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ABSTRACT
We consider the problem of segmenting an audio signal into char-
acteristic regions based on feature-set similarities. In the pro-
posed method, a feature-space representation of the signal is gen-
erated; then, sequences of feature-space samples are aggregated
into clusters corresponding to distinct signal regions. The clus-
tering of feature sets is improved via linear discriminant analy-
sis (LDA); dynamic programming (DP) is used to derive optimal
cluster boundaries. The method avoids the heuristics employed in
various feature-space segmentation schemes and is able to derive
an optimal segmentation once the LDA and DP cost metrics have
been chosen. We demonstrate that the method outperforms typical
feature-space approaches described in the literature. We focus on
an illustrative example of the basic segmentation task; however, by
judicious design of the feature set, the training set, and the dynamic
program, the method can be tailored for various applications such
as speech / music discrimination, segmentation of audio streams
for smart transport, or song structure analysis for thumbnailing.

1. INTRODUCTION

Segmentation of audio signals into meaningful regions is an essen-
tial aspect of many applications, for instance speech / music dis-
crimination for broadcast transcription, audio coding using tran-
sient detection and window switching, identification of suitable
audio thumbnails, and demarcation of songs in continuous streams
for database creation or smart transport. To perform effectively,
such applications rely on a basic signal understanding provided by
automatic segmentation.

Segmentation approaches can be loosely grouped into statisti-
cal methods and methods based on feature-space distance metrics.
In this paper we are primarily concerned with the latter; we present
a method that relies similarly on intuitive signal features but which
avoids the heuristics typically called for in feature-analysis meth-
ods. We do not directly explore comparisons with primarily statis-
tical methods, but the proposed algorithm can be extended appro-
priately for comparison to Gaussian-mixture modeling methods or
other statistically driven approaches [1, 2].

In the proposed algorithm, the segmentation task is interpreted
as a feature-space clustering problem. We show that typical feature-
space segmentation schemes can be improved by the use of judi-
cious data transformations. We further describe the application
of dynamic programming to derive robust segmentation points,
which correspond to cluster transitions in the problem framework.
The proposed method includes the use of intuitive signal features
as a front end, statistical considerations to improve discrimination

between feature sets, and optimal estimation of segment bound-
aries. The resulting segmentation is optimal given the feature set,
a training set for the discrimination stage, and the design of the
cost functions for the dynamic program; we show that the dynamic
program can be designed to achieve functional objectives, meaning
that the proposed algorithm derives a robust segmentation without
relying on any arbitrary heuristics or thresholds.

2. FEATURE SPACE

An audio signal can be represented in a feature space by carrying
out a sliding-window analysis to extract feature sets on a frame-to-
frame basis. Examples of such features include zero-crossing rate,
spectral centroid, tilt, and flux, and so on [3, 4]. In such a scheme,
each window hop yields a new set of features; for the i-th frame:

w[n]x[n + iL] - Feature analysis - fi{x} (1)

The output of the feature analysis block is the feature vector fi{x},
which will be referred to hereafter simply as a column vector fi.

The sequence of feature vectors fi provides a feature-space
representation of the input signal. From this representation a vari-
ety of similarity (dissimilarity) metrics can be computed for suc-
cessive feature vectors, for instance a a vector difference norm

dij = (fi − fj)
H

D
H

D(fi − fj), (2)

where DHD is the identity matrix for the Euclidean distance, the
inverse covariance matrix of the feature set for the Mahalanobis
distance, or some other feature weighting specific to the particu-
lar distance measure. For any such metric, the sequence of dif-
ferences between successive feature vectors is a novelty function
which quantifies the extent of change in the audio signal between
adjacent frames [5]. Feature-based segmentation schemes reported
in the literature typically use such an approach to determine seg-
ment boundaries: peaks in the novelty function indicate bound-
aries in the audio signal, i.e. there is a change if successive features
fi and fi+1 are deemed dissimilar enough [4, 5].

In order to make the decision as to whether successive frames
are substantially dissimilar to indicate a segmentation boundary,
a heuristic threshold for this determination must be established.
Consider the typical novelty functions shown in Fig. 1, which were
derived from a sample audio stream based on a typical feature set.
Plot 1(a) uses the Euclidean distance, which simply determines the
feature-space distance using the raw feature values; plot 1(b) uses
the Mahalanobis distance, in which the features are scaled such
that each contributes equally to the distance measure. Noting the
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Figure 1: Normalized novelty functions based on (a) Euclidean
distance and (b) Mahalanobis distance. The dashed lines indicate
the actual segment boundaries.

actual segment boundaries indicated in the plots, we see that these
novelty functions tend to have peaks in the vicinity of the bound-
aries but that they also have significant spurious peaks. Setting a
decision threshold for peak-picking, then, is an ad hoc procedure;
the key shortcoming of such methods is that the robustness or op-
timality of a given threshold cannot be guaranteed.

In the following sections, we explore two steps to enhance the
performance of feature-space segmentation: first, we show an im-
proved novelty function in which the peaks corresponding to de-
sired points-of-change are accentuated while spurious peaks are
suppressed; and second, we propose a more robust strategy than
peak-picking such that heuristic thresholding is avoided altogether
in the determination of segment boundaries.

3. CLASSIFICATION AND CLUSTERING

The problems described above can be effectively addressed by
casting the segmentation task as a clustering problem. In this sec-
tion we describe the basic framework of classification and cluster-
ing, explain how to interpret segmentation from a clustering per-
spective, and describe the application of well-known classification
techniques to improve segmentation performance.

3.1. The classification problem

In the basic classification problem, there is an initial data set for
which the class of each sample is known. Given a new sample,
then, the question is to which class it should be assigned. Such
assignments are made by establishing and applying a decision rule;
for instance, a simple rule could be that a new sample is assigned to
the class whose mean it is closest to in feature space. The details
of decision rules are beyond the scope of this paper; the pattern
recognition literature is rife with references on this topic [6, 7]. A
related question which is of central importance is whether the raw
feature data can be transformed or projected into a new feature
space in which the classes are easier to distinguish and a more
robust decision rule can be found. We can indeed discuss such
transforms without considering the specifics of the decision rule.

3.2. Linear discriminant analysis

Linear discriminant analysis (LDA) is one technique for trans-
forming raw data into a new feature space in which classification
can be carried out more robustly. Given a training set consisting of
raw feature data {fi} and a known class for each sample, the idea

Original
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Figure 2: A two-class example of PCA and LDA transformations.
The LDA projection is more effective for discriminating between
the classes than the PCA projection.

in LDA is to find a matrix P such that for the new data ai = Pfi

the separation between classes is maximized while the variance
within a class is minimized. There are several variants of LDA [7];
in one commonly used variant, the optimal P consists of the eigen-
vectors of a generalized singular value decomposition involving
the scatter matrices of the training set. In general the dimension-
ality of the transformed feature set is one less than the number of
training classes; the dimensionality can be further reduced, how-
ever, by incorporating in P only those eigenvectors corresponding
to the largest singular values determined in the scatter SVD.

An example of LDA is shown in Fig. 2. The original data con-
sists of two classes, and the task is to find a projection onto one
dimension which separates the classes. The first example shows
a projection of the data onto the original horizontal coordinate;
class separation is not achieved. The second shows the application
of principal component analysis (PCA), which often exhibits poor
performance in classification problems since the principal axes do
not necessarily entail discriminatory features [7]. The third ex-
ample shows LDA achieving a significant improvement in class
separation; note that the LDA transformation separates the class
means while attempting to sphere the data classes.

3.3. Segmentation as clustering

In the feature-space framework, an audio signal is equivalent to
a sequence of feature vectors. The task of segmentation can thus
be interpreted as a classification problem in that it corresponds to
grouping subsequences of these feature vectors into segmentation
regions. If the goal is to assign each feature vector to an a priori
class established in a learning stage, then indeed this is a classifi-
cation problem. More generally, however, the segmentation task
amounts to observing a sequence of arbitrary feature samples and
aggregating subsequences into classes in some fashion. Such ag-
gregation and the inherent generation of classes based on observed
data is called clustering.

Given an audio stream with perceptually distinct regions, raw
feature vectors consisting of pitch, zero-crossing rate, spectral tilt,
etc. will not necessarily be clustered in feature space according to
the various regions. Noting the spurious peaks in the novelty func-
tions of Fig. 1, it is clear that feature vectors for the same region
can actually be far apart in feature space. The clustering of re-
gional features can be substantially improved by applying an LDA
transformation derived from a representative training set. For ex-
ample, suppose an LDA matrix is derived to discriminate between
the classes in a given set and that a signal is constructed by draw-
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Figure 3: Improved novelty function based on Euclidean distance
after an LDA transform. The dashed lines are the actual segments.

ing excerpts from those classes. A novelty function based on the
raw features may be problematic for segmentation. On the other
hand, since cluster separation is increased by LDA, the novelty of
the LDA features exhibits stronger peaking at the segment bound-
aries as shown in Fig. 3; furthermore, the reduction of within-class
variance suppresses the spurious peaks within segments. For a sig-
nal not composed of samples drawn from the LDA training set, the
LDA will still help to improve the feature-space clustering if the
training set is appropriate for the signal in question. The LDA
training finds a transform of raw feature data into a feature space
which best matches the perceptual discrimination defined by the
examples in the training set; as long as similar perceptual discrim-
ination applies, effective performance of the LDA can be expected.

A related explanation of the advantage of LDA is that in the
novelty functions of Fig. 1 the distance function uses a weighting
(Euclidean or Mahalobnis) which is uninformed of the relative im-
portance of the various raw features for cluster discrimination. In
this light, transforming the data via LDA is equivalent to using an
optimal feature weighting for the distance metric in Eq. (2).

4. CLUSTERING OF SEQUENTIAL DATA USING
DYNAMIC PROGRAMMING

In this section we first discuss the shortcomings of the novelty
peak-picking paradigm for segmentation. We then propose a more
robust approach to clustering based on dynamic programming (DP).

4.1. Shortcomings of the novelty function

As previously described, the raw novelty functions of Fig. 1 exhibit
spurious peaks which will degrade the performance of novelty-
based segmentation schemes. It is clear in Fig. 3 that LDA im-
proves the situation, but that such peaks still occur. The reason for
this is a fundamental shortcoming of the novelty function: it is de-
signed to identify local changes between samples; global changes
between groups of samples, however, are of greater importance to
the segmentation task. LDA does not resolve this issue entirely
since it is not at all designed to enhance inter-sample novelty but
moreso inter-cluster novelty. The spurious peaks arise when two
successive samples within a single cluster are further apart than
successive samples in different clusters, which is a common oc-
currence in tightly packed feature spaces – even after a clustering
transformation such as LDA. A more degenerate case can also be
envisioned; if a sequence of samples progresses gradually across
a cluster and into the adjacent cluster, the novelty function may
not exhibit any peaks at all even though a cluster transition has oc-
curred. What is needed instead of a local novelty measure, then,
is a detection of global signal trends. In the following section, we
describe a dynamic program which essentially looks for the means
of subsequences and identifies segmentation boundaries when the
samples start to aggregate around a new mean.
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Figure 4: Partial state transition diagram of the dynamic program
for feature-space clustering. The label corresponds to the feature
vector associated with the state.
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Figure 5: In the dynamic program for feature-space clustering, the
diagonal (dotted) is the nominal feature path. A candidate cluster
path with one transition is shown; there is a transition cost as well
as a local cost for being in any state that is not on the nominal path.

4.2. Structure of the dynamic program

Given the LDA-transformed feature sequence {ai}, which will ex-
hibit better clustering than the raw data {fi}, dynamic program-
ming can be used to find cluster transitions. Assuming there are
N feature sets in the sequence, an N × N state machine such as
that in Fig. 4 is constructed. For each time frame j, there are N

candidate states; letting i be the vertical state index, each state Sij

is associated to the feature vector ai as shown in the figure.
The diagonal path of the state transition diagram in Fig. 4 cor-

responds to the nominal feature-space trajectory of the signal: at
time j, the nominal path is in state j. Recall that DP is able to
find a path through the state diagram which optimizes some speci-
fied cost function which can be composed of a local cost for each
state as well as costs for transitions between states. The objective
of the dynamic program design, then, is to select these cost func-
tions such that the resulting optimal path indicates not this nomi-
nal feature-space trajectory but rather a trajectory through clusters.
This cluster path will be a stepwise traversal of the state transition
diagram. Each plateau corresponds to a cluster and each step is a
transition between clusters; the feature vector for a cluster plateau
is the characteristic feature set for that cluster. The nominal feature
path and a candidate cluster path are depicted in Fig. 5.

4.3. Cost functions for the dynamic program

In the dynamic program, local and transition cost functions must
be designed to achieve the desired segmentation task. The local
cost should reflect how likely it is to be in state i at time j. Recall
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that we want the final trajectory to be composed of horizontal seg-
ments separated by transitions. In any horizontal segment of the
path, we remain in the same state i0: the local cost of state i0 at
time j (Si0j) should be small if the feature vector measured in the
signal at time j (the one associated to state Sjj) is similar to the
feature vector associated to state i0, and high otherwise. This will
ensure that along a horizontal segment of the path, the successive
feature vectors extracted from the signal are similar to the feature
vector ai0 that represents that horizontal segment. An intuitively
reasonable choice for the cost function is thus the Euclidean dis-
tance ||ai−aj || so that the cost of being in state Sij is the distance
between the feature vectors of that state and of the diagonal state
Sjj for that time index. The states between which the local cost
distance is measured are indicated in Fig. 5.

The aggregate local cost for a candidate path is the sum of the
local costs for the states in the path. For the Euclidean cost metric,
this is clearly zero for the nominal diagonal path. Assuming for
the moment, however, that the transition cost is infinite such that
a horizontal path must be chosen, it can be shown that the choice
of Euclidean distance is actually optimal. Considering a set of N

feature vectors and letting am be the single feature vector of the
chosen path, the aggregate local cost for the path is

L(am) =

N−1∑

j=0

(am − aj)
H(am − aj), (3)

which is minimized if am is the mean of the set; am must however
be chosen from the sample set. To find the best choice, we write:

L(am) =

N−1∑

j=0

||am − ā + ā − aj ||
2 (4)

= N ||am − ā||2 +

N−1∑

j=0

||aj − ā||2, (5)

where the cross-terms in the expansion of Eq. (4) cancel since ā is
the mean of the set. Noting that the second term in Eq. (5) is not
dependent on am, we see from the first term that the optimal choice
is the set member closest to the mean. Thus, the optimal horizontal
path is the path which stays in the state whose feature vector is
closest to the mean of the set. In the clustering framework, this
feature is the closest member of the cluster to the cluster mean and
is the optimal choice to be a representative of the cluster.

The transition cost does not admit to direct formulation as
readily as the local cost, but several constraints are clear. First,
a high cost should be associated to switching from state i to state
j if the corresponding feature vectors are similar; however, there
should be zero cost for a transition from i to i (since we are look-
ing for horizontal paths). Conversely, the cost should be small for
a transition between very dissimilar feature vectors (so real tran-
sitions in the audio are not missed). An intuitive choice for the
transition cost between two states is then the inverse of the Euclid-
ian distance between the corresponding feature vectors; a constant
cost can also be added for any non-horizontal transition to fur-
ther favor clustering into horizontal segments. Note that for the
segmentation task, only horizontal or downward transitions are al-
lowed in the DP; upward transitions could of course be introduced
for some alternate applications.

The robustness of the proposed LDA-DP segmentation by clus-
tering is indicated in Fig. 6; audio demonstrations will be given at
the conference and are available online [8].
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Figure 6: The cluster path (bold) derived by the dynamic program
exhibits transitions which match the actual segment boundaries
(dashed). The nominal diagonal path is shown along with the LDA
novelty function from Fig. 3.

5. CONCLUSIONS AND FUTURE WORK

We have described an audio segmentation algorithm wherein fea-
tures are extracted from the signal, transformed via LDA to opti-
mize cluster scattering, and then clustered using a dynamic pro-
gram. The LDA-DP routine essentially converts a feature-space
trajectory into a cluster-space trajectory wherein cluster transitions
indicate points of significant global change in the signal. The sys-
tem is general and can be tailored for various applications by ap-
propriate selection of the signal feature set, training set, cost func-
tions, and DP structure. Once the system has been designed, it is
able to find an optimal segmentation without relying on heuristic
metrics as other methods do.

Possibilities for future work include theoretical areas such as
kernel-based clustering approaches, backpropagation for training
of the DP cost functions, and formal comparison with other ap-
proaches such as the alternative hidden Markov modeling scheme
described in [2]. Also, it is of interest to address practical aspects
such as validating the segmentation via human agreement as in [4].
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