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ABSTRACT

In this paper we address the problem of using two or more
microphones to enhance speech corrupted by nonstationary
noise, such as that of a competing speaker (cocktail party
effect) at very low SNR, by means of linear filtering of two
microphone signals. This work is a variant to the probabilistic
Independent Component Analysis (ICA) method but using a
more accurate probability distribution of the speech signal
based on a mixture Autoregressive model. Comparison with
other algorithms on published real recordings shows more
separation than with previously existing ICA algorithms.

1. Introduction

The problem of separating the desired speech from interfering
sources, the Cocktail Party Effect [5], has been one of the holy
grails in signal processing. In this paper we discuss a technique
to extract the speech signal using two microphones. A goal of
this work is to improve the robustness of speech recognition
systems to reverberation and interfering noises, a major cause
for degradation.

Blind Source Separation (BSS) is a set of techniques that
assume no information about the mixing process or the sources,
hence is termed blind. Independent Component Analysis (ICA)
is a set of techniques developed in the last few years [8][11] to
solve the BSS problem that estimate a set of linear filters to
separate the mixed signals under the assumption that the
original sources are statistically independent. Microphone
arrays are another set of techniques that limits the degrees of
freedom in the filters to mostly delay and sum.

In this paper we develop a new objective function that is not
blind, because it uses a more accurate probabilistic model of
speech. While many of the techniques described in the
literature have been proven to work on simulated data or
recorded in a sound-proof room, the proposed technique has
shown good separation on real recordings with office noise,
background music, interfering speakers and reverberation. In
fact, on a set of widely available two-source two-microphone
recordings in an office environment [9], this algorithm
outperformed several others published in the literature
according to informal listening tests.

In Section 2 we describe ICA for instantaneous mixing, and in
Section 3 an ICA convolutional mixing model, more realistic
than the instantaneous mixing, for the case of using only two
microphones. In Section 4 we then present a general MAP
estimate using an accurate model, a speech recognizer, and in
Section 5 an approximation using Vector Quantization.

Implementation details are included in Section 6 with
experimental results in Section 7.

2. Instantaneous Mixing ICA

We outline Independent Component Analysis [11] for
instantaneous mixing in this section. Let’s assume that the R
microphone signals [ ]iy n , ( )1 2[ ] [ ], [ ], , [ ]Rn y n y n y n=y ! , are

obtained by a linear combination of the R unobserved source
signals [ ]ix n , denoted by ( )1 2[ ] [ ], [ ], , [ ]Rn x n x n x n=x ! :

[ ] [ ]n n=y Vx (1)

for all n with V being the RxR mixing matrix. This mixing is
termed instantaneous since the sensor signals at time n depend
on the sources at the same, but no earlier, time point. Were the
mixing matrix being given, its inverse could have been applied
to the sensor signals to recover the sources by 1[ ] [ ]n n−=x V y .
In the absence of any information about the mixing, the blind
separation problem consists of estimating a separating matrix

1−=W V from the observed microphone signals alone. The
source signals can then be recovered by

[ ] [ ]n n=x Wy (2)

We’ll use here the probabilistic formulation of ICA, though
alternate frameworks for ICA have been derived too [6]. Let

( [ ])p nx x be the probability density function (pdf) of the source

signals, so that the pdf of microphone signals y[n] is given by

( [ ]) | | ( [ ])p n p n=y xy W Wy (3)

and if we furthermore assume the sources x[n] are independent
from themselves in time, [ ] 0n i i+ ≠x , then the joint

probability is given by
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It can be shown [11] that the gradient of Ψ is given by
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where ( )φ x is given by
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from which a gradient descent solution, the so-called infomax
rule [4], can be obtained for W given ( )px x .



It can be shown [7] that an exact solution can be found up to a
scaling factor and source permutation. If a Gaussian density is
assumed for ( )px x , ( )φ x is linear and the solution merely

decorrelates the signals and doesn’t guarantee separation: it
could be a rotation of the original signals. Empirically, it has
been found that using a non-linearity for ( )φ x in Eq. (5), such
as a sigmoid function [4], provides better separation. The use
of other density functions for ( )px x , such as a mixture of

Gaussians [3], also result in a nonlinear ( )φ x and has also
shown better separation.

3. Convolutional Mixing ICA

The case of instantaneous mixing is not realistic, as we need to
consider the transfer functions between the sources and the
microphones created by the room acoustics. While the problem
can be formulated using R sources as shown in the previous
section, we will limit ourselves from now on to the case of two
sources and two microphones. The results can easily be
extended to R sources and microphones.

Let 1[ ]x n and 2[ ]x n be two point sources, which are captured

by two microphones whose signals, 1[ ]y n and 2[ ]y n

respectively. In the model of Figure 1, the input signals are
filtered with filters [ ]ijg n , and then mixed to generate the

microphone signals. These filters could be estimated directly
through ICA [14].

Figure 1. Model of source mixing and reconstruction.

It can be shown that the reconstruction filters [ ]ijh n in Figure 1

will completely recover the original signals [ ]ix n if and only if

their z-transforms are the inverse of the z-transforms of the
mixing filters [ ]ijg n :
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It’s reasonable to assume [ ]ijg n to be FIR filters, whose length

will generally depend on the reverberation time, which in turn
depends on the room size, microphone position, wall
absorbance, etc. In general this means that the reconstruction
filters [ ]ijh n have an infinite impulse response. In practice, it’s

convenient to assume such filters to be FIR of length q, which
means that the original signals 1[ ]x n and 2[ ]x n , will not be

recovered exactly. The problem now is to estimate the
reconstruction filters [ ]ijh n directly from the microphone

signals 1[ ]y n and 2[ ]y n so that the estimated signals ˆ [ ]ix n are

as close as possible to the original signals.

Reverberation can be accounted for with this model as well as
arbitrary transfer functions. The assumption that the model
makes is that there are no nonlinearities and there are only two
point sources (no extra noise for example). The assumption of
no nonlinearities is deemed quite reasonable, but the
assumption that there are only two sources may not be, and the
fact that those two sources are point sources may also not be
accurate. If the matrix in Eq. (7) is not invertible, separability is
impossible. This can happen if both microphones pick up the
same signal, which could happen if either the two microphones
are too close to each other or the two sources are too close to
each other, though in our experiments this did not happen.

The instantaneous mixing ICA algorithm of Section 2 cannot
directly be used for convolutive mixing. However, if we
operate in the frequency domain, we can apply it to individual
frequency components independently [2][10][13][15]. Scaling
and permutation still occur on each frequency, which is now
more serious because the reconstructed signals could have
frequency components belonging to different signals. This
frequency based ICA algorithm can separate synthetically
mixed signals reasonably well, but it does not do nearly as well
on real recordings.

4. MAP Filters Using a Speech Recognizer

The probability distributions in [2][10][13][15] are not very
accurate for speech signals because they do not model
correlation across time directly. We propose in this section a
more accurate probabilistic model of speech signals to guide us
in the estimation of the reconstruction filters.

In the scenario we are describing we are only interested in
obtaining the target speech signal, as the other source is
considered interference noise. Without lack of generality, we
will concentrate on an estimate of the desired signal ˆ[ ]x n :
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Now let’s introduce some vector notation that will help
algorithm description. Let’s define vectors 1h and 2h as
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and the M sample microphone signals for i=1,2 as

{ }[0], [1], , [ 1]i i i iy y y M= −y ! (10)

We would like to find the MAP estimate for the reconstructed
signal { }ˆ ˆ ˆ ˆ[0], [1], , [ 1]x x x M= −x ! by summing over all

possible word strings W and all possible filters 1h and 2h :
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where we and used the standard Viterbi approximation,
assuming the sum is dominated by the most likely word string
W and most likely filters. If we further assume there is no
additive noise, as in Figure 1, then 1 2 1 2ˆ( , | , , )p y y x h h is a delta
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function. Furthermore, and in the absence of prior information
for the filters, the approximate MAP filter estimates are

{ }
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1 2
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p W=
h h

h h x (12)

To use a standard HMM-based speech recognition system, we
typically decompose the input signal x̂ into T frames ˆ tx of
length N samples each:

ˆ ˆ[ ] [ ]tx n x tN n= + (13)

so that the inner term in Eq. (12) can be expressed as
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where [ ]t kγ is the a posteriori probability of frame t belonging

to Gaussian k, one of K Gaussians in the HMM. Large
vocabulary systems can often use on the order of 100,000
Gaussians.

The term ˆ( | )tp k x in Eq. (14), as used in most HMM systems,
includes cepstral vectors and results in a nonlinear equation. In
the next section we present an approximation that results in a
mathematically tractable solution.

5. Using a VQ Codebook of LPC Vectors

The approximation used here consists in using an
autoregressive (AR) model instead of cepstral model. Let’s
define [ ]k

te n as the linear prediction (LPC) error of class k for

signal ˆ [ ]tx n as
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where 0,1,2, ,i p= ! and k
ia represents the LPC coefficients

of that class k, with 0 1ka = . Furthermore, let’s define k
tE as the

average energy of that prediction error for that frame t:
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The probability we propose here for each class is an
exponential density function of the energy of the linear
prediction error:
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In continuous density HMM systems Viterbi search is done, so
that most [ ]t kγ in Eq. (14) are zero and the rest would

correspond to the mixture weights of the current state. To speed
up computation and avoid the search process altogether, we can
approximate the summation in Eq. (14) with the maximum:

1

0

ˆ( | ) [ ]
ˆ[ ] ( | ) arg max

ˆ( )

ˆarg max ( | )

tK
t

t t
kk

t

k

p k p k
k p k

p

p k

γ
−

=

≈

=

∑ x
x

x

x
(18)

where we have assumed all classes are equally likely:

[ ] 1/ 1,2, ,p k K k K= = ! (19)

Inserting Eq. (18) into (14) and (12), the reconstruction filters
can be obtained as
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where we have replaced maximization of a negative quantity by
its minimization and ignored the constant terms. Normalization
by T is done for ease of comparisons over different frame sizes.

The optimal filters in Eq. (20) minimize the accumulated
prediction error with the closest codeword per frame.

6. Implementation Details

In this section we derive the formulae to solve Eq. (20). The
autocorrelation of ˆ [ ]tx n can be obtained after doing some
algebraic manipulation on Eq. (8):
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where we have defined the cross-correlation functions as
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Note that the autocorrelation in Eq. (21) has the following
symmetry properties

[ , ] [ , ]t t
ij jiR u v R v u= (23)

Inserting (15) into (16) and using (21) we can express k
tE as
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Thus inserting Eq. (24) into (20) yields our reconstructions
filters. To achieve such minimization we need an iterative
algorithm (EM algorithm) that iterates between finding the best

codebook indices t̂k and the best 1 2
ˆ ˆ( [ ], [ ])h n h n :

1. Initialization. Start with initial 1[ ]h n and 2[ ]h n

2. E-Step. For 0,1, , 1t T= −! , find the best codeword.

ˆ arg min k
t t

k

k E= (25)

3. M-step. Find 1[ ]h n and 2[ ]h n that minimize the

overall error energy
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4. Convergence. If converged stop, otherwise go to 2.



Since Eq. (24) given k
tE is quadratic in 1[ ]h n and 2[ ]h n , the

optimal filters can be obtained by taking the derivative and
equating to 0. If all parameters are free, the trivial solution is

1 2[ ] [ ] 0h n h n n= = ∀ , because we did not use 2σ in Eq. (17).

To avoid that, we set 1[0] 1h = and solved for the remaining

coefficients. It results in the following set of 2q-1 linear
equations:
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Eq. (27) and (28) can be solved using any linear algebra
package. Notice that the time index does not start at 0, but
rather at 0t , because we do not have samples of 1[ ]y n and

2[ ]y n available for 0n < .

7. Experimental Results

The codebook of LPC vectors was derived from 35000
utterances of the Wall Street Journal corpus [12] recorded with
a close-talking microphone, sampled at 16kHz, for 150 male
and female speakers of North American English. LPC analysis
was performed using the autocorrelation method every 10 ms.
The LPC coefficients are transformed to Line Spectral
Frequencies (LSF) from which a codebook is computed using
the Lloyd algorithm. The size of the dictionary used was 256
entries, though our experience has been that reasonable results
may be obtained for codebooks of as little as16 entries.

The algorithm was evaluated with real recordings, not digitally
mixed, made by Te-Won Lee [9]. Two sets of recordings with
two far field microphones in a normal office room at a
sampling rate 16kHz were used:

• Speech in Music. A speaker has been recorded with two
far field microphones in a normal office room with loud
music in the background. The distance between the
speaker, cassette player and the microphones is about
60cm in a square ordering.

• Cocktail Party Effect. Two Speakers have been recorded
speaking simultaneously. Speaker 1 says the digits from
one to ten in English and speaker 2 counts at the same
time the digits in Spanish. The distance between the
speakers and the microphones is about 60cm in a square
ordering.

For these recordings, it has been observed that starting with
initial estimates 1[ ] [ ]h n nδ= and 2[ ] 0h n = , it takes 2 or 3

iterations to reach convergence. The reconstructed waveforms
[1] have been compared with the reconstructed waveforms
using other four ICA variants [2][10][13][15] through informal
listening tests done with 5 subjects. All listeners agreed the
proposed algorithm sounded better than the separated signals
published by other researchers. Listeners noted that the

proposed algorithm had less interference, less reverberation and
less of the whitening effect of other techniques that cannot
distinguish between frequency response of the filter or sources.

8. Conclusions and Future Work

We have introduced an algorithm to separate speech from
interfering sources using two microphones and linear filtering.
The standard model used in ICA is extended to use a mixture
autoregressive model for speech. Results on real recordings
show more separation than with previously existing ICA
algorithms.

Future work includes modifying the model to account for
additive noise or inaccuracies in the modeling due to the use of
FIR filter instead of IIR, using prior knowledge about the filters
and using a mixture Gaussian model instead of a VQ model.
We’ll also explore adaptive filtering implementations instead of
block processing for a causal real-time implementation, and to
relax the assumption that the sources must be spatially
stationary. We’ll explore the use of a speech recognition system
as outlined in Section 4.
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