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The Scale Representation 
Leon Cohen 

Abstract-We consider “scale” a physical attribute of a sig- 
nal and develop its properties. We present an operator which 
represents scale and study its characteristics and representa- 
tion. This allows one to define the scale transform and the en- 
ergy scale density spectrum which is an indication of the inten- 
sity of scale values in a signal. We obtain explicit expressions 
for the mean scale, scale bandwidth, instantaneous scale, and 
scale group delay. Furthermore, we derive expressions for mean 
time, mean frequency, duration, frequency bandwidth in terms 
of the scale variable. The short-time transform is defined and 
used to obtain the conditional value of scale for a given time. 
We show that as the windows narrows one obtains instanta- 
neous scale. Convolution and correlation theorems for scale are 
derived. A formulation is devised for studying linear scale-in- 
variant systems. We derive joint representations of time-scale 
and frequency-scale. General classes for each are presented us- 
ing the same methodology as for the time-frequency case. As 
special cases the joint distributions of Marinovich-Altes and 
Bertrand-Bertrand are recovered. Also, joint representations 
of the three quantities, time-frequency-scale are devised. A 
general expression for the local scale autocorrelation function 
is given. Uncertainty principles for scale and time and scale and 
frequency are derived. 

I. INTRODUCTION 
CALE is a physical attribute of a signal just like fre- S quency. For a given signal we may properly ask what 

is its frequency content. Similarly, we may properly ask 
what is its scale content. In the frequency case, we deter- 
mine the frequency content via the Fourier transform; for 
scale we need a transform which indicates the moment of 
scale in the signal. 

It is the purpose of this paper to develop the concept of 
scale, its representation and properties. The important first 
step is to have the scale operator and obtain the scale 
transform. The solution of the eigenvalue problem for this 
operator gives the scale transform. Subsequently we study 
this transform and its properties. In analogy with instan- 
taneous frequency and group delay, we will introduce 
similar concepts for scale. We obtain explicit expressions 
for mean scale and scale bandwidth and also for instan- 
taneous scale and scale group delay. Convolution and cor- 
relation theorems will be derived. We develop methods 
for obtaining joint representations involving scale [ 11-[6] 
which are generalizations of the method devised by the 
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author for the time-frequency case [8]-[ 101. Also, we de- 
rive a joint representation involving time-frequency-scale. 
A fundamental attribute of frequency and time is their re- 
lation with the translation of functions and this leads to 
the study of linear shift invariant systems. The fundamen- 
tal property of scale is that of compression; hence, we 
develop the methodology for linear scale invariant sys- 
tems. We show that the scale operator does not commute 
with the time operator or frequency operator. This implies 
that there must be an uncertainty principle between time- 
scale and frequency-scale. We will derive these uncer- 
tainty principles and obtain the minimum uncertainty sig- 
nal. 

The use of operator methods in signal analysis has re- 
cently been devised for arbitrary physical variables [ 11, 
[2], [7]. The basic method is based on the work of Scully 
and Cohen [l 13. We apply this method to be the study of 
scale. 

Scaling has been an imoprtant concept in a number of 
fields. In the general theory of wavelets the concept of 
scale enters in a fundamental way. This has led to many 
issues regarding the concept “scale” and in particular has 
led to ideas regarding joint representations of time and 
scale. Scaled functions also appear in radar and sonar and 
in particular in the study of the wide band ambiguity func- 
tion and also in the study of optical imaging. See [12]- 
[ 191 and references therein. 

11. REPRESENTATION OF SIGNALS AND OPERATOR 
METHODS 

The basic reason for expressing a signal in another do- 
main or representation is that very often that will reveal 
properties of the signal which may not be apparent in the 
time domain. Another important reason is that the pro- 
duction, propagation, or behavior of a signal may depend 
upon physical quantities other than time. Therefore to see 
how a signal behaves under those circumstances one ex- 
presses the signal in the representation in question, does 
the analysis, and then transforms back to the time domain. 
In addition, if we want to construct signals with charac- 
teristics relating to a certain physical property, we ob- 
viously construct the signal in the representation of that 
quantity and then transform back to the time domain. 
Representations are usually associated with a physical 
quantity. In the case of the Fourier representation, the 
physical quantity is frequency. In the same manner we 
will develop the scale representation which will represent 
a signal in a domain for which the fundamental physical 
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variable is scale. We have recently developed a general 
approach for associating physical quantities with opera- 
tors [ 11, [6], [7] similar to the methods used in other fields 
[20], [21]. This leads to a methodology for constructing 
and studying representations, particularly joint represen- 
tations. We review here some basic operator methods. 

A. Operators 
Suppose we have an operator Q. which represents or is 

associated with a physical quantity. ' Operators which rep- 
resent a physical quantity will generally be Hermitian. 
That means that for any two functionsf(t) and g ( t ) ,  

s g*(t)Q.f<t> dt = s f ( t ) (Q.g( t ) )*  dt. (2.1) 

Now, if the operator is Hermitian then the solution of the 
eigenvalue problem 

Q.u(a, t )  = a u ( a ,  t )  (2.2) 

results in the eigenfunctions, u ( a ,  t )  and eigenvalues, a .  
Since the operator is Hermitian the eigenvalues are real 
and the eigenfunctions are complete. This implies that 

u ( a ,  t )u*(a ,  t ' )  da = 6 ( t  - f ' ) ;  5 
u ( a ,  t )u*(a ' ,  t )  dt = 6 ( a  - a ' ) .  (2.3) s 

Therefore, any time function can be expressed as 

where u ( a ,  t )  is the transformation matrix or basis kernel 
and F ( a )  is the representation of the time function in the 
a domain. The inverse transformation is 

F ( a )  = f ( f ) u * ( a ,  t )  dt. (2.5) s 
We shall use the double arrow to signify correspondence 
of the time function and its transform, f ( t )  e F ( a ) .  

The time and frequency operators 3 and W are [lo] 

d 
dt 3 = t W = - j  - (time domain), (2.6) 

d 
dw ' 

3 = j -. W = w (frequency domain). (2.7) 

'Operators will be denoted by calligraphic letters. The commutator of 
two operators, 0 and 63, will be denoted by the standard notation, [a, 631 
= a63 - 030. Indefinite integrals imply an appropriate region of integra- 
tion which depends on the representation being considered. Since the scale 
operator will give a continuous spectrum we explain the basic method as- 
suming a continuous spectrum. In (2.2) we have assumed that the operator 
is expressed in the time representation, although the eigenvalue problem 
can be solved in any representation. In that case the operator must be ex- 
pressed in the representation of interest. Also, we assume basis sets are 
self reciprocal. 

They satisfy the fundamental commutation relation [ 101 

[ 3 ,  W] = 3W - W3 = j .  (2.8) 

Operators representing other physical variables will usu- 
ally be expressed in terms of the time and frequency op- 
erators. As we will see that is the case for the scale op- 
erator. 

B. Averages 
Perhaps the most important reason for the power of the 

operator method is that one can calculate averages in a 
very easy way. If we have a function of a ,  g ( a ) ,  then its 
average is2 

( g )  = s g ( 4  1"12 da. (2.9) 

To evaluate, one first obtains the transform F ( a )  and then 
evaluates the integral. However, one does not have to find 
F(a)!-it can be done directly from the time function by 
way of 

( g )  = S f * ( t ) g ( ~ . ) f ( ~  dt. (2.10) 

The equality of the right hand sides of (2.9) and (2.10) is 
well known; we give a simple proof here for those readers 
not familiar with this result. Substituting,f(t) as given by 
(2.4) into (2.10) we have 

( g )  = s s  F * ( a ' ) u * ( a ' ,  t ) g ( Q ) F ( a ) u ( a ,  t )  dt da' da. 

(2.11) 
Now, g(Q.)u(a ,  t )  = g ( a ) u ( a ,  t )  and hence, 

( 8 )  = s 5 s F * ( a ' ) u * ( a ' ,  t ) g ( a ) F ( a ) u ( a ,  t )  dt du' da 

(2.12) 

= s s F * ( a ' ) g ( a ) F ( a )  6 ( a  - a ' )  da' da 

C. Characteristic Function Operator 
For a density P ( a ) ,  the characteristic function of a is 

defined by 

M ( a )  = (e""") = s eJ""P(a)  da. (2.14) 

The characteristic function uniquely determines the dis- 
tribution, 

(2.15) 

Since the characteristic function is an average, the aver- 
age of eJa"",  it can be calculated using (2.10), 

M ( a )  = f*( t )e '" ' f ( t )  dt ,  (2.16) 

'The reason for taking I F ( a ) l L  to be the density is discussed in detail in 
references 111, 121. 171. 
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where Q. is the operator corresponding to the variable a .  

explicitly that o leads to the density given by IF(a)I2 

Now, 
We call eJaa the characteristic function operator. To show m 

ejoe n - ( j a I k  e k t n  t - c -  
expressf(r) in terms of its transform to obtain k = O  k! 

F(a)u(u ,  t) da' du dr. (2.17) (3.7) 

But e j a a u ( a ,  r )  = e jaau(u ,  r ) ,  giving To obtain the action of eJoe on an arbitrary functionf(t), 
we expand the function in a power series 

M ( a )  = s F * ( u ' ) e J a U  6(u - a ' ) F ( a )  da' da ejUef(t) = eJue C antn  

= IF(u)(2e'a" da, (2.18) 

which shows that 

111. THE SCALE OPERATOR 
The fundamental quantity that characterizes a represen- 

tation is the operator. We take the following operator for 
scale 

- - C a , e o ( n + l / * ) t n  = e " / * f ( e  r ) .  (3.8) 

The scale operator is adopted from the theory of quantum 
optics where it is written in terms of the creation and an- 
nihilation operators [22]. It is related to the affine group 
[17]-[19]. Also, Klauder [23] has used it to study path 
integrals and quantum g r a ~ i t y . ~  

By using (2.8) the scale operator can be written in the 
following alternate ways 

e = 3w - I ' g  2 J  = w3 + 1'9, 2 J  (3.9) 

e = l(3W + W3) where 9 is the unit operator. 
(3.1) 

and we use the lower case c to represent scale values. The 
following basic relations show that it scales or compresses 
functions of time, f ( t ) ,  and frequency F ( w ) ,  

A. Basic Properties of 
Scale and time do not commute, In fact 

[3, e ]  = j 3 .  (3.10) 

The significance of this is that we can not find a common 
representation which diagonalizes both the scale and time 
operators. In addition, it shows that we must have an un- 
certainty principle as discussed in Section XIV. However, 
time commutes with the commutator of time and scale 

ejuef(t) = e ' /2 f (eut ) ;  

(3 '2) ejoe ~ ( w )  = e - " / * F ( e - " w ) .  

Also, 

ej In uef ( r )  = & f (ut) ; 

(3.11) 
The operator, eJ " therefore compresses the indepen- 

dent variable. It may be called the compression operator. 
The significance of the factor, eo /2 ,  is that it preserves 

but the commutator of time and scale does not commute 
with scale, 

normalization and the reason it entered in an automatic [e, [3, e11 = 3. (3.12) 
way is because the operator, elue is unitary. The compres- 
sion operator should be contrasted with the translation OP- 
erators for time and frequency functions, 

There is another interesting relation between the log of 
the time operator and scale. It is 

e''wf(t) = f < r  + 7); eJeaF(w) = ~ ( w  - e). (3.4) [In, 3, e ]  = j .  (3.13) 

The basic property of the compression operator, (3.2) can 
be proven in a number of ways. A purely algebraic proof 
will now be given and in Section IV, we present a proof 
based on the eigenfunctions of the scale operator. First, The commutation are 
it is readily established that 

B. Scale and Frequency 
Similar comments can be made for frequency and scale. 

[W, e ]  = -jW; [W, [W, e] ]  = 0, (3.14) 

and by repeated action 
(3'5) [e, [W, e ] ]  = -W; [In W, e ]  = - j .  (3.15) 

'The author would like to thank the referee for bringing [23] to his at- 
(3.6) tention. 
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IV. THE SCALE EIGENVALUE PROBLEM AND THE SCALE 

To obtain the representation of the scale operator we 

(4.1) 

where we shall use the notation y(c,  t )  for the scale 
eigenfunctions. In the time domain the eigenvalue equa- 
tion is 

TRANSFORM 

have to solve the eigenvalue problem 

%(c ,  t )  = cy(c, 4 ,  

The eigenfunctions, normalized to a delta function, are 
readily obtained 

1 ejclnr 

y(c, t )  = -- r L 0. (4.3) GJi 
They satisfy the completeness relations4 som y*(c’, t)y(c, t )  dt = 6(c  - c ’ ) ,  (4.4) 

y*(c, t ’ ) y ( c ,  t )  dc = 6 ( t  - t ’ ) ;  t ,  t ‘  L 0 (4.5) 

Accordingly, for a signal which goes from minus infin- 
ity to plus infinity the positive and negative time parts 
have to be treated ~ e p a r a t e l y . ~  Since we have complete- 
ness and orthogonality any time function can be expanded 
as 

s 

f (0 = j D ( C ) Y ( C ,  0 dc 
1 r  ,jclnr 

t L 0 (4.6)  -- - 

The inverse transformation is 
e -jc In r 

f ( t ) y * ( c ,  t )  dt = - dt 

(4.7)  
We can write D ( c )  as 

D(c)  = (4.8) - f ( t ) t - ” - 1 / 2  dt 
G o  sm 

which shows that it is the Mellin transform with the com- 
plex argument -jc + 1 /2 .  We note that for these values 
of the Mellin transform a simple inversion formulas exist 
as given by (4.6) and (4 .7) .  Also, we emphasize that the 
value of c must be taken as real and range from minus 
infinity to infinity. The reality comes about because they 
are the eigenvalues of a Hermitian operator. Of course, it 

41ntegrals over the scale value c go from -a to m. In establishing 
the completeness relations one has to uses the fact that 6(ln ( x / a ) )  = 
a6(x - a). 

5The author would like to thank J .  Bertrand and P. Bertrand for conver- 
sations and insights regarding these issues. 

has been previously realized that the Mellin transform 
“scales” and a considerable body of literature exists 
which relates the scaling of functions with the Mellin 
Transform. See [ 131-[ 161 and references therein. Also, in 
relation to joint distributions the original intuition of Mar- 
inovich [ 151, [ 161 J . Bertrand and P. Bertrand [ 171, [ 191, 
and Altes [ 141 in deriving specific joint representation was 
based on the scaling property of the Mellin Transform. 
See Section XV for further discussion in regards to joint 
representations. 

A.  The Scale Transform 
We shall call D ( c )  the scale transform; 1 D(c)I2 the en- 

ergy density scale spectrum in analogy to the Fourier case 
where we have energy density spectrum. We now list 
some of the basic properties of the scale transform. These 
properties may be readily derived or one can specialize 
the known results for the Mellin transform [24] for the 
case where the index is j c  + 1 / 2 .  First, it is clear that 
the scale transform is linear and the scale transform of the 
complex conjugate is D* ( - c).  Other important properties 
are 

Time scaling: & f (at) 9 ejclnaD(c).  (4.9) 

That is, f ( t )  and d a  f (at) have the same energy density 
scale spectrum, I D(c)I2. This a basic result which shows 
that the scaling of any time function leaves the energy 
density scale spectrum unchanged. This is the analog to 
the fact that the translation of a function leaves the (fre- 
quency) energy density spectrum unchanged. 

Multiplication by time: t“ f (n) w D(c  + nj ), 

(4.10) 

dt. Time differentiation: 

(4.11) 

That is, the scale transform of the derivative of a function 
is j c  + times the scale transform off ( t )  / t .  

B. Properties of the Scale Eigenfunctions 

eigenfunctions which are useful in calculations 
We list here some simple algebraic properties of the 

r(c9 t i ’ )  = Y(C,  r > y ( C ,  t ‘ ) ;  

Y(C9 tit') = r(c, t)y*(c, t ’ ) ,  

-Y(C + c’, t )  = y(c, t)Y(c’, 0;  

(4.12) 

ejucy (c,  t )  = eU/’y (c ,  cut> (4.13) 

ay 
ac 
- = j In t Y ( c ,  t ) ;  
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C. Alternate Proof of the Action of the Compression 
Operator 

We now give an alternate proof of the compression op- 
erator property, (3.2). It uses the fact that the scale ei- 
genfunctions have the property el"' y ( c ,  t )  = eU/'y ( c ,  
e' t ) .  Consider, 

then 

dt 

dt 

(4.20) 

which is the Fourier transform o f f  ( t ) .  That is F(c )  = 
Dl(c) .  Inversely, one can consider the Fourier transform 
to be the scale transform of the functionf(e')e'/*. That is 
if we define 

l W  

J2n --CO 

- - ~ 1 f (t)e-IC' dt eJ"' f( t)  = el'' 

= 1 D(c)e" 'y (c ,  t )  dc 

= D ( c ) e ~ / 2 y  (c,  dc = e u / 2 f  

(4.15) 

D. Time and Frequency in the Scale Representation 
The fundamental idea of the operator method is that it 

allows us to calculate expectation directly in any repre- 

calculate its expectation value either in time representa- 
tion of the scale representation, per the general prescrip- 
tion, 

then the Fourier transform offk(t) is 

1 
Fk(c) = - 5 fk(t)e-jcf dt 

sentation. In particular for a time function g ( t )  we can JG 
l W  

JG --m 

- - ~ j f (e')e'/2e-Jct dt 

W 

( g o ) )  = io g( t )  I f  (t)I2 dr = j D * ( c ) g ( W D ( c )  dc. 

(4.16) 

where S c  is the time operator in the scale representation. 
Similar remarks hold for the frequency operator, W,. 
These operators are explicitly given by 

W, = (c  - j )  exp ( -J$)  (4.17) 

That these are the appropriate operators can be directly 
verified or by using the approach for transforming oper- 
ators [25], [26]. Their action is 

(4.21) 

dt = D(c) .  (4.22) 
1 _ _  
J G  

Recently Laine [27] and Baraniuk and Jones [28], [29] 
have studied interesting class of transforms of which the 
scale transform is a particular case. Laine studied trans- 
form kernels of the form 

where g is the "generating function." He has shown that 
these the resulting transform have interesting properties 
and has discussed these properties in relation to wavelets. 
The scale transform is a special case where a is taken to 
be scale c and g ( t )  = In t .  Baraniuk and Jones [28], [29] 
studies a class of warping functions or coordinate trans- 
formations given by 

J,D(c) = D ( c  + j ) ;  s ( t )  + Jw'o s (w( t ) )  

W,D(c )  = ( c  - j ) D ( c  - j )  (4.18) where w( t )  is the warping function. They have shown how 
coordinate transformations may be used to obtain different 
representations and in particular to study scale. Also, they 
have applied it to the study of joint representations. See 
Section XV. 

F. Convolution and Correlation 
Recently, a general approach for obtaining convolution 

and correlation theorems has been developed for arbitrary 
operators [2]. When these are applied to the scale operator 
one obtains the following: Suppose D,(c)  and D2(c) are 
the scale transforms of the signals f i ( t )  and h(t) respec- 
tively then the signal whose transform is f ( t )  e 

where D ( c )  is an arbitrary scale function. 

E. Relation with Other Transforms 
The relationship between the Mellin transform and the 

Laplace and Fourier transform is well known [24]. Since 
we are dealing with the Mellin transform of a Complex 
argument the appropriate relation is to the Fourier trans- 
form. In particular if we define a signal f r  ( t )  by 

(4.19) 
1 

Jr = -f (In t ) .  
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Dl(c)D2(c) is given by 
1 r w  1 

This can be evaluated and written in a very interesting 
form if we write the signal in terms of its phase and am- 
plitude 

1 I 
- - - d, ;fi(7)h(t/7) d7. (4.24) If we substitute the scale transform in (6.1) we will ob- J G  tain, after some algebra, [6.6] below. However, there is 

a very easy alternate way to derive this relation if we use 
the operator method, (2.10). Accordingly, we have 

Also, the signal whose transform is DT(c)Dz(c) is 
r m  

( e )  = f * ( t )  ef(t) dt. I 
Of course, these particular cases may be derived in many 
ways, however the advantage of using the method is that 
one can derive them for arbitrary operators and does not 
have to use the properties of a specific case [2]. Also, the 
above relations can be obtained by specializing the con- 
volution theorems for the Mellin transform [24]. 

But, 

ef(t) = -jrf'(t) - ; j f ( t )  

= [tp'(r) - j ( rA ' /A  + ;)If. (6.4) 

Therefore 
W 

( c )  = s rp'( t )A2(t)  dt - j V . CHARACTERISTIC FUNCTION 
The characteristic function for scale is 

M ( a )  = f * ( t ) e j U e f ( t )  dt (5.1) 

W But, the integrand of the second integral is a perfect dif- 
ferential, ( t A ' / A  + i ) A 2 ( t )  = i ( d / d t ) t A 2 ,  and hence in- 
tegrates to zero if we assume that the signal amplitude is 
zero at zcro and infinity. Hence, 

= s, f * ( r ) e ' / 2 f ( e u t )  dt 

r w  = iOmf* (e-"/2r)f(e"/2r) dt. (5 .2)  

In terms of the spectrum, it is given by 
( e )  = 1, t p ' ( t )A2( t )  dt. (6.6) 

The scale bandwidth, B ,  defined by M ( a )  = P ( e " / 2 u ) F ( e p " / 2 w )  do. (5.3) 

The distribution can be obtained by Fourier inversion, 

(5.4) 

The distribution of scale has been derived by a number of 
authors using different methods [ 141-[19]. 

Total Energy Conservation: The total energy, E ,  of a 
signal is obtained by integrating over all time the energy 
density, lf(t)I2, and it should also be obtainable by in- 
tegrating ( D ( c ) ( *  over all scale. It is straightforward to 
shows that 

B2 = i (e - ( c > ) ~ ( D ( c ) ( ~  de, (6.7) 

can be evaluated by direct substitution; however, as 
above, it is most easily evaluated by calculating 

B2 = jw f*(t)(e - ( ~ ) ) ~ f ( t )  dr 

= 1 ((e - (c>>f(t)I2 dt. 

S 
P ( C )  = - M(a)eJ" '  da = lD(c)I 2 

2K ' S  

(6.8) 

This evaluates to 

B2 = I (fG A ' ( t )  + - $ A2(t) dt 1, If@)\ dt = j P ( c ) I 2  dc. (5.5) 

This shows that the total energy is preserved in the trans- 
formation. This is the analog to Parcival's theorem for the 
frequency case. 

m 

+ [ (tcp'(t) - (c))2A2(r)  dt .  (6.9) 

Mean scale and bandwidth can also be expressed in 
terms of the spectrum. If we write the Fourier transform 
in terms of its phase and amplitude, F ( o )  = 1 F ( o ) (  e''(w), 
then 

VI. MEAN SCALE AND BANDWIDTH 
The mean scale is given by 

n m  

( e )  = - 1  olc/'(o)p(o)(2 do. (6.10) 
-m 
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The time marginal is 
I F(wI2  dw 

P(t )  = 5 P(r,  c) de = 5 ID,(t)I2 de 

IF (w) I ’  + 1 
B2 = se  (“TF7;ir 2 

+ C m  (U$’ (U) + I F(w)I2 dw. (6.1 1 )  
J O  

The Covariance of a Signal: The covariance of two (7 .3)  

variables is a global average indicating how strongly two 
quantities are related to each other. For the case of time 
and frequency we can define the covariance by [ 101 

where we have written the windowing function in terms 
of its amplitude and phase h ( t )  = Ah(t)eJVh(‘) .  

Cov (tu) = ( tp ’ ( t ) )  - ( t )  ( U )  (6.12) VIII. INSTANTANEOUS SCALE 
where We now give two different approaches for the concept 

of instantaneous scale. The first is based on the short time 
scale transform and the second is based on the scale band- 
width equation. Both methods give the same answer. For 
a fuller discussion of these approaches and other ap- 
proaches see reference [6]. 

A .  The Short-Time Scale Transforms 

for a given time is, 

(6.13) 

The reason for doing SO is that if we consider P‘ to be 
the instantaneous frequency then ( tp ’ ( t )  ) is the first 
mixed moment of the two quantities, time and frequency. 
However we can place ourselves in the frequency domain. 
There time is given by the group delay which is -u$(u)  

then define the covariance by 
and frequency just w .  Therefore, it is also reasonable to Using the short time-sca1e transform the average 

(U$’  ( U ) )  = U$’ (U) I F(w)12 dw. (6.15) 

It is not obvious that these definitions are equivalent. But 
they are because 

This may be thought of as the conditional average of scale 
for a given time. We now give a simple method for eval- 
uating this quantity. Note that (8.1) has the Same form as 
(6 .1)  with D, substituted for D. Therefore, we can write 

1 
(8 .2 )  ( e )  = t p ’ ( t ) I f ( t ) 1 2  dr = - w $ ‘ ( w )  (F (u ) ( ’  dU. 

(6.16) 

The concept of the covariance for a signal will be dis- 
cussed in another publication [30]. We mention it because 

where 

sh (7) = f (7) h (7 - t )  

s 5 

= A(r)Ah(7  - t )  exp [ j p ( t )  + j p h ( r  - t ) ] .  (8.3) we note that the covariance involves ( t p ’ ( t ) )  and/or 
( w $ ( w ) )  which are the mean scale. Indeed, the proof of 
(6.16) involves the derivations we have given above. We 
also point out that (6.16) is inherently interesting because 
it connects the phases and amplitude of a signal and its 
Fourier transform. However we point out that in (6.13) 

The evaluation is immediate 

the limits of integration go from - 03 to 03. 
~ { p ’  (7) + pL(7 - t ) }  dr. (8.4) 

VII. THE SHORT-TIME SCALE TRANSFORM 
Suppose we want to study local values of scale such as 

instantaneous scale. As in the Fourier case we focus on a 
particular time by windowing the signal around that time. 
In particular, we window the signal with a windowing 
function, h ( t ) ,  and define the short-time scale transform 
[61 by 

Equation (8.4) can be considered an estimate for scale 
at a given time. As our interest is to obtain instantaneous 
scale we progressively narrow the window in time which 
will give us a progressively better estimate. In particular, 
we narrow the window in such a way that A i @ )  ap- 
proaches a delta function, A;( t )  - 6 ( t ) .  Also, we consider 
real windows so as not to introduce any phase factors. In 
that limit, we find the marginal, as given by (7.3),  
P ( t )  - A2(r). Now the numerator of (8.4) goes as 
= A2( t ) tp ’ ( t ) ,  and hence ( c ) ,  - tp‘(r). We shall call that 

The joint distribution of time and scale is then given by the instantaneous 

(8 .5 )  C,  = rp’(r). p ( t ,  c> = )D,(c)I2. (7.2) 
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The general relation of a conditional mean with the 
global mean is that the global mean is the average of the 
conditional mean. For scale we expect that 

and that is indeed the case as can be seen by referring to 
(6.6). 

Similar to instantaneous scale in time we may ask for 
the instantaneous scale in frequency, c,. That is, the value 
of scale for a given frequency. The identical arguments 
yields c, = -U$’  (U).  

B. Bandwidth Equation 
In Section VI we derived an expression for the scale 

bandwidth, (6.9). Our aim here is to show that it has a 
physical interpretation and to use it to derive the instan- 
taneous scale bandwidth. In addition we will give an al- 
ternative derivation of instantaneous scale. 

We write (6.9) here for convenience, 

B2 = soCO ( t  + i ) 2 A 2 ( t )  dt 

+ sm ( t p ’ ( t )  - (c ) ) ’A2( t )  dt. (8.7) 

To understand the meaning of this equation consider 
first the general problem of two variables, x and y,  with 
density P ( x ,  y). It is straightforward to show [31] that the 
standard deviation of one variable, say y, is given by 

where ( y), is the conditional average and a;,.r is the con- 
ditional standard deviation. P ( x )  is the density in x .  Now 
compare this equation with our case, (8.7). It is sugges- 
tive to take, for instantaneous scale, ( c ) ,  = t p ‘ ( t )  and to 
define the local standard deviation for scale (instanta- 
neous scale bandwidth) by 

This is analogous to the concept of instantaneous band- 
width developed by Cohen and Lee [31]. 

C.  Frequency 
Using (6.11) we have a similar interpretation for scale 

at a particular frequency and its conditional standard de- 
viation, 

IX. AVERAGE TIME AND DURATION IN THE SCALE 

The mean time of a signal is defined by 
REPRESENTATION, AND SCALE GROUP DELAY 

(9.1) ( t )  = s r l f ( t > 1 2  dt. 

It is interesting to express this in the scale representation. 
To do so one could substitutef(t) in terms of D ( c )  into 
(9.1) and do the algebra to derive (9.5). However, since 
we know the time operator, JC, in the scale representation 
we can calculate the mean time by way of 

( 1 )  = j D * ( c ) J C D ( c )  dc. (9.2) 

Using (4.17) for the time operator and using (4.18) for its 
action on an arbitrary scale function we have 

( t )  = s D * ( c ) D ( c  + j )  dc = Dti/) lD(c)(*  dc. 

(9.3) 

We now break up D ( c  + j ) / D ( c )  into its real and im- 
aginary parts 

Since we know the time operator is Hermitian its average 
must be real and hence the imaginary part must integrate 
to zero. Therefore, 

We point out that 

. c m  

which is the scale transform of t f ( t )  
Duration: The duration is 

T 2  

Manipulation 

T 2  = s 
+ 

= s D * ( c ) ( J c  - ( t ) ) 2 D ( c )  dc. 

of this expression leads to 

(8.10) 
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X. AVERAGE FREQUENCY AND BANDWIDTH IN THE 

To obtain the mean frequency, in the scale representa- 

( U )  = s w ) F ( ~ ) ) ~ d w  = D * ( c ) W , D ( c )  dc  (10.1) 

SCALE REPRESENTATION 

tion we again use the operator method, 

S 
= s D*(c ) (c  - j ) D ( c  - j )  dc  

(10.2) 

which is the mean frequency expressed in the scale rep- 
resentation. 

For the frequency bandwidth, B,, we have 

(10.4) 

Group Scale Delay: We introduce the concept of scale 
group delay in analogy with group delay for frequency. 
Group delay is the average time for a given frequency. 
Similarly we define the scale group delay to be the aver- 
age time for a given scale. That is, it is the conditional 
time for a given scale, (t) , . .  We expect this quantity to 
be connected to the mean time by 

Comparing (10.2) with (8.8) it is reasonable to take 

(10.7) 

An alternative derivation of these relations has been given 
elsewhere [6]. 

We also define the group scale delay for a given fre- 
quency, (U),. The identical arguments as above lead to 

XI. ANALYTIC SCALE SIGNAL AND FILTERING 
In the frequency representation the analytic signal is 

defined for a number of reasons [lo], [32], [33]. First, it 
allows one to define unambiguously the amplitude and 
phase of a signal. Second, it eliminates the negative fre- 
quencies. We obtain the analytic scale signal, z ( t ) ,  by 
zeroing out the negative scale values of the signal, 

QI ejclnt  

z ( t )  = 2 & so D ( c )  ~t dc. (11.1) 

The factor of two assures that the real part of z ( t )  is the 
original signal. Using the same method as to obtain the 
analytic signal we have 

~ 

- \  . , I . . -  of scale. As in the standard case we take the output signal, 

The above consideration can be looked upon as filtering 
out the negative scale values. More generally the concept 
of filtering in the frequency domain arises for the follow- 
ing reasons. Suppose we have a signal and we want to 
eliminate certain frequencies. We accomplish that by 
multiplying the Fourier transform by a function which ze- 
ros out those frequencies. This produces a Fourier trans- 
form without the frequences in question. The new signal 
is obtained by inverting the modified Fourier transform. 
Similarly, if we have a signal, f ( t ) ,  with corresponding 
scale transform, F(c) ,  and want to filter out some values 
of scale, we multiply F ( c )  by a function H ( c )  to obtain a 

G(c) = F(c)H(c) .  (11.3) 

The time function which produces this filtered transform 
is 

y ( t )  = s G(c)y(c, t )  dc = F(c )H(c )y (c ,  t )  dc. s 
(11.4) 

But we already know the answer from (4.24). It is 

where 

t 2 0. (11.6) 

XII. LINEAR SCALE-INVARIANT SYSTEMS 
Our aim is to formulate linear scale-invariant systems 

in the same manner as is done for frequency where one 
considers linear shift-invariant systems. We have given a 
general method to obtain system functions for arbitrary 
operators [2]. We now specialize that approach to the case 
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g ( t ) ,  to be related to the input signal, f ( t ) ,  by with 

g( t )  = 6 : f W .  (12.1) 

where 6: is the system operator. We define the impulse 
response function, h ( t ) ,  for scale-invariant systems by 

6: { 6 ( t  - l ) }  = h(t) .  (12.2) 

M ( r )  = som f* ( t )  er /2f (e7 t )  dl 

m 

= io f* ( t )  eJre f ( t )  dt. (13.6) 

A system is said to be scale-invariant if for any number 
a ,  the following condition holds 

(12.3) 6 : { 6 ( t  - l / a ) }  = &(at). 

The impulse response function characterizes the system 
in the sense that the output function can be obtained from 

These equations can be considered as generalizations 
of the Wiener-Khinchin theorem for deterministic signals 
for the property scale. Their proofs are straightforward. 
In proving the above relations it is useful to note that 
6 (In ( z / a ) )  = a6 (x - a ) .  

the input function and the impulse response function. 
Consider the output g ( t )  = 6 : f ( t ) .  One may show that [2] 

1 
s(0 = j F f ( t ' ) h ( t / t ' )  dt' 

= 1 : f ( t / t ' ) h ( t ' )  dt',  (12.4) 

Therefore a knowledge of the system response function 
determines the output. 

XIII. SCALE ENERGY DENSITY AND CORRELATION 

XIV. UNCERTAINTY PRINCIPLES FOR SCALE 
There is an uncertainty principle for any two quantities 

which are represented by operators which do not commute 
[21]. For any two quantities a and b represented by the 
respective operators, @, and 63, the uncertainty principle 
is 

Aa Ab 2 ;I([@,, W>1, (14.1) 

where (Aa)2 is the standard deviation, defined in the usual 
way, (Aa)2 = ( a 2 )  - ( a ) 2 ,  and similarly for (Ab)'. We 
note that since the operators are Hermitian one can cal- 
culate (Aa)2 from . ,  

For the case of frequency the energy density spectrum 
can be expressed as the Fourier transform of the autocor- 
relation function.6 We generalize this idea to the scale en- 

(Aa)2 = i f * ( t ) ( @ ,  - ( a > ) 2 f ( t )  dt (14.2) 
- 

ergy density spectrum, ID(c)I2. We present two gener- 
alizations. 

A.  Relation One 
Furthermore, to obtain the signal which minimizes the 

uncertainty product one has to solve 
m 

(63 - (b))f( t )  = A(@, - ( a > ) f ( t )  (14.4) 1 D(cI2 = i K ( r )  y* (e ,  r )  dr (13.1) 
where X = ( [ a ,  6331) / 2  (A@,)2).  Note that in general X 

where may be complex since'[@,, 631 is not Hermitian. 

K ( T )  = - f * ( t ) f ( r t )  dt. (13.2) A .  Uncertainty Principle: Time and Scale 
The commutator for time and scale is given by [3, e] 

I ( [3, C] ) I or = j 3 and we immediately have At Ac > 

J271.0 j m  
There are two alternative ways of writing K ( t )  

K ( r )  = 

,K (T)  = 

At Ac 1 i ( ( t ) ( ,  
(13.3) 

where ( t  ) is the mean time. 

(14.5) 

. f ( t ' )  dc dt' dt. 

B. Relation Two where 

(D(c)I2  = 1 M(7)e-jrC dr (13.5) (14.7) 

and where At is the duration and ( c )  is the mean scale. 
6We deal here with deterministic signals in which case when we say 

autocorrelation function we DroDerlv mean the deterministic autocorrela- The Of ( 14.6) is 
n . ,  

tion function. The case of random functions is discussed in [2] and appli- 
cation to random scale functions will be discussed in a future paper. f( t)  = k t a 2  exp [ - a l t  + j ( c )  In ( t / ( t ) ) ]  (14.8) 
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where k is a normalizing constant and 

( t )  
a1 = -' 2 (At)* ' 

cy2 = - 1 (- ( t > *  - 1 ) .  (14.9) 
2 (At)* 

For the case of the position operator this minimum un- 
certainty function has been given by Klauder [23]. 

B. Uncertainty Principle: Frequency and Scale 
Using [W, Cl = - j  W, we have that 

Aw AC 1 i ( ( [W,  C l ) (  = i ( ( w ) (  (14.10) 

where ( U )  is the mean frequency. The signal that mini- 
mizes the frequency-scale uncertainty is 

. (14.11) f (k)  = k ( t  - h ) i ( c ) - I / 2 - X ( w )  

For the case of log w and scale the identical solution holds 
with time being replaced by frequency and the time func- 
tion by a frequency function. 

C.  Uncertainty Principle for Log Time and Scale 
Using the commutator relation between log time and 

scale [In 3,  C] = j ,  we can write the uncertainty principle 

A l n t A c  L i .  (14.12) 

The minimum uncertainty signal is obtained by solving 

(14.13) 

Rioul [34], Posch [35] and, Rioul and Flandrin [36], 
Papandreaou et al. [37] and Cohen [5] have presented 
other approaches and generalization. The group theoretic 
approach of R. G. Shenoy and T.  W. Parks [38] is closely 
related to the operator approach presented here. A general 
approach to study joint representations in signal analysis 
has recently been presented by Baraniuk and Jones [28], 
[29]. The relationship between that approach and the gen- 
eral approach based on operators described here and in 
references [ 11, [7], [ 111 will be presented in a future pub- 
lication [39]. Also, we point out that there is a strong 
similarity between inverse frequency representation and 
scale. However, they are different and in particular they 
satisfy different marginals. The relationship between 
scale, inverse frequency and joint representations have 
been discussed by Jeong and Williams [40] and Cohen 
[5]. Also, Flandrin [41], [42] has extended joint scale 
representations to the case of random signals by defining 
a scale invariant Wigner Spectrum. 

We now describe the characteristic operator function 
method as applied to scale. The characteristic function of 
a joint distribution, P ( t ,  c ) ,  is 

M ( e ,  a) = (eJe'+JuC ) = j j eJer P( t ,  c) dt dc 

(15.1) 

and the distribution is obtained from the characteristic 
function by 

dB da. (15.2) M ( e ,  a)e-ler-Joc P( t ,  c) = - 
4n2 s s  

The solution is 
The characteristic function is an average, namely the 

average of eJer"Joc. The basic idea is to replace the scalar 
quantities t and c by their corresponding operators. We 
therefore define the Characteristic function operator 
%(e, a; 3, C) to be an operator for which the character- 
istic function can be obtained by averaging 

(In t - (In r >>* 
f ( t )  = A exp [ - 4(A t )2  

+ j - 1 /2) In t . (14.14) 1 
XV. JOINT TIME-SCALE REPRESENTATIONS 

We now present a general method for obtaining joint 
distributions involving scale. The method will allow us to 
obtain an infinite number of distributions and the general 
class of time-scale representations. The procedure is a 
generalization of the method developed by the author for 
the time-frequency case [lo] and further generalized to 
arbitrary variables by Scully and Cohen [ 113 and Cohen 
[ 13, [7]. As special cases, we obtain previously obtained 
particular distributions involving scale. 

The first investigators to consider the concept of joint 
representations involving scale were Marinovich [ 151, 
[ 16, Bertrand and Bertrand [ 171-[ 191 who obtained par- 
ticular but very different distributions. Marinovich argu- 
ments were based on using the scaling properties of the 
Mellin transform and Bertrand and Bertrand used group 
theoretical methods on the affine group. Altes [14], also 
using the scaling properties of the Mellin transform ob- 
tained distributions akin to Marinovich. 

Once M is obtained the distribution is calculated by (15.2). 
Because 3 and C are operators there is an ordering prob- 
lem. One can take, for example 

%(e, a; 3, e)  = eJe3+Jue 

or 

%(e, 0; 3, e) = eJ'e/*ej'3eJce/2, etc. (15.4) 

and indeed there are an infinite number of possible order- 
ings. For each different ordering a different characteristic 
function is obtained and hence a different distribution. 
This is the reason why we have an infinite number of dis- 
tributions [8]-[ 101 for the time-frequency case; similarly 
for scale. It is this wide range of possibilities that lead to 
the general class of time-frequency distributions and will 
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TABLE I 
TIME-(t) SCALE REPRESENTATIONS 

# Ordering Characteristic Function: M ( 0 ,  U )  Distribution: P ( t ,  e)  

inm f*(eF"/*i)eJe'f  (eai2r) dt 

inm exp [2j0t  sinh ( o / 2 ) / u ]  f*(e-" / ' r ) f (e" / ' r )  dt 

e l o c / 2  103 I d ? / *  1 e e  

e,03 + J O ?  2 

exp ( j 0 r  cosh ( o / 2 ) ) f * ( e ~ " ' * t ) f ( e " / * r )  cif e , s 3 / 2  ,,e e ] 0 3 / 2  3 

i f*(e-""r)e-'"'f(e"/*t) do 
2 x  

2 sinh ( o / 2 )  

. f ( e ' / 2  
2 sinh ( o / 2 ) )  

also lead to a general class of time-scale distributions as 
discussed in Section XVII. 

We now give a number of time-scale distributions by 
taking different operator orderings. We list these in Table 
I. The details of each case can be found in [l] .  Here, we 
give the detailed steps for case one only. The symmetric 
ordering, case 2 of the Table I ,  corresponds to the Weyl 
ordering when the operators obey the commutation rules 
given by (2.8). To evaluate the characteristic function one 
must simplify the operator. The simplification is as fol- 
lows [ l ] ,  [43]: 

(15.5) eJ83 +Joe = e18'13 L O C  583 e e  

where 

The distribution is 

d 0 d a  (15.11) 

. f ) e-Jf lr  -JOC de da dt' (15.12) 

= im S f * ( c - " i * t ' )  s ( t  - t ' )  
2 a  0 

f (e"/2t ') e-''' da dt I .  (15.13) 

Hence, 

1 
17 = --  (1 - (1  - a)e'>.  

U 

1 
P ( t ,  c) = - s f*(e-"/2 t )e - jocf  (e"/2t> da. (15.14) 

(15.6) 2 a  

This distribution was derived by Marinovich [16], [171 
and Altes [ 141 by different methods. 

These distributions satisfy the marginals of time and 

We now give the steps leading to case one. The charac- 
teristic function is 

) 
jd.2 /2,jO3,joe / 2  M(t9, U) = ( e  scale, 

f*( t )e joe/2ejs 'en/4f  (eUI2t)  dt (15.8) 
P ( t ,  c) dc = I s( t )I2.  (15.15) S 

XVI. JOINT FREQUENCY-SCALE REPRESENTATIONS 
We now find representations of frequency and scale. 

However we emphasize that we are seeking representa- 
tions of frequency and time scaling. In section XIX, we 
will address the issue of frequency scaling. 

The notation we shall use is M ( 7 ,  a) and P ( u ,  c) for 
the frequency-scale characteristic function and distribu- 

= SOmf*(') exp ( jeeo /2 t )e"/2f (e"t )  d t f  (15.9) 

or 

M ( 0 ,  a) = f * ( e - ~ / 2 t ) e j s r ~ f e a / 2 t )  dt. (15.10) som 
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TABLE I1 
FREQUENCY-(f) SCALE REPRESENTATIONS 

# Ordering Characteristic Function: M ( T ,  a )  Distribution: P ( w ,  c )  

F(&' A) cosh ( o / 2 )  du 

Table 1 and 2 give,  respectively, joint time and frequency representation with time scaling [(t)scale] 

tion respectively. They are related by 

M(T, a) = s s e"w+jOcP(w, e )  dw de. (16.1) 

dt da. (16.2) 

The characteristic function will be obtained from the char- 
acteristic function operator, m(~, a; W, e)  by averaging 
it 

(16.3) 

f * ( t ) W ~ ,  a; W, e)f(t) dt. (16.4) 

We could repeat the algebra as in the previous section; 
however there is a simple procedure to evaluate these 
cases. First we note that we can evaluate M(T, a) in the 
Fourier domain, 

M(7, a) = 1 F*(w)m(~, a; W, e ) F ( w )  dw (16.5) 

We are assured that evaluating M by way of (16.4) or 
(16.5) will give the identical results since which repre- 
sentation is used is immaterial in calculating averages by 
the operator method. Now, note that structurally m(7, a; 
W, e ) F ( w )  is identical to m(O, a; 3, e)f(t)  except for 
the fact that a goes into -a. Therefore the frequency- 
scale characteristic function will be identical in form to 
the time-scale characteristic function, but we must change 
the sign of a and replace the time function by its Fourier 
transform. Also, we must change O to T. The distribution 
is the Fourier transform of the characteristic function. 
Since everything is structurally the same except for the 
minus sign in a, we can obtain the frequency-scale distri- 

M(7, a> = (m(7, 0, w, e)  
m 

= so 
m 

- m  

bution from the time scale distribution by replacing c by 
-e,  and t by w and replace the signal with its Fourier 
transform. We should emphasize that the limits of inte- 
gration on the frequency variable go from - 03 to 03 since 
the spectrum is not constrained. (In Section XIX we will 
deal with frequency scaling where the spectrum will have 
only positive values .) Table I1 lists the corresponding 
characteristic function operators, characteristic functions 
and the distributions corresponding to the ordering cases 
we have considered in Section XV. The frequency-scale 
distributions satisfy the marginal of frequency and scale, 

(16.6) 

(16.7) 

P ( w ,  e) dw = (D(c)I2;  

1 P ( w ,  e )  de = IF(w)I2 .  

s 
XVII. GENERAL CLASS OF JOINT SCALE 

REPRESENTATIONS 
The method we present for obtaining the general class 

of time-scale distributions is a generalization of the 
method used to obtain the general class of time-frequency 
distributions [8]-[ 101. We start with any particular char- 
acteristic function and define a new characteristic function 
by 

Mn,,(O, a> = +(e, a)M(O, 4 (17.1) 

where 4 is the kernel function whose role is identical to 
the time-frequency case. The general class is then 

(17.2) 

We emphasize that M is any particular characteristic func- 
tion. 
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TABLE 111 
FREQUENCY-(U) SCALE REPRESENTATIONS 

# Ordering Characteristic Function: M ( 7 ,  U )  Distribution: P ( w ,  e )  

. F ( e o / *  
2 sinh (u /2 )  

p (.-a/' 
cosh (u/2) 

. F(ea/' w 
cosh (u /2 )  

Suppose we chose the characteristic function given by class and any other distribution is obtained by appropriate 
choice of the kernel. So for example, if we chose the ker- 
ne1 equal to one then we obtain the Bertrand-Bertrand dis- 
tribution while if we chose the kernel to be the inverse of 
that given by (17.5) then we obtain the Marinovich-Altes 
distribution. 

The identical considerations leading to the time-scale 
general class will give the general frequency-scale class. 

ordering one, then 

P ( t ,  c) = - 4n2 [ [ [ f *  ( e " / 2 U )  exp ( - je t  - jac + jeu 
1 

+(e, a)) f (e-"/2u)  dB du da. (17.3) 

The particular distribution is obtained, as in the time fre- 
quency case, by specifying the kernel. If, for example we 
take the kernel to be equal to one then we obtain the dis- 
tribution of Marinovich and Altes. If we take a kernel 
given by 

. dr da. (17.6) - joc 

som f * (e-"/2t)  ejet f (e"I2t) dt 

[ exp [2j& sinh ( a / 2 ) / 0 ] f * ( e - " / ~ t ) f ( e " / ~ t )  dr 
+(e, 4 = m (17.4) 

then one obtains the Bertrand-Bertrand distribution. Note 
that this kernel is a functional of the signal. That should 
not be surprising because that is also the case with the 

Choosing M as given by ordering one we have 

P(u, c)  = S S S F*(eg/2u) exp (-jTt + j ac  + j ru )  
time frequency case [6]-[lo], although for most of the 4n2 
time frequency cases that have been considered, the ker- 
nel is not a functional of the signal. 

+(r ,  a)F(e-"l2u)  dfl du do. (17.7) 
- 

If we chose the characteristic function given by order- If we choose M as given by ordering two we obtain 
ing 2 then 

P(u, c)  = 1 [ [ S F*(e-"/2u)d(r ,  a) 

P(t ,  c> = 4 'j 'j 'j f * (e - " /2u )+(e ,  a) 
4n 

exp [- jr t  + joc  + 2 j ~ u  sinh ( a / 2 ) / o l  4n 

exp [-jet - jac + 2jBu sinh ( a / 2 ) / a ]  F(e"/2u) dr du da. (17.8) 
(17'5) 

Equation (17.3) or (17.5) may be considered a general 
For the time frequency case the conditions on the ker- 

ne1 have been studied and developed in detail [441-[491. 

f (e"/2u) d8 du da. 
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TABLE IV 
TIME-(U) SCALE REPRESENTATIONS 

# Ordering Characteristic Function: M ( 0 ,  U )  Distribution: P ( r ,  c) 

Tables 3 and 4 give the distributions of frequency and time for frequency scaling [(w)scale]. D(c)  and D, are the time and frequency scale transforms. 

Generally speaking, the same ideas apply to other repre- 
sentations. For example, the conditions to satisfy the mar- 
ginals and instantaneous scale are identical to the condi- 
tions for satisfying the marginals and instantaneous 
frequency in the time-frequency case. 

function [ l ] ,  [lo], [44]. We now show that the same can 
be done for scale. We prove that the general time-scale 
distributions can be written in the form 

P( t ,  c)  = - Rr(a)e-"" da (17.13) ' S  2n 

A. Transformation of Distributions 
For the time-frequency case the general relation be- 

tween distributions was first derived in reference [9]. We 
now do the same for the distributions we have derived for 
scale. Suppose we have two time-scale distributions PI 
and P2 with corresponding kernels 41 and 42. Their char- 
acteristic functions are 

~ ~ ( 0 ,  a) = +we, 0); 

~ ~ ( 0 ,  a) = 42(e, a ) w e ,  0). (17.9) 
Hence, 

By taking the Fourier transform of both sides one obtains 

Pl( t ,  c) = Ss g ( t '  - t ,  c' - c)P2(t ' ,  c ' )  dt' dc' 

(17.11) 
with 

with 

1 
&(a) = - 2n SS $ ( e ,  a)M(B,  a)e-'@' de. (17.14) 

We shall call R, the generalized local scale autocomelation 
function. Depending on which definition we use for the 
general class (17.3)-( 17.5) we have respectively 

&(a) = - 1 S eJe('-')+(f?, a ) f* (e - " /2u ) f ( e" /2u )  du dB 

(17.15) 

1 
2 a  

. 4(0, a)  f* (e-" /2u)  f (e"/2u) du de. (17.16) 

XVIII. JOINT REPRESENTATIONS OF TIME-FREQUENCY- 
SCALE 

We now consider joint representations of the three vari- 
ables time, frequency, and scale. There are many order- 
ings possible; we consider only one here and using it we 
write the general class. Take 

j o W / 2  jO3+j rW e juW/2 . (18.1) X(8, 7 ,  a) = e e 
B. Local Autocorrelation Method 

A very fruitful approach to study time-frequency dis- 
tributions has been to generalize the relationship between 
the energy density spectrum and the deterministic auto- 
correlation function by defining a local autocorrelation 

The characteristic function evaluates to [ 11 

M ( e ,  7, = ,jerf*(e-u/2(t - 1 n) 

(18.2) 
S: 
* f (e"/'(t + ;7)) dt. 
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The distribution is 

. exp (-jet - jrw - jab) db' da dr  

(18.3) 

which gives 

To obtain the general class of time-frequency-scale dis- 
tributions we multiply the characteristic function by a ker- 
nel of three variables, +(e ,  r ,  a) to obtain the generalized 
characteristic function 

XIX. FREQUENCY-SCALING A N D  SCALING IN OTHER 
DOMAINS 

We have considered the scaling of time and have de- 
fined the operator e to be the time scaling operator. 
Equally well one can consider the scaling of frequency 
functions. It is clear from (3 .3)  that the operator for fre- 
quency scaling is, e, = -e and its eigenfunctions are 
yw(c, w )  which are the same form as the time scaling 
eigenfunctions with t replaced by w .  For the frequency 
scaling representation only the positive half of the spec- 
trum is considered, which is equivalent to considering an- 
alytic signals. The transformation properties from the fre- 
quency domain to the scale domain are now 

e - j c  In w 

dw . (19.2) 

Mnew(e9 r ,  a) = 4(b'> r7 ', a). (18.5)  Now, everything we have done for the time cases can be 
directly transliterated to this situation with of course a dif- 
ferent interpretation. In particular we can define the short- 

If we use (18.2) for M we have 

frequency scale transform by 
e - jc In r 

Mnew(O, r ,  a) = 4(e, r ,  a) ejorf*(e-g/2(t - 1 2 7)) 

dr (19.3) F ( T ) H ( T  - U) - J; f (e" / ' ( t  + i r ) )  dt. (18.6) 

and the general class is therefore 

- exp (-jet - jrw - jac) db' da dr. 

(18.7) 
Explicitly, 

- j r w  - jac] db' da dr  du. (18.8) 

This general 
satisfies 

class of time-frequency-scale distributions 

P ( t ,  w ,  c) dc = P ( t ,  U), 

som P ( t ,  w ,  c) dt = P ( w ,  c ) ,  

(18.9) 

(18.10) 

s 
P ( t ,  U, c)  dw = P ( t ,  c ) ,  (18.11) 

where the marginals as given by the right hand side of 
(18.9)-( 18.1 l ) ,  are the general classes of time-frequency, 
frequency-scale and time-scale distributions. 

S 

where H ( w )  is the window function in the frequency do- 
main. The joint distribution of frequency and frequency- 
scale is then P ( t ,  c) = 1 D, (c) 1'. The same method leading 
to instantaneous scale now leads to the conditional scale 
for a given frequency given by w $ ( w ) .  This differs from 
scale for a given frequency for the time scaling case by a 
minus sign. The other quantities such as average scale 
etc. are obtained the same way except that the limits of 
integration run from 0 to 00 in frequency. 

Also one can define the density of frequency for a given 
time by using the short time Fourier transform, 

e - J C ~  In w 

E,(c) = i Sm j e-J"y(r)h(r  - t )  ~ dr dw 

The joint distribution of time and frequency-scaling is then 
given by P( t ,  c,) = 1 Ef(cw) 1'. 
A .  Joint Frequency Frequency-Scale Representations 

In Sections XV-XVII, we obtained joint representa- 
tions of time and time-scale and frequency and time-scale. 
We now address how to obtain joint representations of 
frequency and frequency-scale and time and frequency- 
scale. Let us first consider the case of frequency and fre- 
quency-scaling. The characteristic function will involve 
the frequency and scale operator. From a mathematical 
point of view there is no difference to the previous work 
as long we transliterate appropriately. In fact, all we have 
to do is to change time to frequency, the signal, f ( t )  to 
frequency functions, F ( w ) .  We have already considered 
the evaluation of such characteristic functions in Section 
XVI where we considered distributions to frequency and 

2a 0 J;J 
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time scaling. However there the function F(w) was the 
Fourier transform of the signal and in that case it ranged 
over the whole frequency axis. Now the function, F ( o )  is 
arbitrary but can only range from zero to infinity. There- 
fore all we have to do is take the results of Table I1 and 
make the limits of integrations zero to infinity. Similarity 
to obtain distribution of time and frequency scaling we 
take the results of Table I and let the limits of integration 
go from - 03 to 03. These are cataloged in Tables I11 and 
IV . 

All other consdieration regarding joint representation 
with frequency scaling can be done the same way. We 
write here the general classes analogous to (17.3), 

exp ( -jrw - jac,, + jru)  4 (7, U) 

* F(e-“I2u) dr du da (19.4) 

and also the one analogous to and ( 17.5). 

exp [ - jrw - jac,,. + 2j7u sinh (a/2)/a] 

. F(e“/’u) dr du da (19.5) 

In the above two equations we have used c, to emphasize 
that we are doing frequency scaling. 

B. Other Domains 
In the above, we have shown how to handle frequency 

scaling. We now want to discuss how to do scaling for an 
arbitrary domain or physical variable. Suppose the phys- 
ical variable is a and the functions in that domain are F(a) .  
We define the generalized scaling operator by 

(19.6) 

and in general we have that 

eJUeaF(a) = e“/2F(e“a); 

e””“eaF(a) = & f ( u a ) .  (19.7) 

It is clear that nothing we have previously done for time 
scaling is particular to the time variable. Everything can 
be carried over directly. To convert the equation we have 
derived for time scaling to scaling in the “a” domain ar- 
bitrary variables a ,  all we have to do is substitute a for t 
and f ( a )  for f ( t )  in any of formulas we have obtained. 
The above discussion for the frequency case is an exam- 
ple. 

XX. CONCLUSION 
We have presented the basic properties of scale and 

treated it as a physical variable like frequency and we have 
given a framework for obtaining joint representations in- 
volving scale. 
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