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ABSTRACT 
This publication presents a new method for the detection and classification of un-pitched percussive instruments in 
real world musical signals. The derived information is an important pre-requisite for the creation of a musical score, 
i.e. automatic transcription, and for the automatic extraction of semantic meaningful meta-data, e.g. tempo and 
musical meter. The proposed method applies Independent Subspace Analysis using Non-Negative Independent 
Component Analysis and principles of Prior Subspace Analysis. An important extension of Prior Subspace Analysis 
is the identification of frequency subspaces of percussive instruments from the signal itself. The frequency 
subspaces serve as information for the detection of the percussive events and the subsequent classification of the 
occurring instruments. Results are reported on 40 manually transcribed test items. 

 

1. INDRODUCTION 

1.1. Motivation 

Where the description of musical audio signals by 
means of metadata is concerned, an important branch 
constitutes the analysis of rhythm. Although rhythm is 
an essential concept for musical structure, which is 
contained in the voices of all sounding instruments 
there’s little doubt that especially percussive 
instruments contribute to the rhythmical impression. 
High level description of any rhythmical content is only 
feasible when drum scores are available. This  

 
 
 
information enables further categorization of musical 
content such as classification of genre (based on 
characteristic rhythmical patterns) determination of 
rhythmic complexity, expressivity and “groove” of a 
musical item. The measurement of less subjective 
descriptors like tempo and musical meter significantly 
benefits from the availability of a drum score as well. 
Thus, automated extraction of the drum score is an 
essential tool for cataloguing musical content and is able 
to contribute to today’s music retrieval algorithms 
immensely. 
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1.2. State of the Art 

The transcription of percussive un-pitched instruments 
represents a less challenging task than the 
comprehensive transcription of all played instruments in 
a musical peace, including harmonic sustained 
instruments. This is due to a number of reasons. First, 
no melodic information has to be detected, since with 
most percussive sounds pitch plays only a subordinate 
role. Second, percussive instruments commonly do not 
produce sustained notes (there are numerous exceptions, 
e.g. guiro, cymbal crescendos, as well as instruments 
residing in a grey area between un-pitched and pitched 
instruments, e.g. the Brazilian quica), so the duration of 
the notes has not to be detected in the general case. The 
challenge with identification of percussive instruments 
resides in the fact, that a great variety of sounds can be 
generated using a single instrument. This work focusses 
on the vast field of popular music, and only a limited set 
of percussive un-pitched instruments is presumed to be 
present. There are mainly two instruments classes in 
scope: membranophones and idiophones (as well as 
their electronic counterparts). The membranophones 
usually occupy the lower frequency regions of the audio 
signal. To name a few examples ordered according to 
their dominant frequency regions kick drum, tomtom, 
snare drum, timbales, conga and bongo are enumerated 
here. The list of examples can be continued with respect 
to the dominant frequency range by idiophones like 
woodblock, shaker, cymbal, tambourine and hi-hat. 
Unfortunately for the retrieval task, the instruments are 
not clearly separable along the frequency axis and there 
are many ambiguities due to different playing 
techniques and styles, recording situations and 
electronic effects, which are eventually applied to drum-
sounds.  
 
Previous work on the transcription of percussive 
instruments includes the doctoral thesis by Schloss [1], 
which addresses the transcription of pure percussive 
music. The developed system detects note onsets from 
the slope of the amplitude envelope and subsequently 
identifies the source of each note. The events are 
classified into damped and un-damped strokes, and 
subsequently into high and low frequency drum-sounds. 
The analyzed percussive instruments are 
membranophones, exclusively. The resulting note-list is 
used for the metrical analysis.  
Other work relating to the detection and classification of 
events in musical audio signals containing only drum-
sounds is described in [2], [3]. Gouyon et al. presented a 
system for automatic labeling of short drum kit 
performances, in which the instruments do not occur 

simultaneously. The audio signal is segmented using a 
tatum grid, and each segment is represented as a vector 
of low-level features (e.g. spectral kurtosis, temporal 
centroid and zero-crossing rate). Various clustering 
techniques were examined to identify similar instrument 
sounds. Paulus et. al. described a system for the 
labelling of synthesized drum sequences with 
simultaneously occurring sounds using higher-level 
statistical modelling with n-grams. A manually detected 
tatum grid is applied for the segmentation of the drum 
tracks.  
 
A number of authors have suggested systems for the 
detection and classification of percussive instruments in 
the presence of pitched instruments. McDonald 
proposes the use of a bank of wavelet filters to produce 
a spectrogram of the audio signal. The spectrogram is 
further processed by a bank of Meddis Inner Hair Cell 
models for the detection of note onsets. Note onsets are 
detected from the amplitude data in sub-bands of one 
octave width scaled with the phase congruency per sub-
band. The detected events are then classified using the 
similarity between the sonogram data of a short excerpt 
following an onset and trained samples [4].  
An analysis/synthesis approach to extraction of drum-
sounds from polyphonic music is presented in [5]. The 
extraction of the two dominant percussive instruments 
and their occurrences is done by an iterative correlation 
method of matching a simple drum model witch the 
actual drum-sounds in the analyzed signal. The 
extracted drum-sounds are not explicitly classified but 
subjected to be used as an audio-signature for the signal. 
 
Some of the most recent work relates to the 
decomposition of the audio-signal using Independent 
Subspace Analysis (ISA). Casey et al. introduced this 
method for separation of sound sources from single 
channel mixtures. No explicit focus on percussive 
instruments has been emphasized, but the 
decomposition of a drum-loop into single sounds is 
featured as an illustrative example [6].   
Iroro Orife adopts ISA to separate and detect salient 
rhythmic and timing information with regard to a better 
understanding of rhythm, as well as computer based 
performance and composition [7]. 
In [8] ISA is employed to separate real world musical 
signals into percussive and harmonic sustained 
fragments using a decision-network based on measures 
describing the spectral and time-based features of a 
fixed number of independent components. 
Further developments were conducted by Fitzgerald et 
al. [9] through introducing the principal of Prior 
Subspace Analysis, where generalized spectral profiles 
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for different percussive instruments are used to extract 
amplitude basis functions, which are then subjected to 
ICA to achieve statistical independence. Peak picking in 
such separated amplitude bases enables onset detection 
corresponding to the occurrence of drum instruments a 
priori assumed to be contained in the musical signal. 
The application of PSA in terms of detection and 
classification of drum instruments has moved from 
percussive to polyphonic music with promising results 
in [10]. This step is motivated by the assumption that 
the drum instruments are stationary in pitch.  

2. SYSTEM OVERVIEW 

2.1. Blockdiagram 

An overview of the proposed system is presented in 
figure 1. The subsequent sections will give a more in 
depth account of the different stages endorsed the signal 
processing chain. 
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Figure 1 System Overview 

2.2. Spectral Representation 

The digital audio signals used for further analysis are 
mono files with 16bit per sample at a sampling 
frequency of 44.1kHz. They are submitted to pre-
processing in the time domain using a software-based 
emulation of an acoustic effect device often referred to 
as Exciter. In this context , the Exciter stage emphasizes 
the higher frequency content of the audio signal. This is 
achieved by applying non-linear distortion to a high-
pass filtered version of the signal and adding that 
distorted signal to the original. It turns out, that this is a 
vital issue when assessing hi-hats or similar high 
sounding idiophones with low intensity. Their energetic 
weight in respect to the whole musical signal is 
increased by that step, while most harmonic sustained 
instruments and lower sounding drum types are not 
affected. Another positive side effect consists in the fact 
that formerly MP3-encoded (and in the process low pass 
filtered) files can regain higher-frequency information 
to some extent. A spectral representation of the pre-
processed time signal is computed using a Short Time 
Fourier Transformation (STFT). Thereby a relatively 
large block-size and high overlap are necessary due to 
two reasons. First the need for a fine spectral resolution 
in the lower frequency bins has to be fulfilled. Second 
the time resolution is increased to a required accuracy 
by a small hop-size between adjacent frames. From the 
above mentioned steps a spectrogram representation of 
the original signal is derived. The unwrapped phase-
information Φ  and the absolute spectrogram values X  
are taken into further consideration. The magnitude 
spectrogram X  possesses n  frequency bins and m  
frames. The time-variant slopes of each spectral bin are 
differentiated over all frames in order to decimate the 
influence of sustained sounds and to simplify the 
subsequent detection of transients. The differentiation 
leads to some negative values, so a half wave 
rectification is appended to remove this effect. This 

way, a non-negative difference-spectrogram X̂  is 
computed for the further processing. 

2.3. Event Detection 

The detection of multiple local maxima associated with 
transient onset events in the musical signal is conducted 
in a quite simple manner. At first a time tolerance is 
defined which separates two successive drum onsets. In 
this implementation 68ms have been used as a constant 
value that is translated to the time resolution in the 
spectral domain where it determines the number of 
frames which must at least occur between two 
consecutive onsets. The usage of this minimum distance 
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was proposed in [11] and is also supported by the 
consideration that a sixteenth note lasts 60ms at an 
upper tempo limit of 250bpm, which is quite close to 
the value presumed above. To derive a detection 
function on which the peak-picking can be executed the 
spectral bins of the differentiated spectrogram are 
simply summed up. A relatively smooth function e  is 
obtained by convolving the summed spectrogram with a 
suitable Hann window. To achieve the positions t  of 
the maxima a sliding window of the tolerance length is 
then shifted along the whole vector e  thus achieving 
the ability to detect one maximum per step. The trick is 
now to keep only those maxima stored which appear in 
the window for longer terms, because these are very 
likely the peaks of interest. The unwrapped phase 
information of the original spectrogram serves as 
reliability function in this context. It can be observed 
that a significant positive phase jump must occur near 
the estimated onset-time t  in order to avoid mistaking 
small ripples for onsets. The main concept of the further 
process is the storage of a short excerpt of the 

difference-spectrogram X̂  (namely one frame) at the 
time of the onset. From these frames the significant 
spectral profiles will be gathered in the next stages. 

2.4. Reduction of Dimensionality 

From the steps described in the preceding section the 
information about the time of occurrence t  and the 

spectral composition of the onsets tX̂  is deduced. With 

real-world musical signals, one quite frequently 
encounters a high number of transient events within the 
duration of the musical piece. Even the simple example 
of a 120bpm piece shows that there could be 480 events 
in a 4 minute excerpt given the case that only quarter 
notes occur. With regard to the goal of finding only a 
few significant subspaces Principal Component 

Analysis (PCA) is applied to tX̂ . Using this well 

known technique it is possible to break down the whole 
set of collected spectra to a limited number of 
decorrelated principal components, thus resulting in a 
good representation of the original data with small 
reconstruction error. For this purpose an Eigenvalue 
Decomposition (EVD) of the dataset’s covariance 
matrix is computed. From the set of eigenvectors the 
ones related to the d  largest eigenvalues are chosen to 
provide the coefficients for a linear combination of the 
original vectors according to equation (1). 

TXX ⋅= t
ˆ~

  (1 ) 

Thereby, T  describes a transformation matrix which is 
actually a subset of the manifold of eigenvectors. 
Additionally the reciprocal values of the eigenvalues are 
incorporated as scaling factors yielding not only a 
decorrelation but also a variance normalization, which 
in turn implies whitening [12]. Alternatively a Singular 

Value Decomposition (SVD) of tX̂  according to [6], 

[8] can achieve the same goal. With small modifications 
it is proven to be equivalent to the PCA using EVD 

[13]. The whitened components X
~

 are subsequentially 
fed into the ICA-computation stage described in the 
next section. 

2.5. Non-Negative Independent Component 
Analysis 

Independent Component Analysis is a technique that is 
applied for separation of a set of linear mix signals into 
their original sources. A requirement for optimum 
performance of the algorithm is the statistical 
independency of the sources. Over the last years, 
extremely active research has been conducted in the 
field of ICA. One very interesting approach is the recent 
Non-Negative ICA [14], [15]. Where other commonly 
deployed algorithms like JADE-ICA [16] or FAST-ICA 
[17] exploit higher order statistics of the signals, Non-
Negative ICA uses the very intuitive concept of 
optimising a cost function describing the non-negativity 
of the components. This cost function is related to the 
reconstruction error introduced by axis pair rotations of 
two or more variables in the positive quadrant of the 
joint probability density function (PDF). The 
assumptions for this model imply that the original 
source signals are positive and well grounded, which 
means they exhibit a non-zero PDF at zero, and they are 
to some extent linearly independent. The first concept is 
always fulfilled for the data considered in this 
publication, because the vectors subjected to ICA 
originate from the differentiated and halfwave rectified 

version X̂  of the amplitude-spectrogram X , which 
does not contain any values lower than zero, but 
certainly some values at zero. The second constraint is 
taken into account when the spectra collected at onset 
times are regarded as the linear combinations of a small 
set of original source-spectra characterizing the 
involved instruments. This seems, of course, to be a 
rather coarse approximation, but it holds up well in the 
majority of the cases. The onset-spectra of real-world 
drum instruments do not exhibit invariant patterns, but 
are more or less subjected to changes in their spectral 
composition. Nevertheless, however, it may safely be 
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assumed that there are some characteristic properties 
inherent to spectral profiles of drum-sounds [9] that 

allow us to separate the whitened components X
~

 into 
their potential sources F  according to (2). 

XAF
~⋅=  (2 ) 

Where A  denotes the dd ×  unmixing matrix 
estimated by the ICA-process, which does actually 

separate the individual components X
~

. The sources F  
will be named spectral profiles from here forth. Like the 
original spectrogram they own n  frequency bins, but 
consist only of one frame. That means they only hold 
the spectral information related to the onset spectrum. 
To circumvent arbitrary scaling of the components 
introduced by PCA and ICA, a transformation matrix 
R  is constructed according to (3). 

TATR ⋅=  (3 ) 

Normalizing R  with its absolute maximum value leads 

to weighting coefficients in a range [ ]1...1−  so that 
spectral profiles, which are extracted using 

RXF ⋅= t
ˆ  (4 ) 

possess values in the range of the original spectrogram. 
Further normalization is achieved by dividing each 
spectral profile by its L2-norm. 

2.6. Crosstalk Profiles 

As stated earlier the independence and invariance 
assumption for the given spectral slices suffer some 
weaknesses. So it is no surprise that the unmixed 
spectral profiles still display some dependencies. But 
that should not be regarded as erroneous behaviour. 
Tests with spectral profiles of single drum-sounds 
recorded under real-world conditions also yielded strong 
interdependence between the onset-spectra of different 
percussive instruments. One way to measure the degree 
of mutual overlapping and similarity along the 
frequency axis is the conduction of crosstalk 
measurements. As an illustrative metaphor the spectral 
profiles gained from the ICA-process can be regarded as 
transfer-function of highly frequency-selective parts in a 
filter-bank where overlapping pass-bands lead to 
crosstalk in the output of the filter-bank channels. The 
crosstalk measure between two spectral profiles is 
computed according to (5). 

T
ii

T
ji

ji FF

FF
C

⋅
⋅

=,  (5 ) 

for di K1= , dj K1=  and ij ≠  

In fact this value is related to the well known cross-
correlation coefficient, but it uses a different 
normalization.  
 

2.7. Extraction of amplitude bases 

The preceding steps followed the main goal to compute 
a certain number of spectral profiles. These spectral 
profiles can be used to extract the spectrograms 
amplitude basis, from here forward referred to as 
amplitude envelopes according to (6). 

 XFE ⋅=  (6 ) 

As a second source of information the differentiated 
version of the amplitude envelopes can be extracted 
from the difference spectrogram according to (7). 

XFE ˆˆ ⋅=  (7 ) 

 This procedure is closely related to the principle of 
PSA. The main difference is that the priors used here 
are not some generalized class specific spectra. The 
second modification comprises in the fact that no further 
ICA-computation on the amplitude envelopes is applied. 
Instead, highly specialized spectral profiles very close to 
the spectra of the instruments really appearing in the 
signal are employed. Nevertheless the extracted 
amplitude envelopes are only in some cases nice 
detection functions with sharp peaks (e.g. for dance 
oriented music with predominant percussive rhythm 
tracks). Mostly they are accompanied by smaller peaks 
and plateaus stemming from the crosstalk effects 
mentioned above. 

2.8. Component Classification 

It is a well known problem [6] that the actual number of 
components is unknown for real world musical signals. 
“Components” is in this context used as general term for 
both the spectral profiles and the corresponding 
amplitude envelopes. If the number d  of extracted 
components is too low artefacts of the suppressed 
component are likely to appear in some other 
components. If too many components are extracted the 
most prominent ones are likely to be split up into 
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several components. Unfortunately this division may 
even occur with the right number of components and 
accidentally suppress detection of the real components. 
Hence, special care has to be taken when considering 
the results.  
 
This issue is approached by choosing a maximum 
number d  of components in the PCA or ICA process, 
respectively. Afterwards, the extracted components are 
classified using a set of spectral-based and time-based 
features. The classification shall provide two sources of 
information. First, components should be excluded from 
the rest of the process which are clearly non-percussive. 
Second, the remaining components should be assigned 
to pre-defined instrument classes. 
 
A suitable measure for the distinction of the amplitude 
envelopes is represented by the percussiveness, which is 
introduced in [8]. Here, a modified version is applied 
using the correlation coefficient between corresponding 

amplitude envelopes in Ê  and E . The degree of 
correlation between both vectors tends to be small, 
when the characteristic plateaus related to harmonic 
sustained sounds occur in the non-differentiated 
amplitude envelopes E . These are likely to almost 

disappear in the differentiated version Ê . Both vectors 
resemble each other far more in the case of transient 
amplitude envelopes originating from percussive 
sounds.  
 
A spectral-based measure is constituted by the spectral 
dissonance, earlier described in [18], [8]. It is employed 
here to separate spectra of harmonic sustained sounds 
from the ones related to percussive sounds. In the 
implementation presented here, again a modified 
version of the computation of this measure is used, 
which exhibits tolerance to spectral leakage, dissonance 
with all harmonics and a suitable normalization. A 
higher degree of computational efficiency has been 
achieved by substituting the original dissonance 
function with a weighting matrix for frequency pairs. 
 
The assignment of spectral profiles to a priori trained 
classes of percussive instruments is provided by a 
simple k-nearest neighbour classifier with spectral 
profiles of single instruments as training-database. The 
distance function is calculated from the correlation 
coefficient between query-profile and database-profile. 
To verify the classification in cases of low reliability 
(low correlation-coefficients) or several occurrences of 
the same instruments, additional features representing 

detailed information on the shape of the spectral profile 
are extracted. These comprise global centroid, spread 
and skewness as measures describing the overall 
distribution. More advanced features are the center 
frequencies of the most prominent local partials, their 
intensity, spread and skewness. 

2.9. Acceptance of drum-like onsets 

Drum-like onsets are detected in the amplitude 
envelopes using conventional peak picking methods. 
Only peaks near the original times t  are regarded as 
candidates, the remaining ones are stored for further 
considerations. The value of the amplitude envelope’s 
magnitude is assigned to every onset candidate at its 
position. If this value does not exceed a predetermined 
dynamic threshold then the onset is not accepted. The 
threshold varies over time according to the amount of 
energy in a larger area surrounding the onsets. Most of 
the crosstalk influences of harmonic sustained 
instruments as well as concurrent percussive 
instruments can be reduced in this step. Of crucial 
importance is the determination whether simultaneous 
onsets of distinct percussive instruments are indeed 
present or exist only due to crosstalk effects mentioned 
earlier. A simple solution is to accept those 
circumstantial instruments occurences, whose value is 
relatively high in comparison to the value of the 
strongest instrument at the onset-time. Unfortunately, 
the relevance of this procedure in terms of musical 
sense is low. 

3. RESULTS 

3.1. Testdata 

To quantify the abilities of the presented algorithm, 
drum scores of 40 excerpts from real world musical 
signals were extracted manually by trained listeners as a 
reference. Each excerpt consists of 30 seconds duration 
at 44.1 kHz samplingrate and 16 bits amplitude 
resolution. Different musical genres are contained 
among these examples featuring rock, pop, latin, soul 
and house only to name a few. They were chosen 
because of their distinct musical characteristics, and the 
intention to confront the system with a significant 
variety of possible percussive instruments and sounds.  
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3.2. Experimental Results 

The drum scores automatically extracted by the 
proposed system were compared to the manually 
transcribed reference scores. The results are listed in 
table 1. The featured instruments represent the most 
frequently appearing drum types, for which the numbers 
are representative. 

 
Class Found Missed Added 
Kick 83 % 9 % 23 % 
Snare 75 % 21 % 35 % 
Hi-hat 77 % 17 % 58 % 
Cymbal  43 % 55 % 26 % 
Shaker 60 % 35 % 93 % 

Table 1 Drum Transcription Results 

The detected onsets show deviations from the reference 
onsets. The average time difference is thereby ±  2 
blocks. This value corresponds to approximately 19 ms 
and is below the presumed tolerance. 

3.3. Discussion 

Some common problems can be observed. For a small 
part of the test-files no satisfying separation of spectral 
profiles has been achieved. In those cases spectral 
profiles that were identified in the spectrogram by a 
trained human observer have not been extracted, 
resulting in missing instruments. That obviously 
happens especially when many of the components are 
assigned to harmonic sustained sounds. The presence of 
very prominent and dynamical harmonic sustained 
instruments (expressive singing voice, trumpet or 
saxophone solos) also tends to increase the number of 
spuriously found onsets. Even the selection of only 
drum-like peaks is error-prone to influences of quickly 
changing sustained components.  

The separation of high sounding idiophones (hi-hat, 
cymbal, tambourine or shaker) can be particularly 
delicate because of their immensely overlapping 
spectral profiles. In contrast to lower sounding 
membranophones there are often no prominent partials, 
but a more or less broad distribution across the upper 
parts of the spectrum. This results in the 
indistinctiveness of the corresponding amplitude 
envelopes. So the decision if only one of those 
instruments is present at a certain onset time or whether 

there are more of them, can not be simply deduced from 
intensity thresholds. That is the reason for the high 
numbers of erroneous shaker- and hihat onsets. 

Unfortunately, direct comparison to the results 
presented in [10] is not feasible because of the 
disjunctive test data-bases and the wider range of 
percussive instruments considered in this publication. 

4. CONCLUSIONS 

In this paper a method for automatic detection and 
classification of un-pitched percussive instruments in 
real world music signals has been presented. The results 
are extremely promising when considering the 
extraction of significant rhythmical information rather 
than perfect note-to-note transcription. It can be 
expected that further improvements will be made in the 
near future with regards to the classification stage and 
the onset-acceptance. Furthermore, additional 
information has to be collected and algorithmic methods 
have to be invented in order to correctly assess the few 
exceptional situations where the ISA-model does not 
deliver the desired results. 
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