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ABSTRACT

This paper describes a preliminary study designed to
answer the question, "How well can familiar
environmental sounds be identified?" By "familiar" we
mean sounds on which the recognition system has been
previously trained. By "environmental sounds"” we mean
sounds generated by acoustic sources common in
domestic, business, and out-of-doors environments. The
results of this study indicate that well-isolated familiar
sounds can be recognized with high accuracy by applying
standard statistical classification procedures to feature
vectors derived from two-dimensional cepstral
coefficients.

INTRODUCTION

Although extensive efforts have been made to develop
systems capable of recognizing such specialized acoustic
sources as speech and submarines, much less effort has
been directed towards systems capable of detecting,
isolating, and identifying the panoply of sounds which fill
our every-day acoustic environment. Some recent efforts
of interest include [1], a signal understanding system
applied to environmental sounds, and [2], in which LPC,
VQ, and HMM techniques are applied to such sounds.
We report here on the utility of some other signal
processing and classification techniques that have proved
effective in recognizing discrete speech, when those
techniques are adapted to the problem of recognizing
environmental sounds.

DATA COLLECTION
Recordings of environmental sounds were made under
realistic background noise conditions in domestic and
business environments. Background sound levels were
typically 25 to 30 dB below signal levels. For sounds
generated by what we judged to be "consistent” sound
sources (such as a smoke alarm, but unlike a barking
dog) each token (sample) was recorded with the
microphone at a different distance or orientation from the
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sound source. Both near field and far field recordings
were made, separately, of each sound. Table 1 shows the
types of environmental sounds studied, and the number of
near and far field tokens recorded for each source.

Sounds were recorded using a Bruel & Kjaer 2231 Sound
Level Meter as a microphone. Recordings were made on
a Technics SV-MD1 digital audio tape recorder.

TYPE OF SOUND FAR FIELD NEARFIELD
Smoke alarm 5
Barking dog 10
Bouncing basketball 10
Handbell (cowbell) 5
Bouncing glass bottle 11
Smashing glass bottle
Window fan

Car engine

Doorbell (chimes)
Electric clapper bell
Hand drill

Exhaust fan

Mechanical phone bell
Electronic phone (1)
Electronic phone (2)
Screen door closing
Wooden door closing
Water running in sink
Water running in bathtub
Bouncing tennis ball
Vacuum cleaner motor
Violin (middle A)
Whistling tea kettle
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TABLE 1: List of environmental sounds, and number
of near and far field tokens of each sound recorded.
In all, 268 tokens of 23 acoustic sources were recorded.
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The recordings were transferred from the DAT recorder
to a computer as analog signals. They were redigitized at
the computer at 16,000 samples/second using a 14-bit
A/D converter similar to the type that would be used in
a practical recognition device. Reference spectrograms
were produced of each token, and a database of signal
files (one token per file) were stored for further
processing.

SIGNAL PROCESSING

The recorded tokens were segmented using an automatic
technique based on per-token signal power histograms.
Such histograms have proved an effective basis for
endpointing words in speech recognition systems (c.f.
[3]). Signal power was calculated for non-overlapping 16
msec blocks over the entire duration of each signal file.
It was anticipated that each such histogram would be
bimodel, with an upper peak corresponding to power
levels within the signal itself, and a lower peak
corresponding to typical background noise levels (in our
case 25 to 30 dB below signal levels). From the
histogram statistics, a threshold power level was
calculated to separate portions of the signal stream
containing the sound from portions containing only
background noise.

This endpointing algorithm was applied to each of the
signals in the database. Because each token had been
stored in a separate file, we simply chose the
segmentation limits as the first and last potential endpoint
locations within each file. Given the high SNR of our
recording conditions, this simple algorithm worked quite
well.

We chose to use two dimensional cepstral coefficients for
our feature vectors, because of their demonstrated
effectiveness in speech recognition [4]. Cepstral
coefficients were calculated for each token, as follows.
A sequence of analysis frames were generated from each
endpointed token file by windowing the samples using a
256-point Hanning window. The frame advancement rate
was chosen to yield frames that overlapped by at least
25%, and so that the total number of frames between the
signal endpoints was at least 64, and always an integer
power of two.

Within each frame, a 256-point cepstral transform was
calculated. Only the first 32 cepstral coefficients of each
frame were retained. Cepstral transforms were calculated
for two variants of the spectrum within each frame: a
linear variant and one in which the frequency scale was
warped using a mel frequency transformation.

The number of frames generated for each signal was then
reduced to exactly 64. If necessary, this was done by
averaging adjacent frames together (in sets of 2, 4, 8,
etc). The result, in effect, was that each signal was
represented by a [64 by 32] array of cepstral coefficients,
with the 32 rows of the matrix representing frequency,
and the 64 columns representing time. Note that by
reducing each signal to exactly 64 frames we have
eliminated the possibility of using token duration as
information upon which to base our classification decision.

A 64-point real DFT was then calculated for each row in
the matrix, and the first 32 points of this symmetrical
transform retained. The resulting square matrix is a two
dimensional cepstral representation of the input signal.
Each row corresponds to a particular spectral frequency,
and each column corresponds to a temporal frequency.
The first row contains the DFT of the power envelope of
the signal. The first column contains the DFT of the
average signal spectrum. The first element of the first row
contains the average signal power level. It is typical of
two dimensional cepstral representations of acoustic
signals generally, and certainly for our signals, that this
corner element is the largest component, and that the size
of the components in the first row and first column are
larger than the size of interior matrix components.

FEATURE EXTRACTION

Small sets of coefficients were selected from the 1024
elements of each matrix to serve as feature vectors for use
in classifying the sounds. Feature vectors ranged in size
from two to 16 parameters (coefficients). The coefficients
chosen were taken from the beginning of the first or
second row, and the top of the first column, of the
cepstral matrices. But in no case was the first element in
the first row (the average signal power) selected as a
classification feature.

CLASSIFICATION
Each feature vector defines a point in a multi-dimensional
cepstral space where the sound represented by that vector
is "located”. The hope, of course, is that all the samples
of each sound will cluster together in that space, and that
clusters for different sounds will be well separated.

Clusters, or classes, were formed by grouping together the
feature vectors for each type of sound. (For Experiments
One through Three, near and far field samples were
grouped together as the same class.) Class statistics (mean
and variance vectors) were calculated and stored for each
sound class.
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Recognition accuracy was tested using a "jackknife"
procedure. For each sound in the database, its feature
vector was temporarily removed from its class, and the
class statistics recalculated. Thus no feature vector was
ever tested against a class whose statistics include that
vector. Each test vector is truly “unknown”. A maximum
likelihood calculation was performed to determine the
best classification for that test sound [5]. Recognition
accuracy scores were calculated for each type of sound,
and for each different feature vector definition.

EXPERIMENT ONE:

ACCURACY vrs NUMBER OF FEATURES
In the first experiment, the relationship between
recognition accuracy and the number of features in each
feature vector was examined. The results are
summarized in Figure 1, in the curve labeled "cepstrum:
fully trained". When two cepstrum coefficients are used
to classify sounds, recognition accuracy is greater than
60%. (In the absence of any information, less than 5% of
tokens would be correctly classified.) When each sound
is characterized by four features, classification accuracy
is greater than 90%, and accuracy approaches 98% for
12 and 16 features.

EXPERIMENT TWO:
USE OF MEL FREQUENCY SCALE

In the second experiment, mel cepstral coefficients were
calculated for each windowed frame of the token
waveform. All other processing was identical to the
procedure described above. The results are shown in
Figure 1, in the curve labeled "mel: fully trained”. The
overall relationship between recognition accuracy and
feature count closely follows the results from Experiment
One, but recognition accuracies are several percentage
points lower for feature counts less than ten, and less
than 0.5% lower for 16 features.

EXPERIMENT THREE:

ACCURACY vrs. CLASS SIZE
In this experiment, only five tokens were used to
calculate the statistics for each sound class. Recognition
accuracies were tested for both cepstral and mel cepstral
coefficients. The results are shown in Figure 1 in the
curves labeled "5 token training". As might be expected,
recognition accuracy is lower than in the first two
experiments, where class sizes ranged from 8 to 19
tokens.

EXPERIMENT FOUR:
EFFECT OF NEAR & FAR FIELD RECORDINGS
The analysis procedure for this experiment was identical
to the previous three, except that class statistics for each
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Figure 1: Percent correct classification of test tokens as
a function of the number of coefficients in the feature
vector representing each token.

sound class were calculated only from tokens recorded
under near field (non-reverberant) conditions. The 12-
parameter feature set from Experiments One through
Three was used. The average number of training vectors
per class was approximately the same in all trials (about
five, as in Experiment Three, where typically two vectors
were derived from near field tokens and three from far
field tokens). Because we calculated the accuracy with
which both near and far field tokens could be classified
using these statistics, recognition accuracy figures could
be derived (when the results of Experiment Three was
included) for four conditions:

* near field test data following training on near
field tokens only;

* far field test data following training on near field
tokens only;

* near field test data following training on
combined near and far field tokens;

* far field test data following training on combined

near and far field tokens.
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Table 2 shows the results of this experiment. The
generally low accuracy values reflect the fact that class
statistics typically were calculated from only five
samples. These figures suggest that reverberation does
affect classification accuracy, at least for the features we
have selected.

Conclusion

The simple recognition system constructed for this study
effectively classifies isolated tokens from several dozen
disparate sound sources. Two dimensional cepstral
coefficients proved to be effective classification features.
Only the cepstral coefficients representing “"low
frequency” spectral and temporal variations were required
in order to obtain accurate classification. Mel cepstral
coefficients appear to be almost as effective as linear-
frequency cepstral coefficients.

The most difficult problems associated with constructing
an environmental sound recognition system may prove to
be dealing with reverberation, separating multiple
simultaneous sound sources, and characterizing
sequentially-structured sounds such as footsteps.
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CEPSTRAL PARAMETERS

Training Tokens

Near Field Only

Combined Near and Far Field

MEL CEPSTRAL PARAMETERS

Near Field Only

Combined Near and Far Field

Test Tokens
Near Field Far Field
90.4 79.8
82.2 96.5
94.1 84.0
88.3 93.6

Table 2: Percent classification accuracy resulting from training on near field tokens only, versus training on mixed
near and far field tokens. Average training class size is approximately five tokens for both training conditions.

I-152



