Extraction of independent signal sources using a
deflationary exploratory projection pursuit network

with lateral inhibition

M. Girolami
C.Fyfe

Indexing terms: Projection pursuit network, Source separation

Abstract: A nonlinear self-organising neural
network is proposed, which employs hierarchic
linear negative feedback, and this network is
applied to the blind separation of independent
source signals from their mixtures. Blind
separation of sources has become an important
area of research, with significant contributions
recently being made from both the statistical
signal processing and artificial neural network
research communities. A nonlinear extension of a
negative feedback network is developed and it is
shown that hierarchic linear feedback provides a
deflation of the network residuals, which are
employed in the Hebbian learning of the network.
As each of the output neuron weights converge to
a separating vector, then the weighted feedback
will remove the contribution of the extracted
source from the remaining residual mixture. It is
shown that the data driven self-organisation of
the proposed network using only Hebbian and
anti-Hebbian learning will extract the underlying
source signals from the received mixture. The
results of a simulation are reported, which
demonstrates the ability of the network in
restoring images after degradation with noise and
interfering images.

1 Introduction

The problem of multi-channel blind separation of
sources (BSS) occurs in many application areas of sig-
nal processing such as speech, radar, medical instru-
mentation, mobile telephone communication and
hearing aid devices. The problem is defined as the
recovery of original unknown source signals from a
sensor output when the sensor receives an unknown
mixture of the source signals.

Blind separation of sources (BSS) is an underdeter-
mined problem since the source signal statistics, the
mixing, and transfer channels are unknown and closed
form solutions are impossible. In this paper we shall
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concentrate on an artificial neural network (ANN)
based solution to this problem, noting however that
there are also nonneural batch and serial based algo-
rithms [1--3].

Jutten and Herrault [4] were the first to develop a
neural architecture and learning algorithm for BSS.
They proposed a linear recurrent network and
employed a form of nonlinear anti-Hebbian learning,
which attempted to cancel out the higher order odd
moments of the data. The choice of nonlinear function
is critical for the quality of separation and that choice,
as has been reported in subsequent literature, is ad hoc.
Since then, a number of ANN architectures and algo-
rithms have been developed specifically for BSS, a
number of which are discussed in the review paper by
Karhunen [5].

2 Blind separation of sources

Assume that there is an M-dimensional zero mean vec-
tor s(f) such that s(z) = [s1(0), ..., su(D)]%, the compo-
nents of which at each time instant ¢ are mutually
independent. The vector s(z) corresponds to M inde-
pendent scalar valued source signals s,(7). We can write
the multivariate probability density function (PDF) of
the vector as the product of marginal independent dis-
tributions.

M
ps(s) = _Hpi(sz') (1)

A data vector x(¢) = [x,(0), ..., xp(D)]7 is observed at
each time point ¢, such that x(r) = A s(¢), where A is a
full rank N x M scalar matrix. As the components of
the observed vector are no longer independent, the
multivariate PDF will not satisfy the PDF product
equality. In this paper we shall consider the case where
N = M. If the components of s(r) are such that at most
one source is normally distributed, then it is possible to
extract the sources s(¢) from the received mixtures x(f)
[6].

The mutual information of the observed vector is
given as the Kullback divergence of the multivariate
density from the density written in product form.

109 = [petios L ax )
I 7t

The mutual information will always be positive and
will only equal zero when the components are inde-
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pendent [6]. If the observed vector has a finite covari-
ance matrix C = E{xx”} then the mutual information
can be expressed as

HCZ»;
I(x) Z‘] i) 21;(0) 3)

Where J(x) = [pu(x) log (Px(x)pe(x)) dx and J(x;) =
Jpix) log (p{x)/pg(x)) dx; are the multivariate and
marginal negentropies which are defined as the Kull-
back divergences of the actual PDF from a Gaussian
with the same mean and variance, [6].

If we use a spatial whitening transformation to
remove the second order redundancy in the data, such
that z = Ux and C,, = E{xx} = I, then det(C,,) =
0" C,,r; = det() = 1. The mutual information of
the spatially white data is now reduced to

I(z) = Z Ji(2:) (4)

A further transformation, say y = Wz, is now required
to reduce the remaining redundancy within the vector
attributed to the non-Gaussian characteristics of the
data. A truncated Edgeworth expansion [7] of the data
PDF written in terms of nth order cumulants and Her-
mite polynomials, denoted by x, and 4, is as follows

1 1
) = ) (1+ Jikahala) + gymahs(s)
1
+E’f§h6( Y) + zykshs(y)
35 280
+ 7”354}&7( y) + W’ighg(y)
1 56
a/%he( y)+ 5 — k3rshs(y)
2100
—ﬁihs(y) o Fakahio(y)
15400
e+ )

The validity of a truncated series expansion approxi-
mation for a PDF is discussed in [7]. Expansion terms
higher than fourth order can give rise to excessive fluc-
tuations at the tails of the distribution leading poten-
tially to negative values. By truncating the expansion at
fourth order and substituting into the expression for
marginal negentropy, it is shown [6] that

Ty = Trd = o3

A (5)

If we make the assumpt1on that the PDFs of the sig-
nals under consideration are approximately symmetric,
then the third order cumulants will have a negligible
contribution to eqn. 5. The mutual information of the
transformed data is now approximated by

1) = J(y) - 55 > #20) (©
=1

Owing to the invariance of differential entropy under
orthogonal transformations we can see that

1 1
/<;§+48 K3+

1 .
1) = J(2) - 32 > A0
=1
Under an orthogonal transformation, the mutual infor-
mation of the data can be approximately minimised by

300

maximising the sum of squares of fourth order cumu-
lants. Therefore, the following contrast function is pro-
posed

N
Dptas = Z k3 (1) (7)

The link between BSS and Exploratory Projection
Pursuit (EPP) is made here. EPP is a statistical tool,
which allows structure in high dimensional data to be
identified [8]. This is achieved by projecting the data on
to a low dimensional subspace and searching for struc-
ture in the projection. By defining indices which give a
measure of how ‘interesting’ a given projection is, pro-
jection of the data onto a subspace that maximises the
given index will then provide a maximally ‘interesting’
direction. Departures from a Gaussian distribution are
viewed as ‘interesting’, as skewed or multi-modal distri-
butions present certain higher order structures within
the data. If we then use an index, which is a function of
the direction of projection, index maximisation will
provide a direction furthest from Gaussian. So in the
case of BSS, if we use an index such as eqn. 7, we will
find a direction which will yield distributions that are
as independent as possible.

An input variable x is transformed by an invertible
matrix U into z, having diagonal covariance matrix D.
Then

C.,=UC,U"=D, (8)

and all subsequent linear transformations resulting in a
diagonal identity covariance matrix are defined as

PDWD;'/?U (9)
where P is a permutation, D is an invertible diagonal
scaling and W is an orthogonal rotation matrix [9]. The
term D;"?U diagonalises the covariance to an identity
and spatially whitens the input. We can then write the
BSS transformation as a matrix W such that

Ma:v § 54

y = WD;”QUX —WUx if D=1 (10)
Cayley parameterisation of the rotation matrix and
gradient descent is employed in [9] in maximising
eqn. 4; standard principal components analysis (PCA)
is used as part of the whitening process.

This is essentially a batch-processing algorithm, as all
available data is required to compute the sample cumu-
lants, however self-organising neural networks can be
useful for online adaptive BSS. We now consider a self-
organising neural network, which will perform the BSS
transformation in eqn. 10 in an online adaptive man-
ner.

and WWT =1

3 Deflationary exploratory projection pursuit
network with lateral inhibition

Consider the neural network model shown in Fig. 1.
This is an extension of the EPP network originally pro-
posed by Fyfe and Baddeley [10]. Girolami and Fyfe
[11-14] have further developed the EPP network to
perform a generalised BSS transformation. The input
to the network at time ¢ is x(¢) = As(?), which is the
unknown mixture of the unknown sources. The output
of the first layer is given as

z=I+Ulx=U;x
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The adaptation of the weights is driven by simple nor-
malised anti-Hebbian learning

AU = oI — zz") (11)

The learning rate is denoted by a. E{AU} = oI — C,,)
— 0 = C,, — I, where C,, is the covariance matrix of
z. The anti-Hebbian learning of the input layer yields a
spatially white output vector z.

u w v
X 1 21 Y1
Xz YZ
—
X3 Y3

Fig.1  The extended exploratory projection pursuit network

The z values are fed forward through the W weights
to the output neurons where there is a second layer of
lateral weights. However, before the activation is
passed through this layer it is passed back to the origi-
nating z values in a hierarchical manner, as inhibition
and then a nonlinear function of the inputs is calcu-
lated. The linear activation at the output neurons is

y=WTz=wWTU;x (12)

The output neurons are nonlinear and a nonlinear
functional is applied to the weighted sum. We shall dis-
cuss the form of the nonlinearity shortly. The outputs
also have lateral and self-connections to the nonlinear
output neurons and so the nonlinear output is defined
as

yn = I+ V) =V,f(y) (13)
Simple hierarchical Hebbian learning is used to update

the feedforward weight values, which in vector notation
is

AW = § (zy}; — W x upper[W'z x y,])  (14)

The upper [...] operator sets the matrix argument upper
triangular. Similarly, anti-Hebbian learning is applied
at the output layer as at the input layer

AV = y(I-yuyl) (15)

The weight update equation (eqn. 14) is originally
derived from the maximisation of an objective function
under the constraints of orthonormality [15]. As
eqn. 14 provides an orthogonal rotation to maximise
the objective function J(W) = 17 E{g(W7z)}, with a
suitable choice of the function g(...) it can be made
equivalent to the sum of squares of fourth order mar-
ginal cumulants. Note that maximising the sum of the
absolute values of fourth order cumulants Z,-" |i,(?)|
will yield identical optimal weight parameters for func-
tion maximisation as the computationally more com-
plex sum of squared values 2. k7(i). The fourth
order cumulant of a variable with zero mean and unit
variance is equal to

ka(i) = B{y;} —3 (16)
In this case, the fourth order cumulant is identical to
the kurtosis of the data. Setting g(y) = |y* — 3| will then
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yield for the objective function
J(W) =1"E{g(W"x)}

N

= Blowix)}
7,]-\]1

=2 Irs(wlx)

N
= > Iea(wo)

where w; is the ith column of the weight matrix W.
Taking the instantaneous gradient and using compact
matrix notation we have

dJ (W)
dW

o signum(kg)x(xT W)3

= signum(r4)x(y*)T

The signum operator returns +1 for arguments greater
than zero and -1 for argument s less than zero. The
term signum(xy) is the diagonal matrix whose elements
are the sign of the kurtosis value of all the w,/x terms,
so f{y) = signum(xy(y))y®. This indicates that if there
are independent sources in the mixed vector x which
have negative kurtosis the nonlinear function to be
used for maximisation of the sum of squares of fourth
order cumulants is f{y) = -3, and for positively kur-
totic sources () = +y*. Simple cubic activation func-
tions give algorithmic instability in eqn. 14 as discussed
in [15]. We have proposed the following nonlinearity in
[16, 17]

f(y) =y £ tanh(y) = y — signum(r4) tanh(y)
Taking a Taylor expansion of the hyperbolic tangent
it is clear we are attempting to maximise

E { / y — signum () tanh(y)dy}

il - s (-2 + 2~ )

For zero mean data with unit variance E{y} = 0,
E{y?} =1 the form of y + tanh(y) will have E{-y*12}
as the dominant term, as the inequality y%12 > 255/90
is valid [10]. The weight update (eqn. 14) will then
approximately minimise the kurtosis at each output.
For the form of y — tanh(y), the E{)*12} term will
dominate in the objective function. This allows approx-
imate maximisation of the kurtosis for super-Gaussian
data. The additional advantage of the function y -
tanh(y) is that it is an approximately lincarly increasing
function which is numerically stable in the stochastic
algorithms in eqn. 14. 4 priori knowledge of the source
signal statistics has been required to choose the sign for
the compound nonlinearity

f(y) = y — signum(x,) tanh(y)
With this knowledge mixtures of both sub- and super-
Gaussian signals have been separated [11]. In keeping
with the blind form of the proposed separation, we can
estimate online the kurtosis of each neuron using a sim-
ple moving average estimator

s (t+ )] = [1 = n(®)]ri, [yi (O] +n(t)y; (8) (17)

kalyi(t +1)] = %

Eqn. 17 estimates online the pth order moments of the

~3 (18)
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data, n(¢) being a small learning constant. Eqn. 18 is
an estimate of the kurtosis for zero mean, unit variance
data. The network nonlinearity will then be

STy ()] = yi(t) — signum (k4 [y;(¢)]) tanh[y; (¢)] (19)

For the whitened data, the output matrix V will be
diagonal [12, 13] and the individual elements of the
weight update matrix (eqn. 14) are given by

N
Awﬂ = 77t(1 + ’Ujj)f Zwikzk(t)
k=1

i N
X q2(8) = D wiy Y wipzy(t) (20)
=1 p=1

Consider the rightmost term in eqn. 20

7 N 7
Z(1) =Y wy > wipzp(t) ¢ =250t = > wiyy
=1 p=1 =1

7
Z() = wid)
=1

We can see that the linear network activation, which
can be considered as an approximation to each inde-
pendent source, is fed back in a hierarchic manner. The
residual that is formed is used in the simple nonlinear
Hebbian learning (eqn. 20). As each linear output con-
verges to an approximation of one of the underlying
sources, the subsequent neurons in the hierarchy will
have their weights updated using residuals which have

had weighted approximations of the
extracted sources removed.

The anti-Hebbian learning at the output requires
some consideration. Once the input data has been whit-
ened, the lateral output connection weights will tend to
zero [11, 12] as there are no remaining second order
correlations driving the anti-Hebbian learning. How-
ever, the self-connections have a self-reinforcing effect,
especially in the case where the nonlinearity f{y) = y —
tanh(y) is used. Small values of y will cause f{y) — 0,
the self connecting weights will be self-reinforcing as
Av; = vy, and so the Hebbian learning of eqn. 20 will
continue to update the feedforward weights. This form
of self-reinforcement was originally proposed by
Cichocki et al. [18] for separation of ill-conditioned
mixtures of sources. The network of Fig. 1 therefore
provides a flexible online adaptive method of perform-
ing the BSS transformation given in eqn. 10.

previously

4  Simulation

Ten greyscale images were chosen based on their kurto-
sis values. Each image was 202 x 202 pixels in size,
with each pixel using an eight-bit greyscale representa-
tion. Fig. 2 shows the original images and Fig. 3 shows
the probability density of each image as a histogram.
Table 1 gives a listing of both the original and mixed
data statistics (Note the negligible value of the third
order cumulant of each image). From Table 1 and
Fig. 3 it is clear that the majority of the images are

Fig.2  Original source images
Top (left to right): Mulder, Finger, Peppers, Scully, Lena
Bottom (left to right): Stripe, Worm, Turing, Virus, Noise

2 2000 3000
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1000
05 500
0 0
%05 1 0 05 1 05 1 g 05 1
15000 4000 5000 10000
3000 4000 8000
10000 3000 6000
2000 2000 4000
5000
1000 1000 2000 |
0 05 1 0 05 1 0 05 0 05 1

Fig.3  Histogram distributions for original source images
Top (left to right): Mulder, Finger, Peppers, Scully, Lena
Bottom (left to right): Stripe, Worm, Turing, Virus, Noise
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negatively kurtotic, although the images of “Turing’
and ‘Worm’ both have positive values of kurtosis.

Table 1: Original and mixed image statistics

Image Mean Kurtosis Skew Mixed Kurtosis
Images
Mulder  0.370 -1.245 0.0014 Mix 1 -0.0806
Turing 0.470 +1.467 0.0016 Mix 2 -0.3562
Lena 0.690 -0.730 -0.0049 Mix 3 -0.2652
Noise 0.000 -1.193 0.00063 Mix 4 -0.3479
Finger 0.590 -1.285 -0.00056 Mix 5 -0.2688
Peppers 0.460 -0.878 -0.0023 Mix 6 -0.3458
Scully 0.420 -1.144 0.0023 Mix 7 —0.3999
Stripe 0.730 -1.484 -0.0018 Mix 8 -0.3939
Worm 0.350 +2.031 0.0015 Mix 9 -0.3319
Virus 0.320 -1.279 0.0014 Mix 10 -0.3211

A randomly generated 10 x 10 matrix carried out the
mixing. Figs. 4 and 5 show the mixed images and the
corresponding histograms. As is apparent from Table
1, the values of kurtosis have all tended to small values,
and the corresponding histograms show quite clearly
the onset of central limit effects with each mixed image
having almost Gaussian statistics. From Fig. 4 we can

%

Fig.4 Mixed images
Top (left to right): Mix 1 — Mix 5
Bottom (left to right): Mix 6 — Mix 10

see that the mixing has caused significant degradation
of the images, making them indistinguishable. Each
mixture has the mean value removed prior to present-
ing the data to the network. The input weights were
initially set to zero, while the feedforward weights were
randomly set to values between —1 and 1. We use the
sum of squares of fourth order marginal cumulants as
a measure (or contrast) of the overall separating per-
formance of the network. Fig. 6 shows the development
of the contrast at the end of each adaptation epoch.

80 . . T .

60+ 1

L0 1

percentage of unmixed total %

0 ]

0 20 40 60 80 100
epoch number

Fig.6  Contrast development during learning
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1500 1500 1500 1500
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% 0 2 2 o 2 9 2 2 ) 0 2
2500 2500 2000 2000 2500
2000 2000 1500 1500 2000
1500 1500 1500
1000 1000
1000 1000 1000
500 500 500 500 500
0 0 0 0 0
) 0 2 2 0 2 2 2 2 0 2> 0 2

Fig.5 Histograms associated with mixed images
Top (left to right): Mix 1 — Mix 5
Bottom (left to right): Mix 6 — Mix 10
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Fig.7  Development of the data kurtosis at each output neuron
It is clear that each output converges to a maximally kurtotic distribution in a
phased though not necessarily sequential manner

The overall contrast reaches a maximal value of 81% of
the original value. One aspect of the learning that is of
particular interest is the kurtosis sign development.
Inspection of the sign of the kurtosis at each adapta-
tion epoch shows the switching from positive to nega-
tive at certain outputs until stability is reached. If we
consider the kurtosis development of each individual
output neuron, it is clear that a phased extraction of
the sources i1s occurring, (Fig. 7).

The manner of the extraction is dependent on the
correct development of the kurtosis sign at each out-
put. If the kurtosis sign for a particular neuron is
incorrect at some point of the learning, then the neuron
will pursue an inappropriate direction for maximisa-
tion. However, as the weight matrix is strictly orthon-
ormal during the learning period, the linear
independence of the weight matrix columns will force a
change of the kurtosis sign. This changes the direction
of pursuit and restores the strict orthonormal nature of
the weight matrix. Fig. 8 shows the sign of the nonlin-
ear term at each neuron and how these have changed
during learning. Figs. 9 and 10 show the extracted
sources; there is still some residual degradation indi-
cated by the contrast value of 81%.

5 Conclusions

By applying phased linear feedback in the extended
EPP network, we have extracted source images from a
received mixture. Using the proposed form of eqn. 19
and online kurtosis estimation we have been able, with

1 T T T T T T T T T

. 1 0 110 2[0 3[0 4[0 5[0 5]0 7]0 8]0 90 100
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Fig.8 Development of the kurtosis sign at each output neuron

40
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100

epoch number

The rows signify the nonlinearity sign () term at each one of the output neurons. The changes of sign during learning can be seen at neurons 3, 4, 5, 8 and 10
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Fig.9 Nenwork output: final recovered images
Top (left to right): Noise, Stripe, Turing, Virus, Finger
Bottom (left to right): Mulder, Lena, Worm, Peppers, Scully
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Fig.10  Network output: histograms
Top (left to right): Output.1 — Output.5
Bottom (left to right): Output.6 — Output.10

no a priori knowledge of the source statistics, to extract
images which have both sub- and super-Gaussian dis-
tributions. We have proposed the use of hierarchic lin-
car feedback in an extension of an EPP network. The
orthonormal nature of the network learning and the
hinear feedback of activation allow a deflationary
approach to BSS. We have extended the network non-
linearity to a self-adaptive model whose adaptation is
driven by the kurtosis of the output neurons. The
requirement for source signals to have the same sign of
kurtosis and a priori knowledge of the kurtosis sign has
been removed.

This paper has studied the BSS transformation for
the case where the number of observations equals the
number of sources. If the number of observations is
greater than the number of sources, then this particular
technique may be applied in extracting the original
sources. There will, however, be a large degree of
redundancy with certain sources possibly being
extracted several times at differing outputs. This situa-
tion has been studied by Cichocki et al. [19]. The case
where the number of observations is less than the
number of sources is a more complex and demanding
problem. A most promising technique has been recently
proposed by Pajunen [20], however this is only valid
for binary valued data and cannot be extended to con-

IEE Proc.-Vis. Image Signal Process., Vol 144, No. 5, October 1997

tinuous valued data. The separation of observed mix-
tures of continuous valued data sources which have
smaller dimension than the source data is a demanding
research problem which is the subject of further
research work.
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