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A Generative Model for Music Transcription
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Abstract—In this paper, we present a graphical model for poly-
phonic music transcription. Our model, formulated as a dynamical
Bayesian network, embodies a transparent and computationally
tractable approach to this acoustic analysis problem. An advantage
of our approach is that it places emphasis on explicitly modeling
the sound generation procedure. It provides a clear framework in
which both high level (cognitive) prior information on music struc-
ture can be coupled with low level (acoustic physical) information
in a principled manner to perform the analysis. The model is a
special case of the, generally intractable, switching Kalman filter
model. Where possible, we derive, exact polynomial time inference
procedures, and otherwise efficient approximations. We argue that
our generative model based approach is computationally feasible
for many music applications and is readily extensible to more gen-
eral auditory scene analysis scenarios.

Index Terms—Bayesian signal processing, music transcription,
polyphonic pitch tracking, switching Kalman filters.

I. INTRODUCTION

WHEN HUMANS listen to sound, they are able to
associate acoustical signals generated by different

mechanisms with individual symbolic events [1]. The study
and computational modeling of this human ability forms the
focus of computational auditory scene analysis (CASA) and
machine listening [2]. Research in this area seeks solutions to
a broad range of problems such as the cocktail party problem,
(for example automatically separating voices of two or more
simultaneously speaking persons, see, e.g., [3] and [4]), identi-
fication of environmental sound objects [5] and musical scene
analysis [6]. Traditionally, the focus of most research activities
has been in speech applications. Recently, analysis of musical
scenes is drawing increasingly more attention, primarily be-
cause of the need for content based retrieval in very large digital
audio databases [7] and increasing interest in interactive music
performance systems [8].

A. Music Transcription

One of the hard problems in musical scene analysis is au-
tomatic music transcription, that is, the extraction of a human
readable and interpretable description from a recording of a
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music performance. Ultimately, we wish to infer automatically a
musical notation (such as the traditional western music notation)
listing the pitch levels of notes and corresponding time-stamps
for a given performance. Such a representation of the surface
structure of music would be very useful in a broad spectrum
of applications such as interactive music performance systems,
music information retrieval (Music-IR) and content description
of musical material in large audio databases, as well as in the
analysis of performances. In its most unconstrained form, i.e.,
when operating on an arbitrary polyphonic acoustical input pos-
sibly containing an unknown number of different instruments,
automatic music transcription remains a great challenge. Our
aim in this paper is to consider a computational framework to
move us closer to a practical solution of this problem.

Music transcription has attracted significant research effort
in the past—see [6] and [9] for a detailed review of early and
more recent work, respectively. In speech processing, the re-
lated task of tracking the pitch of a single speaker is a fun-
damental problem and methods proposed in the literature are
well studied [10]. However, most current pitch detection algo-
rithms are based largely on heuristics (e.g., picking high energy
peaks of a spectrogram, correlogram, auditory filter bank, etc.)
and their formulation usually lacks an explicit objective func-
tion or signal model. It is often difficult to theoretically justify
the merits and shortcomings of such algorithms, and compare
them objectively to alternatives or extend them to more com-
plex scenarios.

Pitch tracking is inherently related to the detection and esti-
mation of sinusoids. The estimation and tracking of single or
multiple sinusoids is a fundamental problem in many branches
of applied sciences, so it is less surprising that the topic has also
been deeply investigated in statistics, (e.g., see [11]). However,
ideas from statistics seem to be not widely applied in the context
of musical sound analysis, with only a few exceptions [12], [13]
who present frequentist techniques for very detailed analysis of
musical sounds with particular focus on decomposition of pe-
riodic and transient components. [14] has presented real-time
monophonic pitch tracking application based on a Laplace ap-
proximation to the posterior parameter distribution of an AR(2)
model [15], [11, p. 19]. Their method outperforms several stan-
dard pitch tracking algorithms for speech, suggesting potential
practical benefits of an approximate Bayesian treatment. For
monophonic speech, a Kalman filter based pitch tracker is pro-
posed by [16] that tracks parameters of a harmonic plus noise
model (HNM). They propose the use of Laplace approximation
around the predicted mean instead of the extended Kalman filter
(EKF). For both methods, however, it is not obvious how to ex-
tend them to polyphony.

Kashino [17] is, to our knowledge, the first author to apply
graphical models explicitly to the problem of polyphonic music
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transcription. Sterian [18] described a system that viewed
transcription as a model driven segmentation of a time-fre-
quency image. Walmsley [19] treats transcription and source
separation in a full Bayesian framework. He employs a frame
based generalized linear model (a sinusoidal model) and pro-
poses inference by reversible-jump Markov Chain Monte Carlo
(MCMC) algorithm. The main advantage of the model is that
it makes no strong assumptions about the signal generation
mechanism, and views the number of sources as well as the
number of harmonics as unknown model parameters. Davy and
Godsill [20] address some of the shortcomings of his model
and allow changing amplitudes and frequency deviations.
The reported results are encouraging, although the method is
computationally very expensive.

B. Approach

Musical signals have a very rich temporal structure, both on
a physical (signal) and a cognitive (symbolic) level. From a sta-
tistical modeling point of view, such a hierarchical structure in-
duces very long range correlations that are difficult to capture
with conventional signal models. Moreover, in many music ap-
plications, such as transcription or score following, we are usu-
ally interested in a symbolic representation (such as a score)
and not so much in the “details” of the actual waveform. To
abstract away from the signal details, we define a set of inter-
mediate variables (a sequence of indicators), somewhat analo-
gous to a “piano-roll” representation. This intermediate layer
forms the “interface” between a symbolic process and the ac-
tual signal process. Roughly, the symbolic process describes
how a piece is composed and performed. We view this process
as a prior distribution on the piano-roll. Conditioned on the
piano-roll, the signal process describes how the actual wave-
form is synthesized.

Most authors view automated music transcription as
an “audio to piano-roll” conversion and usually consider
“piano-roll to score” a separate problem. This view is partially
justified, since source separation and transcription from a
polyphonic source is already a challenging task. On the other
hand, automated generation of a human readable score includes
nontrivial tasks such as tempo tracking, rhythm quantization,
meter and key induction [21]–[23]. As also noted by other
authors (e.g., [17], [24], and [25]), we believe that a model that
integrates this higher level symbolic prior knowledge can guide
and potentially improve the inferences, both in terms quality of
a solution and computation time.

There are many different natural generative models for piano-
rolls. In [26], we proposed a realistic hierarchical prior model.
In this paper, we consider computationally simpler prior models
and focus more on developing efficient inference techniques of
a piano-roll representation. The organization of the paper is as
follows: We will first present a generative model, inspired by ad-
ditive synthesis, that describes the signal generation procedure.
In the sequel, we will formulate two subproblems related to
music transcription: melody identification and chord identifica-
tion. We will show that both problems can be easily formulated
as combinatorial optimization problems in the framework of
our model, merely by redefining the prior on piano-rolls. Under

our model assumptions, melody identification can be solved ex-
actly in polynomial time (in the number of samples). By de-
terministic pruning, we obtain a practical approximation that
works in linear time. Chord identification suffers from combi-
natorial explosion. For this case, we propose a greedy search
algorithm based on iterative improvement. Consequently, we
combine both algorithms for polyphonic music transcription.
Finally, we demonstrate how (hyper-)parameters of the signal
process can be estimated from real data.

II. POLYPHONIC MODEL

In a statistical sense, music transcription, (as many other per-
ceptual tasks such as visual object recognition or robot localiza-
tion) can be viewed as a latent state estimation problem: given
the audio signal, we wish to identify the sequence of events (e.g.,
notes) that gave rise to the observed audio signal.

This problem can be conveniently described in a Bayesian
framework: given the audio samples, we wish to infer a piano-
roll that represents the onset times (e.g., times at which a ‘string’
is ‘plucked’), note durations and the pitch classes of individual
notes. We assume that we have one microphone, so that at each
time we have a one dimensional observed quantity . Multiple
microphones (such as required for processing stereo recordings)
would be straightforward to include in our model. We denote the
temporal sequence of audio samples
by the shorthand notation . A constant sampling frequency

is assumed.
Our approach considers the quantities we wish to infer as

a collection of “hidden” variables, whilst acoustic recording
values are “visible” (observed). For each observed sample

, we wish to associate a higher, unobserved quantity that labels
the sample appropriately. Let us denote the unobserved quan-
tities by where each is a vector. Our hidden variables
will contain, in addition to a piano-roll, other variables required
to complete the sound generation procedure. We will elucidate
their meaning later. As a general inference problem, the poste-
rior distribution is given by Bayes’ rule

(1)

The likelihood term in (1) requires us to specify a
generative process that gives rise to the observed audio samples.
The prior term reflects our knowledge about piano-rolls
and other hidden variables. Our modeling task is therefore to
specify both how, knowing the hidden variable states (essen-
tially the piano-roll), the microphone samples will be generated,
and also to state a prior on likely piano-rolls. Initially, we con-
centrate on the sound generation process of a single note.

A. Modeling a Single Note

Musical instruments tend to create oscillations with modes
that are roughly related by integer ratios, albeit with strong
damping effects and transient attack characteristics [27]. It
is common to model such signals as the sum of a periodic
component and a transient nonperiodic component (see e.g.,
[28], [29], and [13]). The sinusoidal model [30] is often a
good approximation that provides a compact representation
for the periodic component. The transient component can be
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Fig. 1. Damped oscillator in state space form. Left: At each time step, the
state vector s rotates by ! and its length becomes shorter. Right: The actual
waveform is a one dimensional projection from the two dimensional state vector.
The stochastic model assumes that there are two independent additive noise
components that corrupt the state vector s and the sample y, so the resulting
waveform y is a damped sinusoid with both phase and amplitude noise.

modeled as a correlated Gaussian noise process [16], [20].
Our signal model is also in the same spirit, but we will define
it in state space form, because this provides a natural way to
couple the signal model with the piano-roll representation.
Similar formulations are used in the econometrics literature
to model seasonal fluctuations, e.g., see [31] and [32]. Here
we omit the transient component and focus on the periodic
component. It is conceptually straightforward to include the
transient component as this does not affect the complexity of
our inference algorithms.

First we consider how to generate a damped sinusoid
through time, with angular frequency . Consider a Gaussian
process where typical realizations are damped “noisy”
sinusoidal signals with angular frequency

(2)

(3)

(4)

(5)

We use to denote a multivariate Gaussian distribution
with mean and covariance . Here is a Givens rotation
matrix that rotates two dimensional vector by degrees coun-
terclockwise. is a projection matrix defined as .
The phase and amplitude characteristics of are determined
by the initial condition drawn from a prior with covariance

. The damping factor specifies the rate at which
contracts to 0. See Fig. 1 for an example. The transition noise
variance is used to model deviations from an entirely deter-
ministic linear model. The observation noise variance models
background noise.

In reality, musical instruments (with a definite pitch) have
several modes of oscillation that are roughly located at integer
multiples of the fundamental frequency . We can model such
signals by a bank of oscillators giving a block diagonal transition
matrix defined as

...
...

. . .
(6)

where denotes the number of harmonics, assumed to be
known. To reduce the number of free parameters we define each
harmonic damping factor in terms of a basic . A possible
choice is to take , motivated by the fact that damping
factors of harmonics in a vibrating string scale approximately

Fig. 2. Piano-roll. The vertical axis corresponds to the sound generator index
j and the horizontal axis corresponds to time index t. Black and white pixels
correspond to “sound” and “mute” respectively. The piano-roll can be viewed
as a binary sequence that controls an underlying signal process. Each row of
the piano-roll r controls a sound generator. Each generator is a Gaussian
process (a Kalman filter model), where typical realizations are damped periodic
waveforms of a constant fundamental frequency. As in a piano, the fundamental
frequency is a function of the generator index j. The actual observed signal y
is a superposition of the outputs of all generators.

geometrically with respect to that of the fundamental frequency,
i.e., higher harmonics decay faster [33]. is the transi-
tion matrix at time and encodes the physical properties of the
sound generator as a first order Markov Process. The rotation
angle can be made time dependent for modeling pitch drifts
or vibrato. However, in this paper we will restrict ourselves to
sound generators that produce sounds with (almost) constant
frequency. The state of the sound generator is represented by

, a dimensional vector that is obtained by concatenation
of all the oscillator states in (2).

B. From Piano-Roll to Microphone

A piano-roll is a collection of indicator variables , where
runs over sound generators (i.e., notes or “keys”

of a piano) and runs over time. Each sound gener-
ator has a unique fundamental frequency associated with it.
For example, we can choose such that we cover all notes of
the tempered chromatic scale in a certain frequency range. This
choice is arbitrary and for a finer pitch analysis a denser grid
with smaller intervals between adjacent notes can be used.

Each indicator is binary, with values “sound” or “mute”. The
essential idea is that, if previously muted, “mute”
an onset for the sound generator occurs if “sound”.
The generator continues to sound (with a characteristic damping
decay) until it is again set to “mute”, when the generated signal
decays to zero amplitude (much) faster. The piano-roll, being
a collection of indicators , can be viewed as a binary
sequence, e.g., see Fig. 2. Each row of the piano-roll con-
trols an underlying sound generator.

The piano-roll determines the both sound onset generation,
and the damping of the note. We consider first the damping
effects.
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Fig. 3. Graphical Model. The rectangle box denotes “plates,” M replications
of the nodes inside. Each plate, j = 1; . . . ;M represents the sound generator
(note) variables through time.

1) Piano-Roll: Damping: Thanks to our simple geometri-
cally related damping factors for each harmonic, we can char-
acterize the damping factor for each note by two
decay coefficients and such that

. The piano-roll controls the damping coeffi-
cient of note at time by

(7)

Here, and elsewhere in this paper, the notation has
value equal to 1 when variable is in state text, and is zero other-
wise. We denote the transition matrix as ;
similarly for .

2) Piano-Roll: Onsets: At each new onset, i.e., when
, the old state is

“forgotten” and a new state vector is drawn from a Gaussian
prior distribution . This models the energy injected
into a sound generator at an onset (this happens, for example,
when a guitar string is plucked). The amount of energy injected
is proportional to the determinant of and the covariance
structure of describes how this total energy is distributed
among the harmonics. The covariance matrix thus captures
some of the timbre characteristics of the sound. The transition
and observation equations are given by

(8)

(9)

(10)

(11)

In the above, is a projection matrix
with zero entries on the even compo-

nents. Hence has a mean being the sum of the damped
harmonic oscillators. models the variance of the noise in the
output of each sound generator. Finally, the observed audio
signal is the superposition of the outputs of all sound generators

(12)

The generative model (7)–(12) can be described qualitatively
by the graphical model in Fig. 3. Equations (11) and (12)

Fig. 4. Simplified model for monophonic transcription. Since there is only a
single sound generator active at any given time, we can represent a piano-roll
at each time slice by the tuple (j ; r ) where j is the index of the active sound
generator and r 2 fsound;muteg indicates the state.

define . Equations (7), (9), and (10) relate
and and define . In this paper, the prior
model is Markovian and has the following factorial
structure:1

C. Inference

Given the polyphonic model described in Section II, to infer
the most likely piano-roll we need to compute

(13)

where the posterior is given by

The normalization constant, , obtained by summing
the integral term over all configurations is called the
evidence.2

Unfortunately, calculating this most likely piano-roll config-
uration is generally intractable, and is related to the difficulty
of inference in Switching Kalman Filters [35], [36]. We shall
need to develop approximation schemes for this general case, to
which we shall return in a later section.

1In the simulations we have fixed the transition parameter p(r = mutejr =
sound) = p(r = soundjr = mute) = 10

2It is instructive to interpret (13) from a Bayesian model selection perspec-
tive [34]. In this interpretation, we view the set of all piano-rolls, indexed by
configurations of discrete indicator variables r , as the set of all models
among which we search for the best model r . In this view, state vectors
s are the model parameters that are integrated over. It is well known that
the conditional predictive density p(yjr), obtained through integration over s,
automatically penalizes more complex models, when evaluated at y = y . In
the context of piano-roll inference, this objective will automatically prefer so-
lutions with less notes. Intuitively, this is simply because at each note onset, the
state vector s is reinitialized using a broad Gaussian N (0; S). Consequently,
a configuration r with more onsets will give rise to a conditional predictive dis-
tribution p(yjr) with a larger covariance. Hence, a piano-roll that claims the
existence of additional onsets without support from data will get a lower likeli-
hood.
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Fig. 5. Monophonic pitch tracking. (Top) Synthetic data sampled from model in Fig. 4. Vertical bars denote the onset and offset times. (Bottom) The filtering
density p(r ; j jy ). The vertical axis denotes the sound generator index j and the gray level denotes the posterior probability p(r = sound; j jy ) where
black corresponds to 1.

As a prelude, we consider a slightly simpler, related model
which aims to track the pitch (melody identification) in a mono-
phonic instrument (playing only a single note at a time), such as
a flute. The insight gained here in the inference task will guide
us to a practical approximate algorithm in the more general case
later.

III. MONOPHONIC MODEL

Melody identification, or monophonic pitch tracking with
onset and offset detection, can be formulated by a small modi-
fication of our general framework. Even this simplified task is
still of huge practical interest, e.g., in real time MIDI conversion
for controlling digital synthesizers using acoustical instruments
or pitch tracking from the singing voice. One important problem
in real time pitch tracking is the time/frequency tradeoff: to
estimate the frequency accurately, an algorithm needs to collect
statistics from a sufficiently long interval. However, this often
conflicts with the real time requirements.

In our formulation, each sound generator is a dynamical
system with a sequence of transition models, sound and mute.
The state evolves first according to the sounding regime
with transition matrix and then according to the muted
regime with . The important difference from a general
switching Kalman filter is that when the indicator switches
from mute to sound, the old state vector is “forgotten.” By
exploiting this fact, in the Appendix I-A we derive, for a single
sound generator (i.e., a single note of a fixed pitch that gets on
and off), an exact polynomial time algorithm for calculating the
evidence and MAP configuration .

1) Monophonic Pitch Tracking: Here, we assume that at any
given time only a single sound generator can be sounding, i.e.,

for . Hence, for prac-
tical purposes, the factorial structure of our original model is
redundant; i.e., we can “share” a single state vector among
all sound generators.3 The resulting model will have the same
graphical structure as a single sound generator but with an in-
dicator which indexes the active sound generator,

3We ignore the cases when two or more generators are simultaneously in the
mute state.

and indicates sound or mute. Inference
for this case turns out to be also tractable (i.e., polynomial). We
allow switching to a new only after an onset. The full gener-
ative model using the pairs , which includes both likeli-
hood and prior terms is given as

Here, denotes a uniform distribution on and
denotes a degenerate (deterministic) distribution

concentrated on , i.e., unless there is an onset the active sound
generator stays the same. Our choice of a uniform simply
reflects the fact that any new note is as likely as any other.
Clearly, more informative priors, e.g., that reflect knowledge
about tonality, can also be proposed. Similarly, for doing a
more precise pitch analysis, we may choose a finer grid such
that . Here, is the quality factor, a measure
of the desired frequency precision not to be confused with the
transition noise .

The graphical model is shown in Fig. 4. The derivation of the
polynomial time inference algorithm is given in Appendix I-C.
Technically, it is a simple extension of the single note algorithm
derived in Appendix I-A.

In Fig. 5, we illustrate the results on synthetic data sam-
pled from the model where we show the filtering density

. After an onset, the posterior becomes quickly
crisp, long before we observe a complete cycle. This feature is
especially attractive for real time applications where a reliable
pitch estimate has to be obtained as early as possible.

We conclude this subsection with an illustration on real data.
We have recorded a major scale on an electric bass and down-
sampled from the original sampling rate of by a
factor of (see Fig. 6). We have estimated parameters for
a signal model with harmonics. The “training set” con-
sisted of a single note recorded from the same instrument; this
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Fig. 6. Monophonic pitch estimation on real data. (a) F major scale played on an electric bass, sampled with F = 22050 and downsampled by a factor of
D = 10. (b) Estimated MAP configuration (r; j) with quality factor Q = 2 . (c) A finer analysis with Q = 2 reveals that the 5th and 7th degree of
the scale are intonated slightly low. (d) Estimated piano roll, when signal model is trained on a different instrument. Here, results are poorer since parameters were
estimated using human voice, which has different spectral and temporal characteristics.

procedure will be discussed in more detail in Section V. We have
estimated the MAP configuration using the algorithm
described in Appendix I-C. The figure shows that the estimated
piano roll is quite precise. We have repeated the experiment on
a pianoroll with a pitch grid of 1/4 semitones .
The results reveal that the 5th and 7th degree of the scale were
intonated slightly low, which did not had much effect on the es-
timation of the pitch class when using a coarser grid. In the last
experiment we have trained the model parameters using a note
sung by a vocalist. As expected, the results are poorer; in par-
ticular we observe that 5ths or octaves are confused due to the
different harmonic structure and transition characteristics.

2) Extension to Vibrato and Legato: The monophonic
model has been constructed such that the rotation angle re-
mains constant. Although the transition noise with variance
still allows for small and independent deviations in frequencies
of the harmonics, the model is not realistic for situations with
systematic pitch drift or fluctuation, e.g., as is the case with
vibrato. Moreover, on many musical instruments, it is possible
to play legato, that is without an explicit onset between note
boundaries. In our framework, pitch drift and legato can be
modeled as a sequence of transition models. Consider the
generative process for the note index

Here, is a multinomial distribution reflecting our
prior belief how likely is it to switch between notes. When

, there is no regime change, reflected by the
deterministic distribution peaked around .
Remember that neighboring notes have also close fundamental
frequency . To simulate pitch drift, we choose a fine grid
such that . In this case, we can simply de-
fine as a multinomial distribution with support on

with cell probabilities .
We can take a larger support for , but in practice
we would rather reduce the frequency precision to avoid
additional computational cost.

Unfortunately, the terms included by the drift mechanism
render an exact inference procedure intractable. We derive the
details of the resulting algorithm in the Appendix I-D. A simple
deterministic pruning method is described in Appendix II-A.
In Fig. 7, we show the estimated MAP trajectory for
drifting pitch. We use a model where the quality factor is

, (120 generators per octave) with drift probability
. A fine pitch contour, that is accurate to sample

precision, can be estimated.

IV. POLYPHONIC INFERENCE

In this section we return to the central goal of inference
in the general polyphonic model described in Section II.
To infer the most likely piano-roll we need to compute

defined in (13). Unfortunately, the

calculation of (13) is intractable. Indeed, even the calcu-
lation of the Gaussian integral conditioned on a particular
configuration using standard Kalman filtering equa-
tions is prohibitive since the dimension of the state vector is

, where is the number of harmonics. For a
realistic application we may have and . It is
clear that unless we are able to develop efficient approximation
techniques, the model will be only of theoretical interest.

A. Vertical Problem: Chord Identification

Chord identification is the simplest polyphonic transcription
task. Here we assume that a given audio signal is generated
by a piano-roll where for all4 . The task is
to find the MAP configuration

4We will assume that initially we start from silence where r = mute for
all j = 1 . . .M .
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Fig. 7. Tracking varying pitch. Top and middle panel show the true piano-roll and the sampled signal. The estimated piano-roll is shown below.

Fig. 8. We have first drawn a random piano-roll configuration (a random chord) r . Given r , we generate a signal of length 400 samples with a sampling
frequency F = 4000 from p(y jr ). We assume 24 notes (two octaves). The synthesized signal from the generative model and its discrete time Fourier
transform modulus are shown above. The true chord configuration and the associated log probability is at the bottom of the table. For the iterative algorithm, the
initial configuration in this example was silence. At this point we compute the probability for each single note configurations (all one flip neighbors of silence).
The first note that is added is actually not present in the chord. Until iteration 9, all iterations add extra notes. Iteration 9 and 10 turn out to be removing the extra
notes and iterations converge to the true chord. The intermediate configurations visited by the algorithm are shown in the table below. Here, sound and mute states
are represented by �’s and �’s.

Each configuration corresponds to a chord. The two ex-
treme cases are “silence” and “cacophony” that correspond
to configurations and

respectively. The size of the
search space in this case , which is prohibitive for direct
computation.

A simple approximation is based on greedy search: we start it-
erative improvement from an initial configuration (silence,
or randomly drawn from the prior). At each iteration , we eval-
uate the probability of all neighboring configura-

tions of . We denote this set by . A con-

figuration , if can be reached from within a
single flip (i.e., we add or remove single notes). If has
a higher probability than all its neighbors, the algorithm termi-
nates, having found a local maximum. Otherwise, we pick the
neighbor with the highest probability and set

and iterate until convergence. We illustrate the algorithm on a
signal sampled from the generative model, see Fig. 8. This pro-
cedure is guaranteed to converge to a (possibly local) maxima.
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Fig. 9. Iterative improvement results when data are subsampled by a factor of D = 2, 3, and 4, respectively. For each factor D, the top line shows the true
configuration and the corresponding probability. The second line is the solution found by starting from silence and the third line is starting from a random
configuration drawn form the prior (best of 3 independent runs).

Nevertheless, we observe that for many examples this procedure
is able to identify the correct chord. Using multiple restarts from
different initial configurations will improve the quality of the so-
lution at the expense of computational cost.

One of the advantages of our generative model based ap-
proach is that we can in principle infer a chord given any subset
of data. For example, we can simply downsample (without
any preprocessing) by an integer factor of and view the dis-
carded samples as missing values. Of course, when is large,
i.e., when we throw away many samples, due to diminishing
likelihood contribution, we obtain a diffuse posterior on the
piano-roll and eventually the results will be poorer.

In Fig. 9, we show the results of such an experiment. We
have downsampled with factor , , and . The
energy spectrum is quite coarse due to the short length of the
data. Consequently many harmonics are not resolved, e.g., we
can not identify the underlying line spectrum by visual inspec-
tion. Methods based on template matching or identification of
peaks may have serious problems for such examples. On the
other hand, our model driven approach is able to identify the
true chord. We note that, the presented results are illustrative
only and the actual behavior of the algorithm (sensitivity to ,
importance of starting configuration) will depend on the details
of the signal model.

B. Piano-Roll Inference Problem: Joint Chord and Melody
Identification

The piano-roll estimation problem can be viewed as an ex-
tension of chord identification in that we also detect onsets and
offsets for each note within the analysis frame. A practical ap-
proach is to analyze the signal in sufficiently short time win-
dows and assume that for each note, at most one changepoint
can occur within the window.

Consider data in a short window, say . We start iterative
improvement from a configuration , where each time

slice for is equal to a “chord” . The
chord can be silence or, during a frame by frame analysis,
the last time slice of the best configuration found in the previous
analysis window. Let the configuration at th iteration be
denoted as . At each new iteration , we evaluate the
posterior probability , where runs
over all neighboring configurations of . Each member

of the neighborhood is generated as follows: For each
, we clamp all the other rows, i.e., we set

for . For each time step , we gen-
erate a new configuration such that the switches up to time
are equal to the initial switch , and its opposite after
, i.e., . This is equivalent to

saying that a sounding note may get muted, or a muted note
may start to sound. The computational advantage of allowing
only one changepoint at each row is that the probability of all
neighboring configurations for a fixed can be computed by a
single backward, forward pass [23], [36]. Finally, we pick the
neighbor with the maximum probability. The algorithm is illus-
trated in Fig. 10.

The analysis for the whole sequence proceeds as follows.
Consider two successive analysis windows and

. Suppose we have obtained a solution
obtained by iterative improvement. Conditioned on

, we compute the posterior by
Kalman filtering. This density is the prior of for the current
analysis window . The search starts from a chord equal to the
last time slice of . In Fig. 11 we show an illustrative result
obtained by this algorithm on synthetic data. In similar experi-
ments with synthetic data, we are often able to identify the cor-
rect piano-roll.

This simple greedy search procedure is somewhat sensitive to
location of onsets within the analysis window. Especially, when
an onset occurs near the end of an analysis window, it may be as-
sociated with an incorrect pitch. The correct pitch is often iden-
tified in the next analysis window, when a longer portion of the
signal is observed. However, since the basic algorithm does not
allow for correcting the previous estimate by retrospection, this
introduces some artifacts. A possible method to overcome this
problem is to use a fixed lag smoothing approach, where we
simply carry out the analysis on overlapping windows. For ex-
ample, for an analysis window , we find .
The next analysis window is taken as where .
We find the prior by Kalman filtering.
On the other hand, obviously, the algorithm becomes slower by
a factor of .

An optimal choice for and will depend upon many
factors such as signal characteristics, sampling frequency,
downsampling factor , onset/offset positions, number of
active sound generators at a given time as well as the amount
of CPU time available. In practice, these values may be critical
and they need to be determined by trial and error. On the other
hand, it is important to note that and just determine how
the approximation is made but not enter the underlying model.
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Fig. 10. Iterative improvement with changepoint detection. The true piano-roll, the signal and its Fourier transform magnitude are shown in (a). In (b),
configurations r visited during iterative improvement steps. Iteration numbers i are shown left and the corresponding probability is shown on the right.
The initial configuration (i.e., “chord”) r is set to silence. At the first step, the algorithm searches all single note configurations with a single onset.
The winning configuration is shown on top panel of (b). At the next iteration, we clamp the configuration for this note and search in a subset of two note
configurations. This procedure adds and removes notes from the piano-roll and converges to a local maxima. Typically, the convergence is quite fast and the
procedure is able to identify the true chord without making a “detour” as in (b).

Fig. 11. Typical example for Polyphonic piano-roll inference from synthetic
data. We generate a realistic piano-roll (top) and render a signal using the
polyphonic model (middle). Given only the signal, we estimate the piano-roll
by iterative improvement in successive windows (bottom). In this example,
only the offset time of the lowest note is not estimated correctly. This is a
consequence that, for long notes, the state vector s converges to zero before the
generator switches to the mute state.

V. LEARNING

In the previous sections, we assumed that the correct signal
model parameters were known. These include
in particular the damping coefficients , , transition
noise variance , observation noise and the initial prior co-
variance matrix after an onset. In practice, for an instrument
class (e.g., plucked string instruments) a reasonable range for
can be specified a-priori. We may safely assume that will be
static (not time dependent) during a given performance. How-
ever, exact values for these quantities will vary among different
instruments (e.g., old and new strings) and recording/perfor-
mance conditions.

One of the well-known advantages of Bayesian inference is
that, when uncertainty about parameters is incorporated in a
model, this leads in a natural way to the formulation of a learning

algorithm. The piano-roll estimation problem, omitting the time
indices, can be stated as follows:

(14)

In other words, we wish to find the best piano-roll by taking into
account all possible settings of the parameter , weighted by the
prior. Note that (14) becomes equivalent to (13), if we knew the
“best” parameter , i.e., . Unfortunately, the
integration on can not be calculated analytically and approxi-
mation methods must be used [37]. A crude but computationally
cheap approximation replaces the integration on in (14) with
maximization

Essentially, this is a joint optimization problem on piano-rolls
and parameters which we solve by a greedy coordinate ascent
algorithm. The algorithm we propose is a double loop algorithm
where we iterate in the outer loop between maximization over

and maximization over . The latter maximization itself is
calculated with an iterative algorithm

For a single note, conditioned on a fixed , can be cal-
culated exactly, using the message propagation algorithm de-
rived in Appendix I-B. Conditioned on , maximization on
the coordinate becomes equivalent to parameter estimation in
linear dynamical systems, for which no closed form solution is
known. Nevertheless, this step can be calculated by an iterative
expectation maximization (EM) algorithm [36], [38]. In prac-
tice, we observe that for realistic starting conditions , the
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Fig. 12. Training the signal model with EM from a single note from an electric bass using a sampling rate of 22 050 Hz. (a) The original signal is downsampled
by a factor ofD = 20. Vertical lines show the changepoints of the MAP trajectory r . Given some crude first estimate for model parameters � (S; �;Q;R),
we estimate r . Conditioned on r , we estimate the model parameters � and so on. Let S denote the 2� 2 block matrix from the diagonal S, corresponding
to the hth harmonic, similarly for Q . In (b), Top to Bottom: Fourier transform of the downsampled signal and diagonal entries of S, Q and damping coefficients
� for each harmonic. Here, show the estimated parameters for each harmonic sum of diagonal elements, i.e., TrS and TrQ . The damping coefficient is
found as � = (detA A ) where A is a 2� 2 diagonal block matrix of transition matrix A . For reference, we also show the Fourier transform
modulus of the downsampled signal. We can see, that on the low frequency bands, S mimics the average energy distribution of the note. However, transient
phenomena, such as the strongly damped 7th harmonic with relatively high transition noise, is hardly visible in the frequency spectrum. On the other hand for
online pitch detection, such high frequency components are important to generate a crisp estimate as early as possible.

are identical, suggesting that the best segmentation is
not very sensitive to variations in near to a local optimum. In
Fig. 12, we show the results of training the signal model based
on a single note (a C from the low register) of an electric bass.

In an experiment with real data, we illustrate the performance
of the model for two and three note polyphony (see Fig. 13). We
have recorded three separate monophonic melodies; ascending
modes of the major scale starting from the root, 3rd and 5th
degree of a major scale. We have estimated model parameters
using a single note from the same register. For each monophonic
melody, we have calculated the ground truth by the
algorithm described in Section III-A. We have constructed the
two note example by adding the first two melodies. The anal-
ysis is carried out using a window length of sam-
ples, without overlap between analysis frames (i.e., ).
We were able to identify the correct pitch classes for the two
note polyphony case. However, especially some note offsets are
not detected correctly. In the three note case, pitch classes are
correct, but there are also more artifacts, e.g., the chord around
sample index 500 is identified incorrect. We expect results to
go worse with increasing polyphony; this behavior is qualita-
tively similar to other methods reported in the literature, e.g.,
[18], [19], but clearly, more simulation studies have to be car-
ried out for an objective comparison. Investigating the log like-
lihood ratio

suggests that the failure is due to the suboptimal estimation pro-
cedure, i.e., the model prefers the true solution but our greedy
algorithm is unable to locate it and gets stuck in , where

denotes here the configuration found by the algorithm. In the

conclusions section, we will discuss some alternative approxi-
mation methods to improve results.

VI. DISCUSSION

We have presented a model driven approach where transcrip-
tion is viewed as a Bayesian inference problem. In this respect,
at least, our approach parallels the previous work of [19], [20],
[39]. We believe, however, that our formulation, based on a
switching state space model, has several advantages. We can re-
move the assumption of a frame based model and this enables us
to analyze music online and to sample precision. Practical ap-
proximations to an eventually intractable exact posterior can be
carried out frame-by-frame, such as by using a fixed time-lag
smoother. This, however, is merely a computational issue (al-
beit a very important one). We may also discard samples to re-
duce computational burden, and account for this correctly in our
model.

An additional advantage of our formulation is that we can still
deliver a pitch estimate even when the fundamental and lower
harmonics of the frequency band are missing. This is related
to so called virtual pitch perception [40]: we tend to associate
notes with a pitch class depending on the relationship between
harmonics rather than the frequency of the fundamental compo-
nent itself.

There is a strong link between model selection and poly-
phonic music transcription. In chord identification we need to
compare models with different number of notes, and in melody
identification we need to deduce the number of onsets. Model
selection becomes conceptually harder when one needs to com-
pare models of different size. We partially circumvent this dif-
ficulty by using switch variables, which implicitly represent the
number of components.
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Fig. 13. Experiment with two and three note polyphony. Three monophonic melodies (ascending modes of the F major scale starting from the root, 3rd and
5th degree) are recorded and transcribed separately to obtain the ground truth. Model parameters are learned using a single note recorded from the same register.
Finally, melodies are added to create two- and three-note polyphonic examples. (a) (Top) The ground truth estimated when all melodies are transcribed separately.
(Middle) The superposition of first two melodies downsampled by a factor ofD = 10. (Bottom) Piano-roll estimated with an analysis window of sizeW = 200

samples, without overlap between analysis frames. (b) Result for the same experiment with three notes polyphony.

Following the established signal processing jargon, we may
call our approach a time-domain method, since we are not ex-
plicitly calculating a discrete-time Fourier transform. On the
other hand, the signal model presented here has close links to
the Fourier analysis and sinusoidal modeling. Our analysis can
be interpreted as a search procedure for a sparse representation
on a set of basis vectors. In contrast to Fourier analysis, where
the basis vectors are sinusoids (e.g., see [41] for a Bayesian
treatment), we represent the observed signal implicitly using
signals drawn from a stochastic process which typically gener-
ates decaying periodic oscillations (e.g., notes) with occasional
changepoints. The sparsity of this representation is a conse-
quence of the onset mechanism, that effectively puts a mixture
prior over the hidden state vector . This prior is peaked around
zero and has broad tails, indicating that most of the sources are
muted and only a few are sounding. It is well known that such
Gaussian mixture priors induce sparse representations, e.g., see
[42], [43] for applications in the context of source separation.

A. Future Work

Although our approach has many desirable features (auto-
matically deducing number of correct notes, high temporal res-
olution e.t.c.), one of the main disadvantage of our method is
computational cost associated with updating large covariance
matrices in Kalman filtering. It would be very desirable to inves-
tigate approximation schemas that employ fast transformations
such as the FFT to accelerate computations.

When transcribing music, human experts rely heavily on
prior knowledge about the musical structure—harmony, tempo
or expression. Such structure can be captured by training
probabilistic generative models on a corpus of compositions
and performances by collecting statistics over selected features
(e.g., [44]). One of the important advantages of our approach
is that such prior knowledge about the musical structure can be

formulated as an informative prior on a piano-roll; thus can be
integrated in signal analysis in a consistent manner. We believe
that investigation of this direction is important in designing
robust and practical music transcription systems.

Our signal model considered here is inspired by additive
synthesis. An advantage of our linear formulation is that we can
use the Kalman filter recursions to integrate out the continuous
latent state analytically. An alternative would be to formulate
a nonlinear dynamical system that implements a nonlinear
synthesis model (e.g., FM synthesis, waveshaping synthesis, or
even a physical model [45]). Such an approach would reduce
the dimensionality of the latent state space but force us to
use approximate integration methods such as particle filters
or EKF/UKF [46]. It remains an interesting open question
whether, in practice, one should trade-off analytical tractability
versus reduced latent state dimension.

In this paper, for polyphonic transcription, we have used a
relatively simple deterministic inference method based on iter-
ative improvement. The basic greedy algorithm, whilst still po-
tentially useful in practice, may get stuck in poor solutions. We
believe that, using our model as a framework, better polyphonic
transcriptions can be achieved using more elaborate inference or
search methods. For example, computation time associated with
exhaustive search of the neighborhood for all visited configua-
tions could be significantly reduced by randomizing the local
search (e.g., by Metropolis-Hastings moves5) or use heuristic
proposal distributions derived from easy-to-compute features
such as the energy spectrum. Alternatively, sequential Monte
Carlo methods or deterministic message propagation algorithms
such as Expectation propagation (EP) [47] could be also used.

We have not yet tested our model for more general scenarios,
such as music fragments containing percussive instruments or
bell sounds with inharmonic spectra. Our simple periodic signal

5This improvement is suggested by one of the anonymous reviewers.
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model would be clearly inadequate for such a scenario. On the
other hand, we stress the fact that the framework presented here
is not limited to the analysis of signals with harmonic spectra,
and in principle applicable to any family of signals that can be
represented by a switching state space model. This is already a
large class since many real-world acoustic processes can be ap-
proximated well with piecewise linear regimes. We can also for-
mulate a joint estimation schema for unknown parameters as in
(14) and integrate them out (e.g., see [20]). However, this is cur-
rently a hard and computationally expensive task. If efficient and
accurate approximate integration methods can be developed, our
model will be applicable to mixtures of many different types of
acoustical signals and may be useful in more general auditory
scene analysis problems.

APPENDIX I
DERIVATION OF MESSAGE PROPAGATION ALGORITHMS

In the appendix, we derive several exact message propaga-
tion algorithms. Our derivation closely follows the standard
derivation of recursive prediction and update equations for the
Kalman filter [48]. First we focus on a single sound generator. In
Appendices I-A and B, we derive polynomial time algorithms
for calculating the evidence and MAP configuration

respectively. The MAP config-

uration is useful for onset/offset detection. In the following
section, we extend the onset/offset detection algorithms to
monophonic pitch tracking with constant frequency. We derive
a polynomial time algorithm for this case in Appendix I-C.
The case for varying fundamental frequency is derived in the
following Appendix I-D. In Appendix II we describe heuristics
to reduce the amount of computations.

A. Computation of the Evidence for a Single Sound
Generator by Forward Filtering

We assume a Markovian prior on the indicators , where
. For convenience, we repeat the

generative model for a single sound generator by omitting the
note index

For simplicity, we will sometime use the labels 1 and 2 to de-
note sound and mute respectively. We enumerate the transition
models as . We define the fil-
tering potential as

We assume that is always observed, hence we use the term po-
tential to indicate the fact that is not normal-
ized. The filtering potential is in general a conditional Gaussian
mixture, i.e., a mixture of Gaussians for each configuration of

. We will highlight this data structure by using the fol-
lowing notation

where each for
are also Gaussian mixture potentials. We will denote the

conditional normalization constants as

Consequently the evidence is given by

We also define the predictive density

In general, for switching Kalman filters, calculating exact
posterior features, such as the evidence , is not
tractable. This is a consequence of the fact that the number
of mixture components to required to represent the exact fil-
tering density grows exponentially with time step (i.e.,
one Gaussian for each of the exponentially many configurations

). Luckily, for the model we are considering here, the growth
is polynomial in only. See also [49].

To see this, suppose we have the filtering density available
at time as . The transition models can be organized
also in a table where th row and th column correspond to

Calculation of the predictive potential is straightforward.
First, summation over yields

Integration over and multiplication by yields
the predictive potential

where we define

The potentials can be computed by applying the standard
Kalman prediction equations to each component of . The
updated potential is given by . This quantity
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can be computed by applying standard Kalman update equations
to each component of .

From the above derivation, it is clear that has only a
single Gaussian component. This has the consequence that the
number of Gaussian components in increases only linearly
(the first row-sum terms propagated through ). The
second row sum term is more costly; it increases at every
time slice by the number of components in . Since the size
of grows linearly, the size of grows quadratically with
time .

B. Computation of Map Configuration

The MAP state is defined as

For finding the MAP state, we replace summations over by
maximization. One potential technical difficulty is that, unlike in
the case for evidence calculation, maximization and integration
do not commute. Consider a conditional Gaussian potential

where are Gaussian potentials for each configuration of
. We can compute the MAP configuration

where . We evaluate the normalization of
each component (i.e., integrate over the continuous hidden vari-
able first) and finally find the maximum of all normalization
constants.

However, direct calculation of is not feasible because
of exponential explosion in the number of distinct configura-
tions. Fortunately, for our model, we can introduce a determin-
istic pruning schema that reduces the number of kernels to a
polynomial order and meanwhile guarantees that we will never
eliminate the MAP configuration. This exact pruning method
hinges on the factorization of the posterior for the assignment
of variables , (mute to sound transition) that
breaks the direct link between and

(15)

In this case

(16)

This equation shows that whenever we have an onset, we can cal-
culate the maximum over the past and future configurations sep-
arately. Put differently, provided that the MAP configuration has
the form , the prefix

will be the solution for the reduced maxi-
mization problem .

1) Forward Pass: Suppose we have a collection of Gaussian
potentials

with the property that the Gaussian kernel corresponding the
prefix of the MAP state is a member of , i.e.,

s.t. . We also
define the subsets

We show how we find . The prediction is given by

The multiplication by and integration over
yields the predictive potential , as shown in the equation at
the bottom of the page. By (16), we can replace the collection of
numbers with the scalar
without changing the optimum solution

The updated potential is given by . The anal-
ysis of the number of kernels proceeds as in the previous section.

2) Decoding: During the forward pass, we tag each
Gaussian component of with its past history of . The
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MAP state can be found by a simple search in the collection of
polynomially many numbers and reporting the associated tag

We finally conclude that the forward filtering and MAP (Viterbi
path) estimation algorithms are essentially identical with sum-
mation replaced by maximization and an additional tagging re-
quired for decoding.

C. Inference for Monophonic Pitch Tracking

In this section we derive an exact message propagation algo-
rithm for monophonic pitch tracking. Perhaps surprisingly, in-
ference in this case turns out to be still tractable. Even though the
size of the configuration space is of size

, the space complexity of an exact algorithm re-
mains quadratic in . First, we define a “mega” indicator node

where indicates the index of the ac-
tive sound generator and indicates its state.
The transition model is a large sparse transition table
with probabilities

. . .
...

. . .
...

. . .
. . .

(17)

where the transitions are orga-
nized at the th row and th column where
and (17). The transition models

can be organized
similarly

. . .
...

. . .
...

. . .
. . .

Here, denotes the transition model of the
th sound generator when in state . The derivation for filtering

follows the same lines as the onset/offset detection model, with
only slightly more tedious indexing. Suppose we have the fil-
tering density available at time as . We first calculate
the predictive potential. Summation over yields the row
sums

Integration over and multiplication by yields
the predictive potential . The components are given as

otherwise
(18)

where we define

The potentials can be computed by applying the standard
Kalman prediction equations to each component of . Note that
the forward messages have the same sparsity structure as the
prior, i.e., when

is nonzero. The updated potential is given by
. This quantity can be computed by applying stan-

dard Kalman update equations to each nonzero component of
.

D. Monophonic Pitch Tracking With Varying Fundamental
Frequency

We model pitch drift by a sequence of transition models. We
choose a grid such that , where is close to one.
Unfortunately, the subdiagonal terms introduced to the prior
transition matrix

. . .
. . .

. . .

(19)

render an exact algorithm exponential in . The recursive update
equations, starting with , are obtained by summing over

, integration over and multiplication by .
The only difference is that the prediction (18) needs to be
changed to

where and are defined in (19). The reason for the
exponential growth is the following: Remember that each

has as many components as an entire row sum of
. Unlike the inference for piecewise

constant pitch estimation, now at some rows there are two or
more messages (e.g., and ) that depend
on .
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APPENDIX II
COMPUTATIONAL SIMPLIFICATIONS

A. Pruning

Exponential growth in message size renders an algorithm use-
less in practice. Even in special cases, where the message size
increases only polynomially in , this growth is still prohibitive
for many applications. A cheaper approximate algorithm can be
obtained by pruning the messages. To keep the size of messages
bounded, we limit the number of components to and store
only components with the highest evidence. An alternative is
discarding components of a message that contribute less than a
given fraction (e.g., 0.0001) to the total evidence. More sophis-
ticated pruning methods with profound theoretical justification,
such as resampling [23] or collapsation [50], are viable alterna-
tives but these are computationally more expensive. In our simu-
lations, we observe that using a simple pruning method with the
maximum number of components per message set to ,
we can obtain results very close to an exact algorithm.

B. Kalman Filtering in a Reduced Dimension

Kalman filtering with a large state dimension at typical
audio sampling rates kHz may be prohibitive with
generic hardware. This problem becomes more severe when the
number of notes is large, (which is typically around 50–60),
than even conditioned on a particular configuration , the
calculation of the filtering density is expensive. Hence, in an
implementation, tricks of precomputing the covariance matrices
can be considered [48] to further reduce the computational
burden.

Another important simplification is less obvious from the
graphical structure and is a consequence of the inherent asym-
metry between the sound and mute states. Typically, when a
note switches and stays for a short period in the mute state, i.e.,

for some period, the marginal posterior over the
state vector will converge quickly to a zero mean Gaussian
with a small covariance matrix regardless of observations .
We exploit this property to save computations by clamping the
hidden states for sequences of to zero for “mute”.
This reduces the hidden state dimension, since typically, only a
few sound generators will be in sound state.

REFERENCES

[1] A. Bregman, Auditory Scene Analysis. Cambridge, MA: MIT Press,
1990.

[2] G. J. Brown and M. Cooke, “Computational auditory scene analysis,”
Comput. Speech Lang., vol. 8, no. 2, pp. 297–336, 1994.

[3] M. Weintraub, “A theory and computational model of auditory monaural
sound separation,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ.,
Stanford, CA, 1985.

[4] S. Roweis, “One microphone source separation,” in Neural Information
Processing Systems, NIPS*2000, 2001.

[5] D. P. W. Ellis, “Prediction-driven computational auditory scene anal-
ysis,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Mass. Inst.
Technol., Cambridge, MA, 1996.

[6] E. D. Scheirer, “Music-Listening Systems,” Ph.D. dissertation, Dept.
Elect. Eng. Comput. Sci., Mass. Inst. Technol., Cambridge, MA,
2000.

[7] G. Tzanetakis, “Manipulation, analysis and retrieval systems for audio
signals,” Ph.D. dissertation, Princeton Univ., Princeton, NJ, 2002.

[8] R. Rowe, Machine Musichanship. Cambridge, MA: MIT Press, 2001.

[9] M. Plumbley, S. Abdallah, J. P. Bello, M. Davies, G. Monti, and M.
Sandler, “Automatic music transcription and audio source separation,”
Cybern. Syst., vol. 33, no. 6, pp. 603–627, 2002.

[10] W. J. Hess, Pitch Determination of Speech Signal. New York:
Springer, 1983.

[11] B. G. Quinn and E. J. Hannan, The Estimation and Tracking of Fre-
quency. Cambridge, U.K.: Cambridge Univ. Press, 2001.

[12] R. A. Irizarry, “Local harmonic estimation in musical sound signals,” J.
Amer. Statist. Assoc., 2001, to be published.

[13] , “Weighted estimation of harmonic components in a musical sound
signal,” J. Time Series Anal., vol. 23, 2002.

[14] K. L. Saul, D. D. Lee, C. L. Isbell, and Y. LeCun, “Real time voice
processing with audiovisual feedback: Toward autonomous agents
with perfect pitch,” in Neural Information Processing Systems,
NIPS*2002 Vancouver, BC, Canada, 2002.

[15] B. Truong-Van, “A new approach to frequency analysis with amplified
harmonics,” J. R. Statist. Soc. B, no. 52, pp. 203–222, 1990.

[16] L. Parra and U. Jain, “Approximate kalman filtering for the harmonic
plus noise model,” in Proc. IEEE WASPAA, New Paltz, NY, 2001.

[17] K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka, “Application of
Bayesian probability network to music scene analysis,” in Proc. IJCAI
Workshop CASA, Montreal, QC, Canada, 1995, pp. 52–59.

[18] A. Sterian, “Model-based segmentation of time-frequency images for
musical transcription,” Ph.D. dissertation, Univ. Michigan, Ann Arbor,
1999.

[19] P. J. Walmsley, “Signal separation of musical instruments,” Ph.D. dis-
sertation, Univ. Cambridge, Cambridge, U.K., 2000.

[20] M. Davy and S. J. Godsill, “Bayesian harmonic models for musical
signal analysis,” Bayesian Statist. 7, 2003.

[21] C. Raphael, “A mixed graphical model for rhythmic parsing,” in Proc.
17th Conf. Uncertainty Artif. Intell., 2001.

[22] D. Temperley, The Cognition of Basic Musical Structures. Cambridge,
MA: MIT Press, 2001.

[23] A. T. Cemgil and H. J. Kappen, “Monte Carlo methods for tempo
tracking and rhythm quantization,” J. Artif. Intell. Res., vol. 18, pp.
45–81, 2003.

[24] K. Martin, “Sound-Source Recognition,” Ph.D. dissertation, MIT, Cam-
bridge, MA, 1999.

[25] A. Klapuri, T. Virtanen, and J.-M. Holm, “Robust multipitch estima-
tion for the analysis and manipulation of polyphonic musical signals,”
in Proc. COST-G6, Conf. Digital Audio Effects, 2000.

[26] A. T. Cemgil, H. J. Kappen, and D. Barber, “Generative model based
polyphonic music transcription,” in Proc. IEEE WASPAA, New Paltz,
NY, Oct. 2003.

[27] N. H. Fletcher and T. Rossing, The Physics of Musical Instru-
ments. New York: Springer, 1998.

[28] X. Serra and J. O. Smith, “Spectral modeling synthesis: A sound anal-
ysis/synthesis system based on deterministic plus stochastic decompo-
sition,” Comput. Music J., vol. 14, no. 4, pp. 12–24, 1991.

[29] X. Rodet, “Musical sound signals analysis/synthesis: Sinusoidal +
residual and elementary waveform models,” Appl. Signal Process.,
1998.

[30] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis based on
a sinusoidal representation,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 34, no. 4, pp. 744–754, 1986.

[31] A. C. Harvey, Forecasting, Structural Time Series Models and the
Kalman Filter. Cambridge, U.K.: Cambridge Univ. Press, 1989.

[32] M. West and J. Harrison, Bayesian Forecasting and Dynamic Models,
2nd ed. New York: Springer-Verlag, 1997.

[33] V. Valimaki, J. Huopaniemi, Karjaleinen, and Z. Janosy, “Physical mod-
eling of plucked string instruments with application to real-time sound
synthesis,” J. Audio Eng. Soc., vol. 44, no. 5, pp. 331–353, 1996.

[34] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[35] K. P. Murphy, “Switching Kalman filters,” Dept. Comput. Sci., Univ.
California, Berkeley, 1998.

[36] , “Dynamic Bayesian networks: Representation, inference and
learning,” Ph.D. dissertation, Univ. California, Berkeley, 2002.

[37] Z. Ghahramani and M. Beal, “Propagation algorithms for variational
Bayesian learning,” Neural Inform. Process. Syst. 13, 2000.

[38] Z. Ghahramani and G. E. Hinton, “Parameter Estimation for Linear Dy-
namical Systems (crg-tr-96-2),” Dept. Computer Science, Univ. Toronto,
Toronto, ON, Canada, 1996.

[39] C. Raphael, “Automatic transcription of piano music,” in Proc. ISMIR,
2002.

[40] E. Terhardt, “Pitch, consonance and harmony,” J. Acoust. Soc. Amer.,
vol. 55, no. 5, pp. 1061–1069, 1974.



694 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 2, MARCH 2006

[41] Y. Qi, T. P. Minka, and R. W. Picard, “Bayesian Spectrum Estimation of
Unevenly Sampled Nonstationary Data,” MIT Media Lab., Cambridge,
MA, Tech. Rep. Vismod-TR-556, 2002.

[42] H. Attias, “Independent factor analysis,” Neural Comput., vol. 11, no. 4,
pp. 803–851, 1999.

[43] B. Olshausen and J. Millman, “Learning sparse codes with a mixture-of-
Gaussians prior,” in NIPS. Cambridge, MA: MIT Press, 2000, vol. 12,
pp. 841–847.

[44] C. Raphael and J. Stoddard, “Harmonic analysis with probabilistic
graphical models,” in Proc. ISMIR, 2003.

[45] J. O. Smith, “Physical modeling using digital waveguides,” Comput.
Music J., vol. 16, no. 4, pp. 74–87, 1992.

[46] A. Doucet, N. de Freitas, and N.J. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York: Springer-Verlag, 2001.

[47] T. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” Ph.D. dissertation, MIT, Cambridge, MA, 2001.

[48] Y. Bar-Shalom and X.-R Li, Estimation and Tracking: Principles, Tech-
niques and Software. Boston, MA: Artech House, 1993.

[49] P. Fearnhead, “Exact and efficient Bayesian inference for multiple
changepoint problems,” Dept. Math. Statist, Lancaster Univ., Lancaster,
U.K., 2003.

[50] O. Heskes and T. Zoeter, “Expectation propagation for approximate in-
ference in dynamic Bayesian networks,” in Proc. UAI, 2002.

A. Taylan Cemgil (S’95–M’05) studied Computer
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