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ABSTRACT

A method for segregating speech from speakers engaged in
dialogs is described. The method, assuming no prior knowledge
of the speakers, employs a distance measure between speech
segments used in conjunction with a clustering algorithm, to
perform the segregation. Properties of the distance measure
are discussed and an air traffic control application is described.

1. Introduction

In many speech recognition and speaker identification appli-
cations it is often assumed that the speech from a particular
individual is available for processing. When this isn’t the case,
and the speech from the desired speaker is intermixed with
the speech from other speakers, the speech must be segregated
into the speech from the individuals before the recognition or
identification process can commence. The particular applica-
tion we consider is the case where we have the dialog between
an air traffic controller (ATC) and several pilots and we want
to automatically determine the commands which the controller
gave to the pilots. This application requires the separation of
the controller utterances from those of the pilots before recog-
nition can begin. Although we focus on the ATC application
the methodology we present is also applicable to other situa-
tions. These include the problem of text-independent speaker
identification, when there is more than one speaker.

We assume that we have no a priori information about any
of the speakers. We further assume that the total number of
speakers is also unknown. Our approach is to view the prob-
lem as one of unsupervised clustering of speakers, with each
cluster representing a different speaker. The association of seg-
ments of speech with each of the clusters represents the desired
segregation.

The paper focuses on the development of a distance mea-
sure between any two segments of speech, where the distance
reflects whether the two segments are from the same speaker.
This distance measure serves as the basis for the clustering algo-
rithm. We discuss both the theoretical and empirical properties
of the measure.

2. A Distance Between Speech Utterances

Consider that we have two segments of speech each of which is
characterized by a sequence of spectral feature vectors, which
we will denote by z,,n = 1,...,Ny, and yn,n = 1,..., N,

respectively. We assume that the vectors in each of these se-
quences can be modeled as coming from a multivariate Gaus-
sian distribution, and that the vectors are statistically indepen-
dent. The question we pose with respect to the sequences (or
original segments) is whether or not they come from the same
underlying model, or, equivalently, whether the segments were
uttered by the same speaker. :

Formally we have the following hypothesis test:

H,: the segments were generated by the same speaker

and,

H,: the segments were generated by different speakers.’

We test this hypothesis by using the generalized likelihood
ratio test, i.e., we form the likelihood ratio of the observations
with the unknown model parameters replaced by their max-
imum likelihood estimates. If L(z;ui, X)) denotes the like-
lihood of the = sequence and L(y; u2, Z3) denote the likeli-
hood of the y sequence then the likelihood, L;, of the two
segments being generated by different speakers is given by,
L= L(a:, [.L],E])L(y‘, #2,22). Furthermore, the likelihood of
the segments being generated by the same speaker is given by
L, = L(z; u, X), where z is the union of the ¢ and y segments.

If we let A denote the likelihood ratio, then A = %7, giving

B "Y' )
Lz; p1, 21)L(y; fizy £2)
where the hat denotes the maximum likelihood estimate.

)

If we now use the muitivariate Gaussian models in the like-
lihood expression we obtain that the likelihood ratio can be
written as

A =dcovAmEaN )
where Acoy is the likelihood ratio that tests the hypothesis
that the two segments are from the same Gaussian models with
the same covariance matrix, with no assumption being made
about the equality of the means, and Aprgan is the likelihood
ratio that tests the hypothesis that the two segments are from the
same Gaussian models with the same mean, with no assumption
being made about the equality of the covariances.

We have, v
S a S l-a\ 7
Acov = (————l IIHI)VZ‘I ) 3

where o = N—,T,L, S\ and S are the sample covariance matrices for
each of the two segments, and W is their frequency weighted
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average, viz., W = 515+ 2.5, Also,

N};ﬁrz G- W @ - fi)} (4)

Xagpan = Ql +

where Zy and Z;7 are the means of the segments. Derivation of
the these: formulas is based on well-known results in multivari-
ate analysis (ref. [1] for example}.

From these likelihoods we obtain our “distances™ between
segments by taking the negative of their logarithms: dgoy =
—log Xcov and dyrgan = —log Ayrpan-

Since the generalized likelihood ratio is always greater than
zero and less than unity the above “distances™ are always pos-
itive, although they do not satisfy the triangle inequality.

3. Theoretical Distribution of the Distances

In order to understand the statistical behavior of the results
of applying the distance measures we must understand their
statistical properties. Below we will discuss the theoretical
basis for the distribution of the distances and then compare the
theory with experiment.

The distances are parameterized by Ny, N;, and their sum,
N. When the null hypothesis is true, ie., when the segments
are from the same speaker, 2 +d (twice, the distance), has a chi-
square distribution when N is large [1}. The degrees of freedom
of this. chi-square is equal to the difference in the dimension-
alities of the parameter spaces under the alternative and null
hypotheses. If ry, denotes the number of parameters under the
null hypothesis and r, denotes the number of parameters under
the altemnative, r =7y —, is the number of degrees of freedom.
For example, if we are utilizing spectral feature vectors with p
components, and we are only considering the covariance matri-
ces, then under H, there are two covariance matrices each with
p(p + 1)/2 parameters, while under H.,, there is only a single
covariance matrix. Thus, for this case, r = p(p + 1)/2. In the
case of the means we would have r = p degrees of freedom.

We note that the asymptotic distribution does not depend on
Ny.N;, or N. We further note that this is true only under the
null hypothesis. Under the alternative hypothesis the asymp-
totic distribution of course: depends on the way the speakers
differ.

4. Experimental Results

In these experiments we have only considered dggy. Similar
results, though not presented, were obtained with djrp.y. The
two- distances are rather different in that they capture very dif-
* ferent information about the speakers and the communication
channels being used. For Gaussian distributions they are sta-
tistically independent. In any application one or both distances
can be used depending on the particular circumstances, such
as the. important sources of channel variability. We note that
channel, as well as speaker characteristics, play an important
role in the segregation of speakers. The distance, deoy, is in-
variant to time-invariant filter of the speech, whereas dysin
is not. ’

The Database

The database we will use for our experiments consists of speech
collected from air' traffic control dialogs between controllers
and pilots. The data is collected off the air and represents
a wide range of transmission quality, with the signal-to-noise
ratio i the average transmission being abowt 15dB. The re-
ceived speech is filtered to a band of 300-3300 Hz, Through
out our study the spectral features we use are mel-warped cep-
stra, er,..., €14, The feature vectors do not include the cepstral
coefficient co. The cepstral vectors are calculated every 10 ms
using a 20 ms window. The cepstral vectors. are sereened on
the basis of frame energy, and only a fraction of the highest
energy frames are used. Typically, 40% of the frames will be
discarded.

The stream of speech from the dialogs is separated into the
speech: segments from individuals primarily on the basis of en-
ergy measurements, and this is done quite reliably. Some of
the: segments are from: the controller and the others: are from the
different pilots with whom the controller is engaged in dialog.
In Figures 1. and 2. we have plotted histograms for the du-
rations fer the segment durations for the controllers and pilots.
The controllers are seen to have a longer tailed distibution,
with the median durations for controllers and pilots being 2.8
and 2.1 seconds, respectively.

The Estimated Distribution of the Distance

We: take: the segments: from the controller and pilots and eval-
uate deoy between all segments;, these distances are collected:
into-two sets: one set of distances from segments from the same
individual, and the other composed of distances from different
individuals. We have further quantified these sets of distances
on the basis of the durations of each: of the segments entering
the distance computation. These duration categories, which are
quantized, serve as index in to the collection of distances. We
have 5 duration categories consisting of 0-1, 1-2, 2-3, 3-4, and
4-15 seconds, respectively.” For example, we have a collection
of distances that corresponds to- the: case where on segment has
duration of 1-2 seconds and the other 3-4 seconds duration,
under the conditions when the speakers are the same and when
they are different. These categorizations will enable us to un-
derstand the effects of the different durations on the resulting
distributions.

The asymptotic chi-square property of the null hypothesis
distribution has led us to consider the gamma distribution as a
means of fitting a distribution to the data. The gamma includes
the chi-square as a special case and therefore is seems to be
a good choice for being able to model deviations from the
theoretical predictions. The gamma probability density function
is given by

(2 /bt
p(z) = %e‘“m 0<z < )

The chi-square density function corresponds to having & = 2
and ¢ being 1/2 the number of degrees of freedom of the: chi-
square..
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The density function is seen to have two parameters, b and
¢, which are referred to as being the scale parameter and shape
parameter, respectively. The method we will use to fit this
model to the data is the method of matching moments. The
estimators are given by b= % and, &= (%)2 where Z and s?
are the sample mean and the sample variance, respectively. See
Hastings and Peacock [2] for additional details about properties
of the gamma and chi-square distributions.

In order to assess the fit of the gamma distribution to the data
we, as an example, consider segments of 3-4 seconds duration.
From these segments we compute a set of distances for the same
speakers and another set of distances for different speakers.
Figure 3. shows the fit of the gamma density functions for
both of these cases. The quality of fit we observe in this figure
is typical of what we have observed in general, which seem to
be quite reasonable. In the following, we will use the gamma
density as being representative of the population and not present
further comparisons to the data.

Distributions as a Function of Duration

In order to be able to understand the the behavior of the dis-
tance between segments we must understand its behavior as a
function of the durations of the segments. To this end, we will
focus our attention on the specific case of distances between
segments that were of 3-4 seconds in duration, to segments
that were 0-1, 1-2, 2-3, 3-4, and 4-15 seconds in duration. On
the basis of increasing total durations of the segments used in
computing the distance, we refer to the sets of distances by the
numbers 1-5, for both the same speaker distances and different
speaker distances.

In Figure 4. we have plotted the pdf’s of the same speaker
distances for the different total durations. The important feature
of this plot is that for increasing total duration, we have different
distributions, indicating that an asymptotic distribution has not
been achieved. There are a several reasons for this, one of
which is that we do not have enough data to be in the asymptotic
region; another reason is that the Gaussian model is only an
approximation, since the data is not Gaussian. Another factor
is the variability of the channel due to changing snr’s.

We also observed that the ¢ parameter of the gamma pdf’s
remained fairly constant at about 22.5 for the various values
of total duration. This implies that the degrees of freedom in
the gamma density (looking at the gamma as being a scaled
chi-square) is about 45, which implies that the of the spectral
information for the speaker lies in a 9 dimensional sub-space
of cepstral space. An analysis of the the principal components

- of the the covariance matrices shows that shows that over 95%
of the speech energy lies in in the first 9 principal component
directions. Thus the degrees of freedom observed in the gamma
distribution may well be a reflection that the true dimensionality
of the parameter space is significantly less than the nominal
dimensionality.

Going to Figure 5., which corresponds to the case of distances
between segments from different speakers, we also see variabil-
ity in the pdf’s. The pdf’s also having increasing mean value

with increasing total segment duration. We can assess the effect
of increasing the total duration, with respect to hypothesis dis-
crimination, by considering the classification performance of a
pair of segments for each of the five quantized durations. If we
let po(dcov|duration) and py(dcov|duration) denote the pdf’s
of doov under the same and different speaker conditions, re-
spectively, we can classify pairs of segments as being from the
same or different speakers depending on the whether p,/p, is
greater or less than 1. This gives us the classification error rates
as a function of duration givean in Table 1., showing improve-
ment in classification performance with increasing duration.

Total duration having an effect on classification performance
implies that dcoy has a different meaning depending on the
duration, Figure 6. shows how the likelihood ratios, log(p./p1),
vary as a function of dgoy, for the 5 different total durations.
These curves can serve as the basis for normalizing dgoy - for
the effects of total duration, e.g., equal distances correspond to
equal values of likelihood ratio.

The above described experiments considered the effects of
increasing total duration on the ability to distinguish the hy-
potheses. In a related experiment we attempted to maintain the
total duration constant and examine the effect of imbalance of
the durations on the pdf's of the distances. In this case we
compared the pdf’s generated by segment pairs both of which
were in the 2-3s range against segment pairs that were in the
1-2 and 3-4s range. We did observe that there was a change in
pdf’s under both hypotheses, with the equal duration case hav-
ing higher somewhat higher means and offering slightly greater
discriminability.

Application to Clustering

The method of clustering that we employed is a conventional
agglomerative technique for the construction of dendograms
(see for example Everitt [3]). We form the distances between
all segments and combine the closest pair of segments into a
single set. This process is then repeated where the distance
between two sets of segments is taken to be the maximum
distance between members from each of the sets. The resulting
dendogram is then split by finding the largest cluster, which
is declared the cluster of controller segments, with all other
segments attributed to pilots.

We have run several experiments, all giving encouraging re-
sults. Our largest experiment consisted of 423 segments, 220 of
which were from the controller and 203 were from pilots. Ap-
plication of dgov (not normalized by duration) as the measure
of the distance between the segments, in conjunction with the
agglomerative algorithm noted above, resulted in a total of 6
errors. Three controller segments were misclassified as having
been pilots and 3 pilot segments identified as controllers.

Note that although dgoy is invariant to the effects of linear
time-invariant filtering, it can be aided in discriminating be-
tween pilots and controllers by aspects of channels that affect
the variability of spectral information, such as additive noise.
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5. Discussion
We have: developed and approach for segregating speech from
different speakers that requires no prior information about the
speakers. The methed is uses “distance” between speech seg-
ments that is based on the likehood ratio of speech segments be-
ing generated from a common model, using multivariate Gaus-
sian assumptions.

We have explored the statistical behavior of the distance
function and have compared its empirical distributions to those
based on theory. A better understanding of these distributions
depend on measurable quantities, such as N, Ny, and Ny, will
enable us to improve: our performance by better accounting for
the affects of these quantities. This will be impertant to apply-
ing our methodelogy to more difficult problems, e.g., separating
the individual pilots from each other.

In our-application obtaining speeck segments that consisted of
speech from individuals was not difficult. In other applications
forming of segments can be challenging and result in more
complex algorithms.
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