conventional 50-ms FIR delta-
feature filter.

B. Comparison of RASTA Processing to
Cepstral Mean Subtraction.

As noted earlier, one particular form of blind deconvolution
of speech done by subtraction of the mean cepstral vector
(which is typically computed over the length of the current
utterance) can alleviate the effect of a variable communication
environment. This is currently often used for large vocabulary
continuous speech ASR [22] and can be also viewed as a
particular form of noncausal FIR filter employing a variable
length future and past. Frequency responses of several fil-
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Fig. 9. Frequency response of RASTA filter compared with frequency
responses of several forms of delta feature computation.
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Fig. 10. Frequency responses implied in several forms of cepstral mean
subtraction. i

ters implied by cepstral mean subtraction® over sentences of
different lengths are shown in Fig. 10.

Compared with the typical RASTA filter (Fig. 3), the cut-
off frequencies of all but the shortest cepstral mean subtraction
filters are lower, eliminating only the fixed bias in the cepstral
domain. Thus, the main difference between the cepstral mean
subtraction and the RASTA processing in the log spectral
(cepstral) domain is that the cepstral mean subtraction merely
removes the dc component of the short-term log spectrum,
whereas the RASTA processing influences the speech spectrum
in a more complex way, making the current output dependent
on its past and enhancing the spectral transitions, as discussed
in the previous section.

As with cepstral mean subtraction, the RASTA technique
(when applied in the log spectral domain) attempts to make
the long-term average log spectrum identically zero. On a
short-term basis, it combines a weighted average of all past
log spectra with the current logarithmic spectrum, with the
weighting determined by the impulse response of the RASTA
filter (see Fig. 4). Fig. 4 illustrates that RASTA processing av-

SThat is, we show the frequency response of the linear-time-invariant flat-

weighted moving average with the same time window as the corresponding
mean computation.
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erages four log spectra around the current frame and subtracts
from this average an exponentially weighted geometric mean
of all past analysis frames. It is this logarithmic subtraction
of a weighted average of past spectral values that accounts
for RASTA environment equalization. Since the time constant
of the exponential averaging window is about 160 ms, the
running average being subtracted can follow slow changes in
the communication environment.

In the course of incremental improvements of the ASR
system, one typically tends to shy away from drastic changes
of the recognition paradigm. Therefore, many may favor
cepstral mean subtraction for dealing with convolutional noise,
in spite of its inherent problems with delay when dealing
with real continuous input. However, we observed, in our
experiments, that cepstral mean subtraction does not appear
to handle degradation due to additive noise. We have also
observed that in some cases, the combination of cepstral mean
subtraction and RASTA can give better results than either of
the techniques alone [10].

VIII. ENHANCEMENT OF NOISY SPEECH

One of the accepted conventional techniques for noise sup-
pression is spectral subtraction, in which the noise power spec-
trum is estimated in intervals between speech and subtracted
from a power spectrum of the signal. In some implementa-
tions, a magnitude spectral domain is preferred. The enhanced
signal is then reconstructed by an overlap-add inverse Fourier
transform using the modified magnitude and the original noisy
phase of the signal spectrum. This technique is critically
dependent on a reliable detection of nonspeech intervals of
the signal. Typically, in every detected nonspeech interval, the
noise estimate is updated with some time constant. This time
constant needs to be short enough to allow for slow changes
in noise but also needs to be long enough to compensate for
possible occasional errors in the noise estimate.

A. RASTA Approach to Noise Suppression

Explicit estimation of the noise spectrum in nonspeech in-
tervals is cumbersome, error prone, and may not be necessary.
In principle, suppressing all slowly varying components in the
magnitude spectrum may not significantly harm information
bearing components, but it may reduce some slowly varying
noise in the observed signal. By the same rationale, a suppres-
sion of rapidly varying spectral components may reduce some
impulsive noise.

After some experimentation, we band-pass filtered the cubic
root of power spectral magnitude using a fifth-order elliptic
IR band-pass filter with cut-off frequencies at 1.0 and 15.0
Hz (thanks to J. Allen of AT&T Bell Labs for the filter).

The enhanced speech was reconstructed from the haif-wave
rectified filtered power spectrum (its amplitude inverse was
exponentiated to the third power to compensate for the cubic
root compression prior to the filtering) and the original noisy
phase and was delayed by one frame. This one-frame delay
was determined empirically and appeared to function as a gross
compensation for a phase delay introduced by the RASTA
filter. The standard overlap-add technique [16] employing a
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31.25-ms Hamming window with a 7.8125-ms analysis step
was used for the analysis and resynthesis.

Noisy speech was obtained from a voice-mail message
recorded over the cellular public network from a moving
automobile. Impulsive noise was artificially introduced into
this recording by randomly substituting samples with fixed
amplitude for some of the original speech samples.

Informal listening revealed a significant reduction in both
the steady background car noise and the impulsive noise. Some
colored musical noise was perceived. Another disturbing arti-
fact of the processing is a variable phase-shift-like distortion of
the processed speech. Some weaker consonanis, which were
originally masked by the noise, still appear to be lost. As
with conventional spectral subtraction, the processing does not
seem to improve speech intelligibility (although at this time we
have run no formal tests). Compared with the original noisy
speech, however, the processed speech does appear to be more
prominent above the background.

We have also explored a processing approach that has more
moderate effects. We have tried a less aggressive RASTA
filtering by mixing the original and filtered magnitude spec-
trum prior to the one-way rectification. This appears to be
a promising technique for some applications that demand
moderate noise suppression while preserving most of the
original speech quality.

The RASTA enhancement processing described above is just
a first cut at the problem. For this pilot work, we ran no formal
perceptual experiments, nor did we explore any significant
corpus of noisy data. Consequently, we do not claim that the
processing parameters described above are optimal. However,
the form of RASTA filter used appears to have a significant
influence on the audible results. Based on the outcome of this
small exploratory experiment, our interest in RASTA-based
speech enhancement was piqued.

IX. CONCLUSION

The RASTA processing technique presented in this paper
employs band-pass filtering of time trajectories of speech
feature vectors. In principle, the RASTA processing can be
done on time trajectories of any parameters (of course, with
different effects). In this work, the processing was done on
trajectories of critical-band spectral energics in the context of
the previously proposed PLP analysis and applied between
two static nonlinearities.

When dealing with a purely convolutional noise, the optimal
compressive static nonlinearity appears to be the logarithmic
function, and the expansive static nonlinearity is its exact
inverse, i.e., the antilogarithm.

However, when dealing with a more realistic situations
involving a combination of convolutive and additive noises,
the compressive nonlinearity should be dependent on the SNR
and be approximately linear for small spectral energies and
approximately logarithmic for large ones. The expansive non-
linearity remains the antilogarithm. This creates the situation
in which the analysis result is dependent on the particular
compressive nonlinearity. Since the optimal compressive non-
linearity depends on the SNR, additional strategies must be
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used to reduce the effect of this source of variability. We have
demonstrated that a recognizer incorporating such a strategy
appears to be relatively robust to variations in noise conditions.

RASTA processing can be also used for the enhancement
of noisy speech. In such a case, an overlap-add analysis-
resynthesis technique is applied to the cubic root of the
power spectrum of noisy speech, which has been RASTA
filtered and then cubed. The noisy phase is preserved for the
signal reconstruction. Results appear to be comparabie with
the conventional spectral subtraction method while alleviating
the need for an explicit determination of nonspeech intervals.

There are several points we have learned in the course of
the work described here:

» RASTA processing increases the dependence of the data
on its previous context. Therefore, the performance of
simple context-independent subword-unit recognizers can
be degraded by RASTA processing. We have seen that
RASTA processing works well in tasks with whole word
models (such as many of the tasks reported in this paper)
or in phoneme-based recognizers that used triphones or
broad temporal input context (such as the neural net based
recognizer used in our large vocabulary experiments).

» RASTA processing in the logarithmic (cepstral) domain

does not address the problem of additive noise. Lin-log
RASTA processing, which is described in Section V,
appears to handle both additive and convolutional noise
reasonably well.
Some users have had difficulty with initial conditions.
One needs to be aware that the RASTA filter incorporates
a filter with a significant memory. Thus, it is different
from the well-established short-term spectral analysis of
speech in which each analysis frame is entirely indepen-
dent of its surroundings.

Frame-by-frame analysis of speech dates from early days
of speech analysis-resynthesis. RASTA processing represents
a departure from this paradigm. We believe it is a step in
the direction of modeling some temporal properties of human
auditory processing. It has potential for further improvements
as we learn more about the modeling of human auditory
perception.

APPENDIX

The following experimental setup was used for the isolated
digit experiments described in this paper:

Eleven isolated digits and two control words (“yes” and
“no”) were recorded at 8 kHz by 200 talkers over dialed-
up telephone lines. All words were hand end pointed. Initial
experiments used a subset of 30 speakers. The recognizer
was a DTW-based nearest-neighbor multitemplate recognizer.
Twenty seven talkers out of 30 were used in for training of the
recognizer in a “leave-three-out” experimental design. In the
“leave-three-out” design, three templates out of 30 are held
for test, and the remaining 27 templates per each utterance
are treated as training data. All possible unique choices of 27
templates out of available 30 were used, thus yielding 52780
recognition trials per experimental point.

The experiments in Section VI were expanded versions of
the above in which all 200 speakers were included. In this case,
results were the average of four runs, in which 150 speakers
were used for training and 50 for test; the test speakers were
rotated so that ultimately, all 200 had been tested with systems
trained from independent speakers. For these experiments, the
HMM tool kit (HTK) was used to train Gaussian mixture
HMM’s, as opposed to the DTW templates of the earlier
experiment. In this case, each of the 13 words were modeled
by ten states (including a nonemitting initial and final state),
and there were four mixtures per state. Covariance matrices for
each mixture were assumed to be diagonal (i.e., only means
and variances were computed).

Recognition features were exponentially weighted [8] (exp
= 0.6) five cepstral coefficients (zeroth coefficient excluding)
of the fifth-order PLP on RASTA-PLP model computed from
a 25-ms analysis window with a 12.5-ms analysis step.

The data were also degraded by realistic additive noise
recorded over cellular telephone from a 1978 VOLVO 244
with the windows closed running at 55 mi/hr on a freeway.
This noise has some natural slow variations (passing cars),
and its long-term spectrum has a peak at about 600 Hz with
a following spectral slope of about -12 dB/oct. The noise was
added at several signal-to-noise ratios. The SNR’s given in the
paper represent ratios between the averaged energy over the
whole utterance and the averaged energy of the added noise.
Note that this will in general be a lower number than one
would expect to see from a peak-to-average measure such as
is used in the NIST SNR standard.

To introduce convolutional noise, linear filtering simulating
the difference between frequency response of the carbon
microphone and the electret microphone in the telephone
handset was applied.

In the continuous speech experiment, the noise described
above was added to 600 standard test sentences from the Feb-
ruary 1989 and October 1989 DARPA Resource Management
evaluation sets. The standard 3990 Resource Management
training sentences were used to generate a layered neural net-
work to estimate phonetic probabilities for a Hidden Markov
Model (HMM). Eight cepstral and eight A cepstral coefficients
(including the zeroth cepstral coefficient) of the eighth-order
PLP or RASTA-PLP all pole model over the nine-frame
window [9] were used as the features.

Both the network and the HMM were somewhat simpler
than the ones used for our best recognizer in order to conserve
computational resources for our front-end experiments.

The Credit Card experiment used a 4-hr subset of the 250
hr of the standard Switchboard database (which is available
through the Linguistic Consortium). This database contains
spontaneous telephone conversations on various subjects. The
Credit Card portion consists of conversations about credit
cards and uses about 2000 different words. Data were divided
into single-speaker turns. Eleven hundred and two (1102) turns
were used for the training of the HTK (HMM continuous
density) software toolkit recognizer. The word-pair grammar
used in the recognizer was derived on the 258 tuns of the test
set. The speech contains many kinds of spontaneous speech
effects such as stutters, hesitations, restarts, interruptions, and




HERMANSKY AND MORGAN: RASTA PROCESSING OF SPEECH

poor articulations. Otherwise, it is of reasonable acoustic
quality with relatively little additive noise.
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