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ABSTRACT

Differences in vocal tract sise among individual speak-
ers contribute to the variability of speech waveforms. The
first-order effect of a difference in vocal tract length is a
scaling of the frequency axis; a female speaker, for example,
exhibits formants roughly 20% higher than the formants of
from a male speaker, with the differences most severe in
open vocal tract configurations.

In this paper we describe a parametric method of normal-
izsation which counteracts the effect of varied vocal tract
length. The method is shown to be effective across a wide
range of recognition systems and paradigms, but is particu-
larly helpful in the case of a small amount of training data.

INTRODUCTION

One way to compensate for differences in vocal tract
length has been described by [1], who performed an
exhaustive search for the best linear scaling of the
frequency axis, f' = k,f, for each training speaker
s. Models were iteratively developed by choosing the
scale factor k, which maximized the likelihood of the
training speaker’s acoustics in the current model.

For each test speaker, decoding was done at each of
twenty choices for the scale factor. The recognition as-
sociated with the maximum likelihood factor was cho-
sen as the system output.

The results showed that appropriate scaling of the
frequency axis for each speaker can significantly reduce
the number of errors produced by a speech recognition
system. However, the exhaustive, iterative approach
outlined above is too costly for reasonable amounts of
training data; decoding each test speaker twenty times
is similarly limited.

In our paper, we will present a different approach
to vocal tract length normalization. We derive an es-
timate of the appropriate scale factor for each speaker
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based on formant positions, thereby enabling inexpen-
sive computation of arbitrary precision. We show the
results of the procedure under a linear as well as a
non-linear warping function.

METHOD

We introduce into our analysis program a function g
which transforms the frequency axis according to f' =
g(k,, f) where k, is a scalar which compensates for the
vocal tract length of speaker s. We first motivate our
choices for g based on simple vocal tract models and
then describe how k, is estimated.

Consider the simple vocal tract models shown in
figures 1 and 2. The simplest, the uniform tube, is ap-
propriate for relatively open vowels such as /AA/. For
this model, formant frequencies occur at odd multiples
of 1/L; a change in the length of the vocal tract from
L to kL results in a scaling of the frequency axis by
a factor 1/k, which is consistent with a linear warp-
ing. Following the uniform tube model, then, the fre-
quency axis is warped according to f' = k,f. How-
ever, a uniform tube is not always the best model of
the vocal tract. For example, the model depicted in
figure 2, known as a Helmholtz resonator, is a good
approximation of the vocal tract configuration for the
first formant of the close front vowel /IY/. The reso-
nance generated by such a system, F}, is proportional
to /V/AL, where V is the volume of the back cav-
ity, A is the cross-sectional area, and L is the length
of the narrow tube. Fant [2] suggests that a possible
way to model a change in overall vocal tract size by
a factor k is to adjust all dimensions of the model by
k except the length L of the narrow tube, which re-
mains fixed. The resulting shift of the first formant
frequency is 1/v/k making the first formant region of
these vowels less sensitive to a change in vocal tract
length. Furthermore, the higher frequency regions for
these vowels show sensitivity to k comparable to that



of open vowels.

Thus, the scaling of the frequency axis imposed by
a change in vocal tract length is dependent on the con-
figuration of the vocal tract or, equivalently, on the
phoneme being produced, with the formant positions
of open vowels most affected by changes in tract length.

In order to compromise among the various phoneme-
dependent effects of vocal tract length in a context-
independent normalization scheme, we have investi-
gated a warping of the frequency axis according to
F = k3118000 ¢

This non-linear warping, which allows more stretch-
ing at high frequencies than at low, provides slightly
better performance than a linear warp.

L

Figure 1. Uniform tube model.

Having decided on a form for g, we derive a sin-
gle normalization factor for each training and testing
speaker based on the median position of the third for-
mant in his speech. Formants are estimated using
the commercially-available Waves+ package [3]. This
software solves for roots of the LPC equation at each
frame, chooses the desired number of formants from
the set of roots, and then smooths the estimated for-
mant tracks through an utterance using dynamic pro-
gramming. For male speakers we search for four for-
mants in the range 300-3300 Hz, while for females we
look for three formants in this range.

\'

Figure 2. Helmholtz resonator.

Having estimated a formant configuration for each
frame of each waveform from a given speaker s, we
compute his normalization factor, k,. This factor is
calculated as the median of the speaker’s third for-
mant over a subset of frames satisfying the criteria
itemnized below, divided by the median of F3 under the
same constraints taken across the set of training speak-
ers. The criteria used to include frames in the median
process were:

e p, >0.38

e F; >400Hz
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e 2kHz < F3 < 3kHz

where p, is the probability of voicing at a given frame
as specified by Waves+.

To reduce the computation, rather than use all of
the speech from each speaker to estimate the median
position of the third formant, we have used only the
first 30 utterances from each speaker, where the aver-
age utterance lasts 2.6 seconds.

EXPERIMENTS AND RESULTS

Our normalization method has performed well over
a variety of experimental paradigms on the Switch-
board corpus. The method shows the largest gains over
baseline at small amounts of data, but significantly in-
creases performance at large amounts of training as
well.

Paradigm Error
[1.0] Baseline 61.9
1.1] Linear forced 59.4
[1.2] Linear optional 57.3
1.3] Non-linear forced 58.0
1.4] Non-linear optional {| 57.1

Table 1. Effect of normalization on the CAIP test set.
5 hours of training. 5k closed vocabulary.

In conditions [1.1] and [1.2] we perform the map-
ping f’ = k,f. Condition [1.1] forces the use of the es-
timated normalization factor for each test speaker. We
have noticed that the recognition results are very sen-
sitive to k,; a small change in this value in the wrong
direction can cause a large increase in the error rate
for that speaker. To diminish this effect, we allow in
testing an optional stretch on a sentence-by-sentence
basis. Each sentence is decoded twice, once with the
estimated normalization factor included in the analy-
sis, and once with k, set to 1. We select as our recog-
nition hypothesis the transcription associated with the
higher of the two likelihoods. Results of enabling this
type of back-off are shown in condition [1.2]. Note that
the backing-off is allowed only in decoding; all training
speakers are normalized according to their estimated
scale factor.

In conditions [1.3] and [1.4] we perform the map-
ping f' = E(3//8090) £ Condition [1.3] uses the esti-
mated normalization factor while condition [1.4] allows
the option of backing off to a factor of 1.0 for k,. We see
that in this test, after allowing back-off, there is little
difference between the two choices for g. Nonetheless,



Paradigm Test Test Test
Unnorm | Non-linear | Non-linear
Forced Optional
Train
Unnorm 60.2 58.6 58.1
Train
Non-linear
forced 57.3 56.0 55.2

Table 2. The effect of normalizing only the training or
test set. 10k words + 2k compounds open vocabulary.
5 hours of training data.

we assume the non-linear form for the remainder of the
paper.

We have also looked at the results when only the
training set or the test set is normalized. These re-
sults are collected in table 2 for the case of 5 hours
of training data. We note that the gains from nor-
malizing the training and the test are nearly additive.
In this small-training problem, most of the gain arose
from normalizing the training data which enabled more
efficient use of the limited data.

Paradigm Hours of Training
5 32 63
3.0] Baseline 60.2 | 51.9 | 51.8

3.1] Non-linear, forced 56.0 | 49.6 | 49.3
3.2] Non-linear: optional {| 55.2 | 48.8 | 48.8

Table 3. Effect of normalization on the CAIP test set
as a function of training data. 10k open vocabulary
plus 2k compound words.

Next, we looked at performance as a function of
the amount of training data used, as shown in table 3.
Note that the normalization procedure is especially ef-
fective in the case of small amounts of training. Fur-
thermore, under normalization the results saturate ear-
lier than in the unnormalized case. We could exploit
this fact two ways. We could use less data for training,
thereby requiring less training time. Alternatively, we
could use all of the data but increase the complexity of
our models and achieve potentially better recognition
performance. This option is as yet unexplored.

Finally, we looked at the effect of simulating train-
ing data by warping each training speaker by multiple
factors and pooling the results into an enlarged train-
ing corpus, as shown in table 4. Condition [4.0] is the
baseline case of a single normalized training token for
each original training observation with optional scal-
ing in test. Condition {4.1] reflects the pooling of the
non-linearly warped data of condition [4.0] together
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Paradigm Error
4.0] Non-linear optional 55.4
4.1] Non-linear forced pooled 56.7
4.9] Non-linear optional pooled | 55.8

Table 4. The effect of simulating training data, using
k, and (k,+1.0)/2 as normalization factors for speaker
s. An open vocabulary of 10k words + 2k compounds
was used.

with a normalization in which the normalization factor
was taken as (k, + 1.0)/2, with the test data warped
according to k,. Condition [4.2] indicates the perfor-
mance using the pooled-data model and allowing an
optional warping of the test set. As indicated, gen-
erating new training samples does not reduce the er-
ror rate over just using a single, properly normalized
data set for training. This is easily explained by the
fact that the pooled models are smeared relative to the
single-warping case, with no new contextual informa-
tion provided as would be the case for increasing the
amount of actual Switchboard data used for training.

SUMMARY

In this paper we have described a method of warp-
ing the frequency axis to compensate for the vocal tract
length of each training and testing speaker. The pro-
cedure is tractable for large amounts of data in that it
estimates the appropriate scale factor for each speaker
based on formant positions. We have shown results on
the Switchboard corpus for two choices for the warp-
ing function, and we have shown the effect of the pro-
cedure as a function of the amount of training data
available. We have found that although effective at all
levels of training data, it is particularly so for small
problems. Finally, we found that simulating training
data by multiple scalings of the frequency axis did not
help recognition performance.
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