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ABSTRACT

Speech enhancement and recognition in noisy, reverberant
conditions is a challenging open problem. We present a new
approach to this problem, which is developed in the frame-
work of probabilistic modeling. Our approach incorporates
information about the statistical structure of speech signals
using a speech model, which is pre-trained on a large dataset
of clean speech. The speech model is a component in a
larger model describing the observed sensor signals. That
model is parametrized by the coefficients of the reverbera-
tion filters and the spectra of the sensor noise. We develop an
EM algorithm that estimates those parameters from data and
constructs a Bayes optimal estimator of the original speech
signal.

1. INTRODUCTION

Speech enhancement in a realistic environment is a chal-
lenging problem, which remains unsolved after more than
three decades of research. A successful technique would
find many applications, particularly in the domains of speech
recognition, natural user interfaces, and communications.
The difficulty of the enhancement task depends strongly on
environmental conditions. When a speaker is close to a mi-
crophone and the noise level is low, reverberation effects
are fairly small and standard signal processing techniques
yield satisfactory performance. However, as the distance
from the microphone increases, the distortion of the speech
signal, resulting from large amounts of noise and significant
reverberation, becomes gradually more severe.

Much work has been done on speech enhancement using
traditional signal processing methods, such as spectral sub-
traction, noise cancellation, and array processing (see, e.g.,
[5]). Whereas these methods have had many well known
successes, they have so far fallen short of offering a satis-
factory, robust solution to the enhancement problem. One
shortcoming of these methods is that they typically exploit
just second order statistics, i.e., correlation functions or spec-
tra, of the sensor signals, ignoring higher order statistics. In
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ords, they implicitly make a Gaussian assumption on
signals that are highly non-Gaussian. A related is-

hat these methods typically disregard information on
tistical structure of speech signals. In addition, some
e methods suffer from the lack of a principled frame-
This is sometime manifested in ad-hoc solutions, e.g.,
l subtraction algorithms recover the speech spectrum
ven frame by essentially subtracting the noise spec-
rom the sensor signal spectrum, requiring a special
ent when the result is negative. Another example is
culty of combining algorithms that remove noise with

hms that handle reverberation into a single system in
matic manner.
re recently, a new type of speech enhancement al-
s have started to emerge [3,1,4]. These algorithms

from taking a probabilistic modeling approach to the
m. In that approach, one starts by constructing a model
an speech signals. This model, usually a mixture
or a hidden Markov model (HMM), is trained of-
a large dataset of clean speech. The speech model is

ned with a similar (usually much smaller) noise model
te a model for the observed sensor signals. The re-
model is a hidden variable model, where the original
signal and speech state are the hidden (unobserved)
es, and the sensor signals are the data (observed) vari-
As usual in hidden variable models, a suitable EM

hm estimates from data the noise parameters and the
l speech signal.
e probabilistic modeling approach has several advan-
Parameter and signal estimators benefit from the opti-
properties of maximum likelihood. These estimators
ived in a principled fashion and no ad-hoc procedures
ded. Information about the structure of speech sig-
n be incorporated using a speech model. And due

mixture form of that model, higher order statistics of
sor signals are taken into account automatically when
tructing the original speech signal. This approach has
pplied successfully to noise removal using a single
hone which is located near the speaker [3,1,4].
wever, these methods have not yet been extended to



the case where the speaker is far away from the microphone.
One reason this extension is difficult is that in such cases,
distortions originate not just from noise but also from re-
verberation effects. Reverberations typically operate on a
longer time scale compared to the time scale of the speech
model, creating long range temporal correlations in the data.
It has been unclear how these correlations could be described
in the probabilistic modeling framework. Furthermore, these
correlations were expected to cause intractability of the re-
sulting models, which would be likely to hamper such a
treatment.

This paper significantly extends the scope of the prob-
abilistic modeling approach to speech enhancement. We
develop this approach for the case where the speech signal
is distorted by both noise and reverberation. To overcome
intractabilities arising from reverberation-induced temporal
correlations, we develop an efficient approximation scheme
that reduces the computational complexity to essentially that
of the noise-only case. In addition, we extend the proba-
bilistic modeling approach beyond a single sensor, deriving
an enhancement algorithm that can take advantage of a mi-
crophone array. This is a EM algorithm, where the M-step
updates the parameters of the noise signals and reverberation
filters, and the E-step updates the sufficient statistics, which
include the speech signal estimator.

2. NOISY REVERBERANT SPEECH AND
SUBBAND FILTERING

We start with a mathematical description of the problem. Let
x[n] denote the source signal at time point n, and let yi[n]
denote the signal received at sensor i at the same time. As it
propagates toward the sensors, the source signal is distorted
by several factors, including the response of the propagation
medium and multipath propagation conditions. The result-
ing reverberation effects may be modeled quite accurately
by linear filters applied to the source signal. Background
noise and sensor noise, which are assumed to be additive,
lead to additional distortion. Hence we have

yi[n] =
∑
m

hi[m]x[n − m] + ui[n] , (1)

where hi[m] denotes the impulse response of the filter cor-
responding to sensor i, and ui[n] is the associated noise.

Rather than time domain signals like x[n] above, we
will be working throughout the paper with subband signals.
These signals are obtained by applying an N -point window
to the signal at equally spaced points, and computing the
FFT of the windowed signal. For the speech signal x[n], let
Xm[k] denote the mth subband signal, also termed frame,
defined by

Xm[k] =
∑

n

e−iωknw[n]x[mJ + n] (2)

where
n ∈ [
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w[n] is the window function, which vanishes outside
0, N − 1], and J > 0 is the spacing between the
g points of the windows. k = (0 : N − 1) runs over
bands, and m = (0 : M − 1) indexes the frames.

bband signals Y i
m[k] and U i

m[k] corresponding to the
and noise signals can also be defined.
will assume that the subband signals satisfy the same

n as the time domain signals (1),

Y i
m[k] =

∑
n

Hi
n[k]Xm−n[k] + U i

m[k] (3)

the complex quantities Hi
n[k] are related to the fil-

[m] by a linear transformation whose exact form is
d. Of course, the relation (3) is exact only in the limit

. For finite N it is approximate, but but the approx-
n turns out to be quite accurate for a suitable choice
window function.

3. PROBABILISTIC SIGNAL MODELS

w define the models used in this paper.
tation. For a complex variable Z, we define a Gaus-
stribution with mean µ and precision (defined as the
variance) ν by

) = N (Z | µ, ν) =
ν

π
exp(−ν | Z − µ |2) . (4)

as a joint distribution over ReZ and ImZ, p(Z)
tes to one, and satisfies E(Z) = µ, E(| Z |2) =|
1/ν. The operator E denotes averaging.
en building statistical models of subband signals, we

nore the real-valued subbands k = 0, N/2 and focus
complex ones. We define the complex (N/2−1)-dim
Xm containing all subbands of frame m,

Xm = (Xm[1], ..., Xm[N/2 − 1]) (5)

> N/2, Xm[k] = Xm[N − k]�). We also let X[k]
subband k of all frames, and let X denote all subbands
rames,

= {Xm[k], m = (0 : M − 1)} , (6)

= {Xm[k], k = (0 : N − 1), m = (0 : M − 1)} .

esponding notation is used for Y i and U i.
xture model for speech. We describe the speech
Xm by a C-component Gaussian mixture model. Sm

s the component label at frame m, which assumes the
= (1 : C) with probability πs. Component s has

ero and precision As. Hence

m | Sm = s) =
N/2−1∏

k=1

N (Xm[k] | 0, As[k]) ,

p(Sm = s) = πs . (7)



This Gaussian has a diagonal covariance matrix with 1/As[k]
on the diagonal, leading to the interpretation of the precisions
as the inverse spectrum of component s, since

E(| Xm[k] |2 | Sm = s) = 1/As[k] . (8)

For Xm we thus have the mixture distribution p(Xm) =∑
s p(Xm | Sm = s)p(Sm = s). Notice that, whereas

different subbands of a given component are independent,
subbands of Xm are correlated via the summation over com-
ponents.

Assuming i.i.d. frames, we have

p(X | S) =
∏
m

p(Xm | Sm) , p(S) =
∏
m

p(Sm) (9)

where S denotes the labels in all frames collectively, S =
{Sm, m = (0 : M − 1)}. This specifies our speech model,
parametrized by{As, πs}. In actual speech signals the frames
are not i.i.d.; speech recognition engines commonly use
HMMs to describe inter-frame correlations. It is straightfor-
ward to incorporate such models into our framework, but, as
this paper is introducing the framework, we prefer to stick
with the simplifying i.i.d. assumption.

Noise model. For the noise recorded at sensor i, we use a
colored zero-mean Gaussian model with spectrum 1/Bi[k],

p(U i
m) =

∏
k

N (U i
m[k] | 0, Bi[k]) . (10)

We assume the that noise signals at difference sensors are un-
correlated, but this assumption can be easily relaxed. (Notice
that noise cancellation algorithms actually rely on noise cor-
relation between sensors.) From the i.i.d. assumption we
get p(U i) =

∏
m p(U i

m).
Conditional sensor distribution. The noise model im-

plies the distribution of the sensor signals conditioned on the
original speech signal. Using (3), we substitute U i

m[k] =
Y i

m[k] − ∑
n Hi

n[k]Xm−n[k] in (10) and obtain

p(Y i
m | X) =

∏
k

N (Y i
m[k] |

∑
n

Hi
n[k]Xm−n[k], Bi[k]) , (11)

where X = {Xm[k]} as defined above. Note that the sensor
signal distribution at frame m depends on the speech signal
at the same frame but also at previous frames. The noise
frames being i.i.d. lead to

p(Y i | X) =
∏
m

p(Y i
m | X) . (12)

Complete data distribution. The complete data com-
prise the observed variables Y = {Y i} and the unobserved
ones X, S. Using the assumption of sensor independence,
we get the complete data distribution in our model,

p(Y, X, S) =
∏

i

p(Y i | X)p(X | S)p(S) , (13)
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Tr

speech
readin
details
quiet m

Here w
param
Y . It
and the

Un
in our
rithm.
is the c
X, S g
bution
obtain
rule. I
difficu
rations
is the n
ber of
includ
(i.e., r
act sum
which

In
system
the app
cedure
on rece
ing, ter
well as
version

Su
the E-s
of Xm

by ρsm

that Sm

ρsm[
νsm[

γs

where
Th

ing the
condit

X̂

factors are specified by (9) and (12).
aining. The speech model is trained offline on a large

database including 150 male and female speakers
g sentences from the Wall Street Journal (see [1] for
). The noise model is estimated either offline or from
oments in the noisy signal.

4. AN EM ALGORITHM

e develop an EM algorithm that estimates the filter
eters Hi

m[k] and the noise spectra Bi[k] from the data
also computes the required sufficient statistics (SS)
speech signal estimator X̂m[k].

fortunately, a straightforward implementation of EM
model leads to a computationally intractable algo-
To see this, recall that the central object of the E-step
onditional distribution over the unobserved variables
iven the observed ones Y , p(X, S | Y ). This distri-
, termed the posterior distribution, can in principle be
ed from the complete data distribution (13) via Bayes’
t is from the posterior that one derives the SS. The
lty comes from having to sum over the CM configu-
of component labels S = (S0, ..., SM−1), where C
umber of speech model components and M the num-

frames. Speech models that lead to good performance
e at least 100 components. Whereas for short filters
elative to the window length N ) M = 1, 2 and ex-

mation is possible, realistic scenarios have M ≥ 5,
require summation over at least 1010 configurations.
this paper, we present an EM algorithm that uses a
atic approximation to compute the SS. The effect of
roximation is to introduce an additional iterative pro-
nested within the E-step. Our approximation is based
nt techniques developed in the field of machine learn-
med variational techniques [6]. Derivation details, as
a proof of convergence, will be provided in a longer
of this paper.

fficient statistics. For each frame m and subband k,
tep computes (1) the conditional mean and precision
[k] given Sm = s and the observed data Y , denoted
[k] and νsm[k], and (2) the conditional probability
= s given Y , denoted γsm. Mathematically,

k] = E(Xm[k] | Sm = s, Y ) ,

k] = E(| Xm[k] |2| Sm = s, Y )− | ρsm[k] |2 ,

m = p(Sm = s | Y ) (14)

E denotes averaging w.r.t. p(Xm[k] | Sm = s, Y ).
ese quantities are computed in the E-step below. Us-
m, we compute the mean of the speech signal X̂m[k]
ioned on the data,

m[k] = E(Xm[k] | Y ) =
∑

s

γsmρsm[k] , (15)



which serves as our speech estimator. We also compute its
autocorrelation λm[k], and its cross correlation with the data
ηm[k],

λm[k] =
∑

n

E(Xn+m[k]Xn[k]� | Y ) ,

λm>0[k] =
∑

n

X̂n+m[k]X̂n[k]� ,

λm=0[k] =
∑
sn

γsn(| ρsn[k] |2 +
1

νsn
) ,

ηi
m[k] =

∑
n

E(Y i
n+m[k]Xn[k]� | Y )

=
∑

n

Y i
n+m[k]X̂n[k]� . (16)

These SS are used in the M-step.
M-step. Here we solve

∑
n

Hi
n[k]λm−n[k] = ηi

m[k] (17)

for Hi
n[k]. This can be done easily using subband FFT, as

follows. For each subband k, define the M -point FFT of
Hi

m[k] by

H̃i[k, l] =
M−1∑
m=0

e−iω̃lmHi
m[k] , (18)

where ω̃l = 2πl/M are the frequencies, l = (0 : M − 1).
The subband FFTs λ̃[k, l] and η̃i[k, l] are defined in the same
manner. We then get

H̃i[k, l] =
η̃i[k, l]
λ̃[k, l]

. (19)

The update rule for the noise spectra are omitted.
E-step. The means ρsm[k] (14) are obtained by solving
∑
in

Bi[k]Hi
n−m[k]�(Y i

n[k] −
∑
r �=m

Hi
n−r[k]X̂r)

= νsm[k]ρsm[k] , (20)

where the variances are given by

νsm[k] =
∑
in

Bi[k] | Hi
n−m[k] |2 +As[k] . (21)

Finally, the update rule for the probabilities γsm (14) is ex-
pressed in term of its logarithm,

log γsm =
∑

k

(
νsm[k] | ρsm[k] |2 + log

As[k]
νsm[k]

)

+ log πs . (22)

The E-step equations are solved iteratively, since the
ρsm[k] and the γsm are nonlinearly coupled.
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5. EXPERIMENTS

iminary experiments, we have tested the algorithm
sentences from the WSJ dataset, working at a 16kHz

ng rate. We used real room, 2000-tap filters, whose
e responses have been measured separately using a
hone array. We also used noise signals recorded in
ce containing a PC and A/C. For each sentence, two
hone signals were created by convolving it with two
nt filters and adding two noise signals at 10dB SNR.
a pre-trained noise model, the algorithm estimated
er parameters and the original speech signals from the
hone data. Averaged over sentences, the mean SNR

estimated signal was 13.9dB.

6. CONCLUSIONS AND EXTENSIONS

ve presented and demonstrated a new framework for
enhancement in noisy, reverberant situations, based

babilistic modeling. While the experiments reported
cus on improvement in SNR, experiments now in

ss test whether this translates into improvement in
ecognition rates, by feeding the enhanced signal to a
ition engine (see [1] for the noise-only case). We are
tly working on several extensions of this approach, in-
g (1) An online version of our algorithm that tracks the
eters and adapt the speech estimator in non-stationary
ns; (2) Handling multi-speaker cases (see, e.g., [2])
rporating multiple source models, which results in a
ource separation algorithm; (3) Wokring in the cep-

omain rather than in the frequency domain to form a
connection with recogntion engines.
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