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Several different parametric representations of speech derived from the linear prediction model are
examined for their effectiveness for automatic recognition of speakers from their voices. Twelve
predictor coefficients were determined approximately once every 50 msec from speech sampled at 10
kHz. The predictor coefficients and other speech parameters derived from them, such as the impulse
response function, the autocorrelation function, the area function, and the cepstrum, function were
used as input to an automatic speaker-recognition system. The speech data consisted of 60 utterances,
consisting of six repetitions of the same sentence spoken by 10 speakers. The identification decision
was based on the distance of the test sample vector from the reference vector for different speakers
in the population; the speaker corresponding to the reference vector with the smallest distance was
judged to be the unknown speaker. In verification, the speaker was verified if the distance between
the test sample vector and the reference vector for the claimed speaker was less than a fixed
threshold. Among all the parameters investigated, the cepstrum was found to be the most effective,
providing an identification accuracy of 70% for speech 50 msec in duration, which increased to more
than 98% for a duration of 0.5 sec. Using the same speech data, the verification accuracy was found
to be approximately 83% for a duration of 50 msec, increasing to 98% for a duration of 1 sec. In
a separate study to determine the feasibility of text-independent speaker identification, an
identification accuracy of 93% was achieved for speech 2 sec in duration even though the texts of

the test and reference samples were different.

Subject Classification: 70.40, 70.55, 70.60.

INTRODUCTION

Parametric representation of speech derived by linear
prediction of its waveform provides an accurate yet effi-
cient representation of the speech signal for speech anal-
ysis—synthesis systems.? In linear prediction, the
present speech sample is predicted as a linear combina-
tion of past speech samples; for a speech wave sampled
at 10 kHz, 12 predictor coefficients defining the weights
in the linear combination, together with additional param-
eters relating to the properties of the source, are suf-
ficient to regenerate synthetic speech with little or no
degradation in speech quality. The application of these
techniques, of course, need not be limited to speech
synthesis only. Speech analysis based on linear pre-
dictability of the speech waveform is carried out very
efficiently on modern digital computers. The predictor
coefficients thus offer a very convenient choice of param-
eters for representing speech efficiently in applications
such as speech and speaker recognition. In this paper,
some results on the effectiveness of the linear predic-
tion characteristics of speech for automatic speaker
identification and verification are presented.

Considerable research in the past few years has been
directed towards finding speech characteristics which

teristics—such as a particular formant frequency or its
bandwidth or some property of the glottal wave—would
be effective. The 12 predictor coefficients represent
the combined information about the formant frequencies,
their bandwidth, and the glottal waveform.? Finally,
being independent of the pitch and intensity information,
the predictor coefficients could be used to improve the
reliability of the existing methods of automatic speaker
recognition based on pitch and intensity information.

1. LINEAR PREDICTION CHARACTERISTICS OF THE
SPEECH WAVE

Consider the samples of the speech waveform band
limited to 5 kHz and sampled at a frequency of 10 kHz.
In the linear prediction model, samples n -1 to n - p of
the speech wave (p is an integer) are used to predict the
nth sample. The predicted value of the nth speech sam-
ple is given by

?
§n = Z sn-hak, (1)
k=1

where a,’s are the predictor coefficients and s, is the
nth speech sample. The value of p is determined by the

are effective for automatic speaker recognition.¥ Typi-
cal of the characteristics which have been investigated
are the spectrographic data,*7 the pitch, *! the intensi-
ty,'® and the formants of the speech signal. A summary
of the results from several of these studies appears in
Ref. 11. The linear prediction characteristics have
many advantages for automatic speaker recognition:
First of all, they are easily determined from the speech
signal. Second, it is not necessary to make an a priori
assumption as to which of the individual speech charac-
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total number-of real-and-complex poles of thevocal tract—

and the glottal wave within a fréquency range equal to
half the sampling frequency. A typical value of p is 12,
which is usually adequate for speech samples at 10 kHz.

Consider a speech segment having a duration of N sam-
ples. Under the assumption that neither the vocal tract
shape nor the glottal waveform changes significantly over
the analysis segment, the predictor coefficients are de-
termined by minimizing the mean-squared predictioner-
ror hetween s, and §, defined as
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<3=§Zﬂ:(sn-§n)z, @)

where the sum over » includes all the samples in the
analysis segment, The coefficients ¢, which minimize
the mean-squared prediction error are obtained as solu-
tions of the set of linear equations's®

2
D 0=y, §=1,2-+ <, B, (3)
=1
where
1
(pjk:Ean-j Spag- (4)
n

A computationally efficient method of solving Eq. 3 is
given in Ref. 2. Inthe linear prediction model, one rep-
resents the filtering action of the vocal tract, the radia-
tion, and the glottal flow by a diserete linear filter with
p poles. The transfer function H(z) of this filter in the
complex z domain is related to the predictor coefficients
by the equation

H(z)=1/E.—Zpl:akz"’], (5)

where z is the usual z-transform variable.!? The trans-
fer function H(z) is related to the samples #, of the im-
pulse response of the filter by the equation

HE) =3 . (6)

n=0

On substituting Eq. 6 into Eq. 5, one obtains the follow-
ing relationship between the predictor coefficients and
the samples of the impulse response:

»

hn =Z akhn-ln n> 01
k=1
=1, n=0,
=0, n<0, (7

Furthermore, it can be shown that the first p samples
hy, hy, « - -, B, of the impulse response are sufficient to
determine the p predictor coefficients uniquely. Thus,
the linear prediction characteristics of the speech wave
are also represented by the p numbers 7y, &y, - -.c &,.
For mathematical purposes, the two representations are
equivalent, It is interesting to enquire if they are also
equivalent in their effectiveness for automatic speaker
recognition. Later in this paper, we will compare the
effectiveness of not only these two sets of parameters
but also many other parameter sets which are related
in a one-to-one manner to the predictor coefficients,

Consider next the autocorrelation function of the im-
pulse response of the linear filter, Let 7, be the auto-
correlation function at the kth sampling instant. By
definition, 7, is given by

7 e =; Poltrerpi- (8)

The autocorrelation function samples 7, are related to
the predictor coefficients a, by the relationship?
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Tn =i: ¥ ineri®rs =1, 9)
k=1
and
7o =£ ar,+1. (10)

k=1

Furthermore, the relationship between the p autocorrela-
tion function samples 7y, 7,,- - -, 7, and the p predictor
coefficients a,, a,, - - +, g, is unique. A knowledge of
one is sufficient to determine the other, ®®

The transfer function H(z) in Eq. 5 hasexactly p poles.
A transfer function with p poles is always realizable as
the transfer funetion of a nonuniform aeoustic tube
formed by cascading p uniform cylindrieal sections of
equal length. The relationship between the cross-sec-
tional areas of the p cylindrical sections and the pre-
dictor coefficients is also unique,!* The p areas thus
provide an alternative representation of the linear pre-
diction characteristics of the speech wave.

Another important representafion is obtained by con-
sidering the power series expansion of In H(z), the log-
arithmic transfer function, in powers of z~!. If all the
poles of H(z) are inside the unit circle, In H(z) can be
expressed by

InH(z)=C)=Y, c,z™. (11)
nel
Since z =exp(jw¢), where w=frequency in radians and
T =sampling interval, ¢, is the amplitude, at the nth
sampling instant {=nT, of the inverse Fourier trans-
form of C(z) considered as a function of the frequency
variable w. A simple and unique relationship can be
shown to exist between the parameters ¢,’s and a,’s.™
To obtain this relationship, we substitute H(z) from Eq.
5 into Eq. 11 and take derivatives on both sides of Eq.
11 with respect to z™!; that is,

d _i -k ]_ d 3 -n
o ln[l/ {1 ) a2 } = dz_l; €2, (12)
which is simplified to
2 2 w
{z k,z}/{. 5y a.z-»}{; ne (13)
kal k=1 n*
and rewritten as
P » -
E kaz = (1 —Z a,,z")z ne,z™. (14)
&=l &=l n=l

If we now equate the constant term and the various pow-
ers of z! on the left and right sides of Eq. 14, we ob-
tain the desired relationship between ¢,’s and a,’s name-

ly,
=y,

Cn =z (L-2&/Mm)ac, p+a, L<n<p,
k=1

and



1306 B. S. Atal: Linear prediction fo; speaker identification

-1
€n =g (1 - 2/n)ayc, s, n>p. (15)

By defining a new variable g,=nc,, Eq. 15 can be writ-
ten in a somewhat simpler form as

n=1
gnznan +Z; 8 ners (16)
where ¢,=0, 2> p, and g,=a,. It is interesting to note
the similarity between Eqs. 7 and 16. Whereas &,’s,
being the samples of the impulse response of the linear
filter with the transfer function H(z), represent the out-
put of the filter in response to an input of unit impulse,
g,’s are the samples at the output of the filter in response
to input samples a,, 2a,, - - -, pa,. It is well known that
H(z) can be expanded into a partial fraction expansion,
each term of the expansion representing the contribu-
tion of a pole expressed by its residue at that pole. It
can be shown that C(z) too has a similar partial fraction
expansion with all residues set to unity, implying that
different poles have the same amplitude. The important
difference between the two parameter sets 7, and g, is
thus in the amplitudes with which different poles or res-
onances are represented.

Equation 15 allows us to compute the coefficients c,
from the p predictor coefficients and the predictor co-
efficients from the p coefficients ¢y, ¢, -+ -, ¢,. To
conform to the terminology used previously in the speech
literature, we shall call ¢,’s the samples of the cepstrum
function, ®® It may be pointed out that, traditionally, the
cepstrum funection is obtained by a double Fourier trans-
form operation on the impulse response samples k,. For
a transfer function with poles only, the cepstrum can be
obtained directly from the impulse response samples?,
by the equation

n=-1
c, =; (A -B/n)hyCpp+hy,, 1<n,

and

€= hh (17)

or from the predictor coefficients a, by Eq. 15.¢

The parameter sets discussed so far include the pre-
dictor coefficients, the impulse response, the autocor-
relation function, the area function, and the cepstram.
Besides these, a large number of additional parameters
can be generated by linear transformations of any one of
the above sets of parameters. For example, power
spectrum, being the Fourier transform of the autocor-
relation function, represents simply a linear transforma-
tion of the autocorrelation function. Similarly, the log-
arithm of the power spectrum also represents a linear
transformation of the cepstrum. It is not necessary to
include such parameters in our discussion, since, by
proper choice of a distance metric, the distance be-
tween any two points in a multidimensional space can be
made invariant with respect to any arbitrary linear trans-
formation. Thus, if the decision alogarithm is based on
the distance between a test and a reference pattern, it is
immaterial whether the sets of parameters are trans-
formed linearly or not. Hence, as far as the recogni-

J. Acoust. Soe. Am., Vol. 55, No. 6, June 1974

1306

tion accuracy is concerned, we can regard a set of pa-
rameters, which can be obtained from each other by
linear transformations, as completely equivalent.

1. SPEECH DATA COLLECTION

The speech data consisted of 60 utterances, consist-
ing of six repetitions of the same sentence, spoken by
10 speakers, All of the speakers were female and they
spoke the sentence “May we all learn a yellow lionroar.”
The recordings were made in an anechoic chamber on
two different days with an interval of 27 days; on each
day, the recordings were made in three separate ses-
sions. These recordings were identical to ones used by
the author in an earlier study on speaker recognition
based on pitch. 8°

The speech signal was sampled after low-pass filter-
ing!? at a rate of 10000 times/sec and quantized into 12-
bit binary numbers in an analog-to-digital converter for
further processing on a digital computer. In the anal-
ysis, each utterance was divided into 40 equally long
segments; the duration of each segment was made pro-
portional to the duration of the utterance to provide an
approximate alignment of the time scales of the differ-
ent utterances. Twelve predictor coefficients were de-
termined using the procedure outlined in Sec. I. The
sum over the index » in Eq. 4 included approximately
500 speech samples corresponding to an analysis inter-
val of 50 msec¢; the actual analysis interval varied with
the duration of the utterance. The silent portions and
pauses in an utterance were eliminated from the analy-
sis interval. These portions of the utterance were de-
termined by comparing the energy in contiguous speech
segments 10 msec in duration with a fixed threshold; a
segment having energy less than the threshold was clas-
sified as either a silent portion or a pause and was re-
moved from the analysis interval of Eq. 4.

The linear prediction analysis produced a set of 12
predictor coefficients for each of the 40 uniformly spaced
time frames in an utterance. The analysis was carried
out for all of the 60 utterances of the 10 speakers and
the resulting data were used to test its effectiveness for
automatic speaker recognition.

I1l. SPEAKER-RECOGNITION PROCEDURE

Speaker-recognition tests were carried out to deter-
mine the effectiveness of the various parameter sets
(discussed in Sec. I) for automatic speaker recognition,
The task in a speaker-recognition test could either be
that of identifying an unknown speaker in a population of
several speakers of known characteristics, or that of
verifying whether the person is what he claims to be, Of
the two, the speaker-identification task is more suited
for comparing the effectiveness of the different param-
eters. In the speaker-identification task, a single error
rate can provide a measure of the performance, while
in the speaker-verification task two kinds of errors,
namely, the probabilities of false verification and false
rejection, as functions of a threshold parameter, deter-
mine the performance. Furthermore, the accuracy with
which one can identify speakers correctly provides a
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more sensitive indication of the ability of a parameter
for diseriminating speakers. Consequently, most of the
results in this paper in evaluating the different param-
eters relate to speaker identification. The results re-
lating to speaker verification are provided only for the
parameter found most effective for speaker identifica-
tion,

The basic parameter data used in this study consisted
of 12 coefficients obtained at 40 uniformly spaced time
frames for each of the 60 utterances (six repetitions for
each of the 10 speakers). Each set of six repetitions of
an utterance for a speaker was partitioned into design
and test sets. The utterances in the design set were
used to form the rules for speaker recognition; the ut- .
terances in the test set were used to test the effective-
ness of the speaker-recognition procedure.

Let us first consider speaker recognition based on the
parameters in a single time frame. These parameters
can be represented as a vector in a 12-dimensional space.
Let x,,, be the 12-dimensional vector representing the
ath utterance of the jth speaker in the design set. A ref-
erence vector is obtained for each speaker by averaging
the vectors for that speaker. Let r, be the reference
vector for the jth speaker. Then,

r! = <xd.1)an (18)

where (), indicates averaging over the subscript &, Let
z be a vector in the test set which is to be identified or
verified. For determining how similar a given test vec-
tor z is to a given reference vector r,;, we introduce a
distance metric 4,, representing the distance between the
vector z and the reference veetor of the jth speaker and
define it as

d,=[@z-r1,) Wiz -r)]*, (19)

where W is the pooled intraspeaker covariance matrix
and () indicates the transpose of the vector inside the
brackets. The matrix Wis given by

W=y — 1) (o ;= 1))y, (20)
where the averaging is done over both subscripts « and
j. For speaker identification, the distance d, is com-
puted for each speaker in the population and the test vec-
tor is associated with the speaker corresponding to the
smallest distance. For speaker verification, the dis-
tance between the test vector and the reference vector

of the claimed speaker, say j, is compared with athresh-
old. I d; is found smaller than the threshold value, the
speaker is verified; otherwise, he is rejected.

The choice of the distance metric d, defined in Eq. 19
has several advantages: First, the distance d, is invar-
iant with respect to any arbitrary nonsingular linear
transformation of the vector space. To prove this re-
sult, let z and T, represent the test and reference vec-
tors in the transformed space. Thus,

z=Tz
and

r,=Tr, @1)

where T is a 12x12 nonsingular matrix. The distance
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FIG. 1. Two-dimensional plot showing the directions of max-
imum and minimum intraspeaker variability.

3, between the test and the reference vectors in the trans-
formed space is given by

d,=[@@ -1, W& -7 )]
=[@-r)t T*W T(z - r,)] 2. (22)

Since W™= T*"'T from Eq. 20, d,=d,. This property
of the distance metric of being invariant with respect to
arbitrary linear transformations of the vector space is
very important in allowing us to test a large number of
parameter sets, related to each other by linear trans-
formations, by testing only a single set in the speaker
recognition test. As an example, the well-known Fou-
rier transformisa linear transformation, and nothing is
to be gained by considering those parameters which are
Fourier transforms of an already existing set of param-
eters,

Second, an even more important property of the dis-
tance metric d, is explained by means of Fig. 1, where
a vector is represented by a point in a two-dimensional
space. Consider now the vectors originating from a
particular frame of a single speaker. It is obvious that,
in general, the different coordinate directions are not
equally good in producing a small variation within the
different patterns of the same speaker. A good distance
metric thus should weight the different coordinate direc-
tions in order of their importance in reducing the intra-
speaker variations. It can be shown easily that the dis-
tance metric considered here does indeed possess this
property.!® The often-used Euclidean distance metric,
on the other hand, does not have this property.

So far, this discussion was confined to distances for
a single time frame. Actually, a total of 40 distances
corresponding to 40 time frames are obtained in a sin-
gle utterance, and the recognition performance can be
improved by combining the distances from the individual
frames. Let d,® be the distance from the reference

vector of the jth speaker in the kth time frame. Let us
define an average distance D, as
D, =(ln[1 +d, ®],. (23)
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FIG. 2. Percent identification accuracy for different para-
metric representations of speech based on a 50-msec-long
speech segment.

The reason for choosing the log operation prior to aver-
aging is to avoid introduction of large errors in D, due
to a few large distances in some of the time frames.
Similarly, the addition of 1 before the log operation is
simply to avoid a disproportionate contribution to D; by
a zero distance in a single time frame. The “distance”
D; is used in the same manner as described earlier for
d, for each speaker-recognition task.

IV. RESULTS
A. Effectiveness of different parameters.

The identification accuracy for each of the 40 time
frames for the five sets of parameters discussed in Sec.
I is shown in Fig. 2. The number of parameters p in
each case equals 12, Five utterances for each speaker
were used to compute the reference vectors while the
remaining sixth one was used as a test veetor. Each of
the six repetitions was used in turn as the test set for
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each of the 10 speakers to provide a total of 60 judgments
for each time frame.

The identification accuracy averaged over the 40 time
frames was found to be 63.8% for the predictor coeffi-
cients, 60.6% for the impulse response, 59.7% for the
autocorrelation function, 57.0% for the area function,
and 70.3% for the cepstrum. The cepstrum provides
the highest identification score while the area function
provides the lowest. The 95% confidence interval for
the means is approximately +2.0%; thus, the identifica-
tion accuracy provided by the cepstrum is significantly
higher than the rest of the parameters. The identifica-
tion accuracy, of course, varies considerably from one
time frame to another—the average standard deviation
equals 6.0%. However, as shown in Fig. 2, this varia-
tion, in most cases, is within the 95% confidence inter-
val—the exceptions ocecur for frames 16—20 and 36—-40.
The lower identification accuracy for frames 16-20 is
probably due to the pause which occurred in some of the
utterances after the word “learn” and introduced con-
siderable variability in the time frame just before and
after the pause.

B. Identification accuracy as a function of duration of
the spoken material

The results presented so far have been based on a
single time frame with an average duration of 50 msec.
By combining two or more time frames in the average
distance metric defined in Eq. 23, the identification ac-
curacy can be computed as a funetion of the duration of
the spoken material. These results are shown in Fig. 3.
The solid curve is obtained when the durationisincreased
from zero onwards by combining time frames startingat
frame 1 at the beginning of the utterance. The dashed
curve is obtained by combining frames starting at frame

100

[+ 1]
o
R

-
71 95% CONFIDENCE INTERVAL

8 8
T T
| |

8
|

PERCENT IDENTIFICATION ACCURACY

0 1 1 | 1
0 0.2 0.4 0.6 08 10

DURATION OF SPEECH (SEC)

FIG. 3. Percent identification accuracy as a function of speech
duration. The solid curve is for speech starting at the begin-
ning of the utterance, while the dashed curve is for speech
starting at the middle of the utterance. -
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21 at the middle of the utterance. The 95% confidence
intervals at two places—one with maximum spread and
the other with minimum spread between the solid and
dashed curves—are also shown in Fig. 3, indicatingthat
the differences between the two curves are not signifi-
cant. The results show an identification accuracy of ap-
proximately 80% for a duration of 0.1 sec and an accura-
cy greater than 98% for durations of 0.5 sec and higher.

C. Comparison with results based on pitch contours

Speech characteristics such as pitch or the amplitude
envelope function are not included in the parameter set
used above. Thus, it is possible to compare the linear
prediction characteristics with other speech character-
istics for their effectiveness for speaker recognition,
For example, for the same speech data set as used here,
an identification accuracy of 97% for a duration of 2 sec
was obtained using parameters derived from the pitch
contours.®® On the other hand, an identification accu-
racy of 98% is achieved for the 12 cepstral coefficients
for a duration of only 0.5 sec, which is four times short-
er than needed for pitch contours. Since the cepstral
coefficients represent information about the spectral
envelope of the speech signal, these results suggest that
the spectral envelope information is more effective than
the pitch contour information for automatic speaker rec-
ognition. o

D. Comparison with human performance

It is interesting to compare the performance of an
automatic method with the performance of a human lis-
tener for speaker identification, In a study discussing
the effects of stimulus content and duration on talker
identification by human listeners, Bricker and Pruzan-
sky!® give average identification scores of 56% for vowel

100 T T T

PERCENT IDENTIFICATION ACCURACY

o 1 1 I
0 0.5 1.0 1.5 2.0

DURATION OF SPEECH (SEC)

FIG. 4. Percent identification accuracy as a function of speech
duration when the texts of the test and reference speech samples
are different. '
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FIG. 5. Percent identification accuracy as a function of speech
duration when the time average of the cepstral samples is
eliminated from the data. The solid curve is for speech start-
ing at the beginning of the utterance, while the dashed curve is
for speech starting at the middle of the utterance.

excerpts (mean duration=117 msec), 63% for CV ex-
cerpts (mean duration =117 msec), 81% for monosylla~
bles {mean duration =498 msec), 87% for disyllables
(mean duration =446 msec), and 98% for sentences (mean
duration=2.4 sec). If these identification scores are
compared with the results shown in Fig. 3 for different
durations, the automatic method is found to perform
much better than the average human listener. The re-
sult is even more intriguing if one considers the fact
that the human listeners could use the pitch, the inten-
sity, and the duration, as well as the spectral informa-
tion, while the automatic method was constrained to use
only the spectral envelope information contained in the
12 cepstral coefficients.

E. Text-independent speaker recognition

In automatic speaker-recognition methods, it is gen-
erally required that the texts of the test and the refer-
ence utterances be identical. It is now interesting to
enquire if such a restriction is really necessary for suc-
cessful speaker recognition. After all, we, as human
listeners, often recognize people from their voices,
even though the spoken text is different from one occa-
sion to another. This is not to say that the task in the
text-independent case is not harder than when the text
is the same, Indeed, text-independent speaker recogni-
tion is more difficult since one has now to cope with the
additional variability due to the differences in the texts
of the test and the reference utterances. However, this
additional source of intraspeaker variability is in prin-
ciple no different from others and the distance measure
d, defined in Eq. 19 is still a suitable distance measure
in this case.
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In order to use the existing speech recordings for the
text-independent case, each of the 60 utterances was
divided into 40 equal segments and the 40 segments were
recombined in a random order to form a new utterance,
the random order being different for each utterance.

The randomization procedure destroyed the synchroniza-
tion of the text present in the original set of utterances.
Twelve cepstral coefficients were obtained for each seg-
ment of the randomized utterance and were used to iden-
tify a speaker using the procedure outlined in Sec. III,
the identification procedure being identical to one used
for the text-dependent case, The resulting identification
accuracy, computed as a function of the duration of the
spoken material, is shown in Fig. 4. The identification
accuracy for a single segment 50 msec in duration is
17% and is increased to 72% and 93% for durations of

0.5 sec and 2.0 sec, respectively. For comparison,

the results for the text-dependent case were 72% for 50
msec and 98% for 0.5 sec. The identification accuracy
of 93% for the text-independent case, although much
lower than the text-dependent case, is surprisingly high
considering the fact that no pitch or intensity parameters
have been used in the identification procedure.

F. ldentification accuracy based on cepstral coefficients
with time averages removed

The linear prediction parameters discussed so far
suffer from an important limitation, namely, that the
parameter data are influenced by the frequency response
of the recording apparatus as well as the transmission
system. The cepstral coefficients, however, have the
additional advantage that one can derive from them a
set of parameters which are invariant to any fixed fre-
quency-response distortions introduced by the recording
apparatus or the transmission system. The new param-
eters are obtained simply by subtracting, from the cep-
stral coefficients, a set of values representing their
time averages over the duration of the entire utterance.

Let ¢, be a 12-dimensional vector representing the 12
cepstral coefficients for the nth time frame in an utter-
ance. The vector ¢, can be written as the sum of two
vectors, the first one representing the average value of
the vector over the 40 time frames and the second repre-
senting the variation of the vector about its average val-
ue. Thus, let

€, =C,+Cp, (24)
where

- 1

C, =4—0; C,- (25)

The results presented so far have been based on the
vector ¢,. Ii is now interesting to find out if the iden-
tification accuracy is lowered if the vector ¢, rather than
¢, is used for representing a speaker. As pointed out
earlier, an important advantage gained by removing the
time averages from the data is that all time-invariant
frequency distortions in the data are eliminated. Thus,
the frequency response of the microphone and the trans-
mission system has no influence on the data. The above
result follows directly from the property of the cepstrum;
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namely, it is the logarithm of the overall transfer func-
tion. Since the transfer function of the transmission sys-
tem introduces a frequency-dependent multiplicative fac-
tor in the overall transfer function, the net result in the
cepstrum is an additive frequency-dependent factor which
is now eliminated due to averaging along the time axis.
Furthermore, removal of time averages is likely to
make an automatic speaker identification or verification
system more reliable from the point of being fooled by
mimics. An impostor may find it much easier to mimic
those voice characteristics of a speaker which remain
fixed in time as compared to those which vary in time.

The identification accuracy as a function of the dura-
tion of the spoken material using the vectors ¢,, that is,
the cepstral coefficients with the time averages removed,
is shown in Fig. 5. The solid curve of Fig. 5 is ob-
tained when the duration is increased from zero onwards
by combining frames starting at frame 1 at the beginning
of the utterance. The dashed curve in the figure is ob-
tained by starting at frame 21 at the middle of the utter-
ance. There are differences between the two curves
but, mostly, these differences are not significant. The
results show an identification accuracy of 68% for a dura-
tion of 0.1 sec and an accuracy of greater than 98% for
duration of 0.6 sec and higher. On comparing these re-
sults with the ones presented in Fig. 3, where the tem-
poral averages were not removed from the data, one
finds that the identification accuracy is slightly lower
(for example, 68% as compared to 80% for a duration of
0.1 sec) but not significantly so. In fact, for durations
larger than about 0.3 sec, the differences are very
small. To some extent, this result is to be expected.
As the duration is increased, more phonemes are added,
causing a decrease in the error rate. This decrease is
going to be slower when time averages are not removed
owing to higher correlation between the frames corre-
sponding to different phonemes.

G. Speaker-verification results

For the speaker verification tests, one of the 10 speak-
ers was designated as the speaker to be verified and the
remaining nine were considered impostors. As before,
five of the utterances of a speaker were used to form
the reference vectors and the remaining sixth was used
as a test utterance. For verification, the distance d,
(see Eq. 19) between the test vector and the reference
vector of the claimed speaker, namely j, is computed
and averaged over time to form the average distance D,
If the distance D, is smaller than a preselected thresh-
old value, the speaker 1s verified; otherwise, he is re-
jected. Two kinds of errors are possible in a speaker-
verification task. The error of the first kind, namely,
that of false verification, occurs when an impostor is
verified as the claimed speaker. The error of a second
kind, namely, that of false rejection, occurs when an
honest speaker is rejected. The overall error rate de-
pends upon the a priori probabilities that a random cus-
tomer in the population is an honest person or an im-
postor. For purposes of the present discussion, these
a priovi probabilities are assumed to be equal. The
total error rate is then the average of the error rates
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FIG. 6. Percent verification accuracy as a function of speech
duration. The solid curve is for speech starting at the begin-
ning of the utterance, while the dashed curve is for speech
starting at the middle of the utterance.

for the two kinds of errors. The verification accuracy
is defined as one minus the average error rate expressed
as a percentage. The verification accuracy, of
course, depends upon the threshold parameter used in
comparing the distance D,. ‘A very small value of the
threshold parameter increases the errors of false ver-
ification while decreasing the errors of false rejection.
The reverse is true for very large values of the thresh-
old parameter. An optimum value for the threshold pa-
rameter is selected to be one which produces the highest
verification accuracy. A single threshold value is as-
sumed for all of the speakers in the population, although,
in principle, one,could select a different threshold for
each speaker.

The results of the speaker-verification tests are shown
in Fig. 6. The parameter set consists of 12 cepstral
coefficients. As before, the solid curve is obtained
when the duration of speech is increased from zero on-
wards by combining frames starting from frame 1 at the
beginning of the utterance, while the dashed curve is ob-
tained by starting at frame 21 at the middle of the utter-
ance. These results show a verification accuracy of ap-
proximately 90% for a duration of 0.2 sec, 95% for a
duration of 0.5 sec, and 98% for a duration of 1 sec.

The results of the speaker-verification tests after the
time averages have been removed from the data are
shown in Fig. 7. For durations of 0.2 seec and greater,
there are no significant differences between the results
of Figs. 6 and 7. Thus, removal of time averages does
not adversely affect the performance of the speaker ver-
ification procedure,

V. CONCLUSIONS

The effectiveness of several different parametric rep-
resentations of speech derived from the linear predictor
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coefficients was determined for automatic recognition of
speakers from their voices. The different parameter
sets investigated were, in addition to the predictor co-
efficients, the impulse response function corresponding
to the transfer function based on the predictor coeffi-
cients, the autocorrelation function of the impulse re-
sponse, the area function of an acoustic tube with an
identical transfer funbtion, and the cepstrum represent-
ing the logarithmie transfer function. The various pa-
rameters differed somewhat in the realized accuracy of
identification of speakers, but not by a wide margin; the
cepstrum produced the highest average identification ac-
curacy of 70.3% for 50 msec of speech, while the area
function produced the lowest value of 57.0% under the
same conditions. The identification accuracy increased
with the duration of the spoken material, yielding a value
of 98% for a duration of 0.5 sec for the cepstrum. Fur-
thermore, the identification accuracy was not affected
significantly by removal of the time averages from the
cepstrum samples. This result can be used to a great
advantage for eliminating the influence of any frequency-
response distortions introduced by the recording or the
transmission system from the cepstrum data. A non-
Euclidean distance metric was used to determine the
distance between a test vector and a reference vector.
This particular distance metric has the important prop-
erty of weighting down the components in those directions
in the original eoordinate space along which the intra-
speaker variance is large. The distance metric was
also found to be very effective for text-independent
speaker recognition. Speaker identification with an ac-
curacy of 93% was achieved for a 2-sec-long speech sam-~
ple even though the texts of the test and reference speech
samples were different, Tests were also conducted to
determine the efficiency of the cepstrum parameters for
automatic speaker verification. A verifieation accuracy

100 T T T T =

PERCENT VERIFICATION ACCURACY

0 1 1 1
o 0.2 0.4 0.6

DURATION OF SPEECH (SEC)

0.8 1.0

FIG. 7. Percent verification accuracy as a function of speech
duration when the time average of the cepstral samples is sub-
stracted out from the data. The solid and the dashed curves
refer to the same conditions as in Fig. 5.
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of 90% was achieved for speech with a duration of 0.2
sec and of 98% for a duration of 1 sec.

The results of this paper show that the predictor eo-
efficients, or an equivalent set of parameters derived
from them, provide a very effective representation of
speech for automatic speaker recognition. The linear
prediction characteristics provide a representation of
the spectral envelope of the speech signal. The recog-
nition aceuraey achieved was found to be significantly
higher than achieved by pitch or intensity function of the
speech signal. Of course, in any practical implementa-
tion, all of these speech characteristics could be used
to provide reliable speaker recognition by machines.
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