Proc. Digital del Continguts Musicals

Session 3: Music Analysis Applications

- 1 Transcription
- 2 Summarization
- Music Information Retrieval
- 4 Similarity Browsing

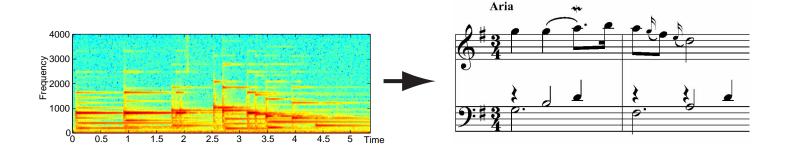
Dan Ellis <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/muscontent/

Laboratory for Recognition and Organization of Speech and Audio Columbia University, New York
Spring 2003

1

Transcription

Basic idea: Recover the score



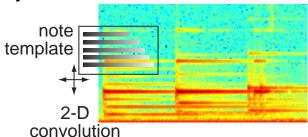
- Is it possible? Why is it hard?
 - music students do it ... but they are highly trained; know the rules
- Motivations
 - for study: what was played?
 - highly compressed representation (e.g. MIDI)
 - the ultimate restoration system...

Transcription framework

Recover discrete events to explain signal

Note events
$$\longrightarrow$$
 ? Observations $\{t_k, p_k, i_k\}$ synthesis $X[k,n]$

- analysis-by-synthesis?
- Exhaustive search?
 - would be possible given exact note waveforms
 - .. or just a 2-dimensional 'note' template?



but superposition is not linear in |STFT| space

- Inference depends on all detected notes
 - is this evidence 'available' or 'used'?
 - full solution is exponentially complex

Problems for transcription

- Music is practically worst case!
 - note events are often synchronized
 - → defeats common onset
 - notes have harmonic relations (2:3 etc.)
 - → collision/interference between harmonics
 - variety of instruments, techniques, ...
- Listeners are very sensitive to certain errors
 - .. and impervious to others
- Apply further constraints
 - like our 'music student'
 - maybe even the whole score (Scheirer)!

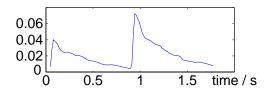
Spectrogram Modeling

Sinusoid model

- as with synthesis, but signal is more complex

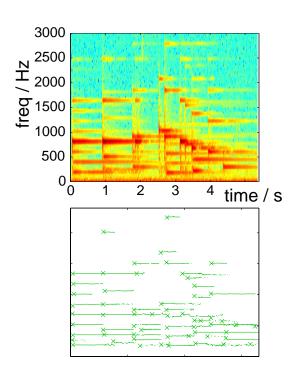
Break tracks

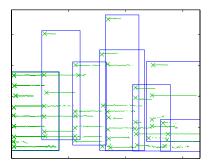
- need to detect new 'onset' at single frequencies



Group by onset & common harmonicity

- find sets of tracks that start around the same time
- + stable harmonic pattern
- Pass on to constraintbased filtering...



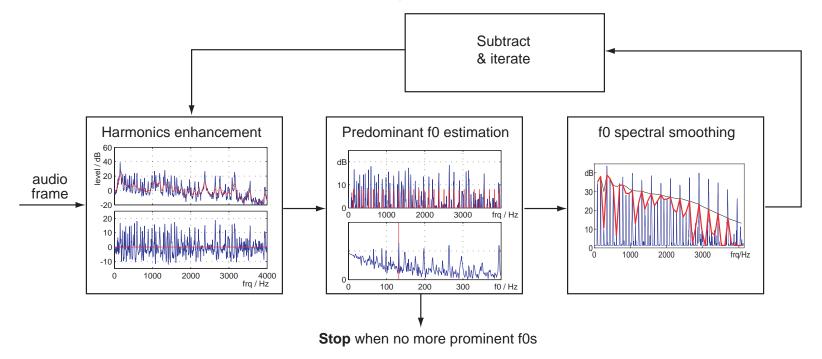


Searching for multiple pitches

(Klapuri 2001)

At each frame:

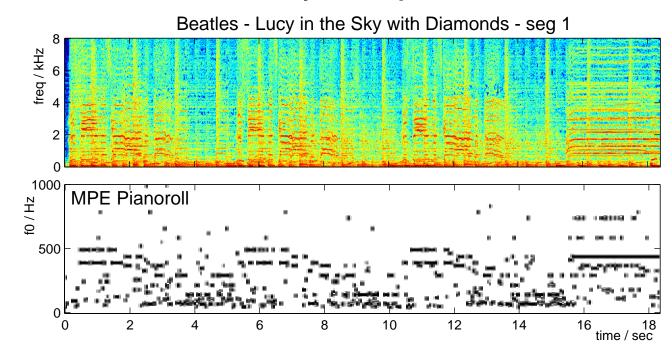
- estimate dominant f_0 by checking for harmonics
- cancel it from spectrum
- repeat until no f_0 is prominent



Multi-Pitch Extraction Results

(Rob Turetsky)

After continuity cleanup:



- Captures main notes, plus a lot else
 - hand-tuned termination thresholds?
- (Evaluation?)

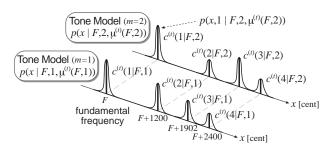
Probabilistic Pitch Estimates

(Goto 2001)

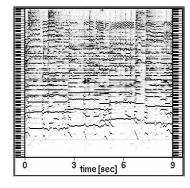
Generative probabilistic model of spectrum as weighted combination of tone models at different fundamental frequencies:

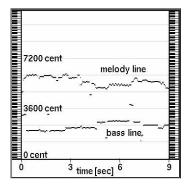
$$p(x(f)) = \int \left(\sum_{m} w(F, m) p(x(f)|F, m)\right) dF$$

'Knowledge' in terms of tone models + prior distributions for f_0 :



EM (RT) results:





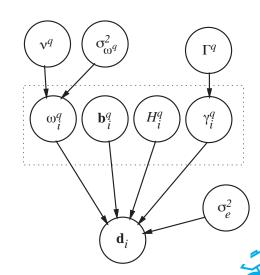
Generative Model Fitting

(Walmsley et al. 1999)

 Generative model of harmonic complexes in the time domain:

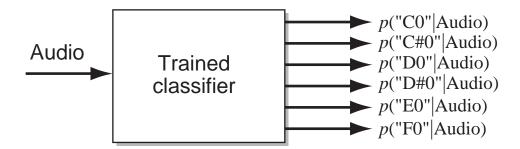
samples
$$\mathbf{d}_i = \sum_{\substack{q = 1 \\ \text{voices}}}^{\mathbf{g}} \gamma_i^q \mathbf{G}_i^q \mathbf{b}_i^q + \mathbf{e}_i$$
 noise harmonic bases

- Too many parameters to solve by EM!
 → Use Markov chain Monte Carlo (MCMC) to find good solution
- Results?



Transcription as Pattern Recognition

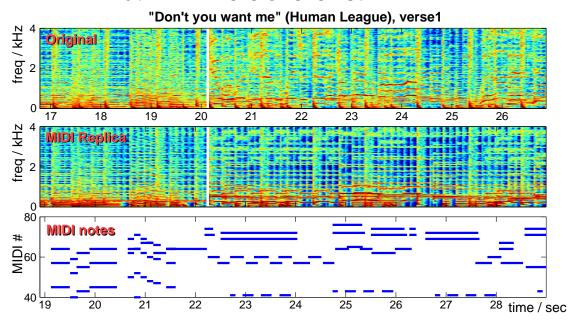
- Existing methods use prior knowledge about the structure of pitched notes
 - i.e. we *know* they have regular harmonics
- What if we didn't know that, but just had examples and features?
 - the classic pattern recognition problem
- Could use music signal as evidence for pitch class in a black-box classifier:



- nb: more than one class at once!
- But where can we get labeled training data?

Ground Truth Data

- Pattern classifiers need training data
 - i.e. need {signal, note-label} sets
 - e.g. MIDI transcripts of real music...
 - But: MIDI 'versions' exist:

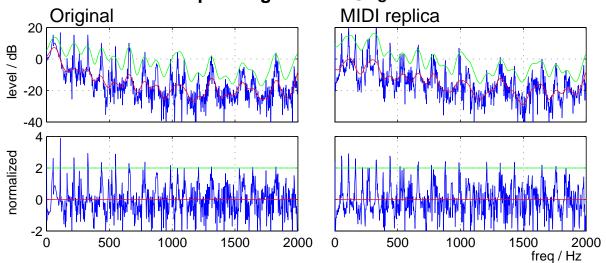


- Idea: force-align MIDI and original
 - can estimate time-warp relationships
 - recover accurate note events in real music!

Features for MIDI alignments

- Features that will match between MIDI replicas and original audio...
- Pitch is key attribute to match
 - narrowband spectral features (but: timing...)
 - emphasize 100 Hz 2 kHz
- Local spectral variation, not absolute levels
 - remove local average & normalize local range

DYWMB: Corresponding Frames @ $t_s = 20.3$

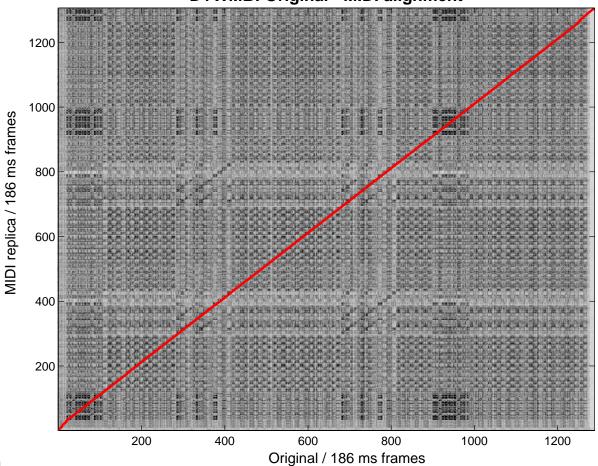


2003-03-21 - 12

Alignment example

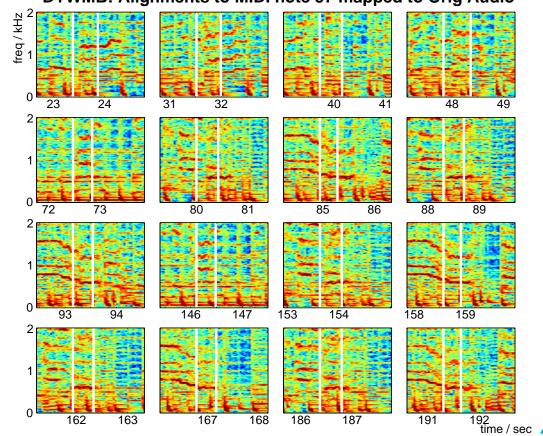
Inner-product distance on normalized spectral slices (8192 pt @ 22050 Hz):

DYWMB: Original - MIDI alignment



Extracted training data

- Wanted labeled examples of notes (in every context) to train pattern recognizer
 - still perfecting alignment, but an example:



Outline

- 1 Transcription
- 2 Summarization
 - Segmentation
 - Identifying repetition
 - Evaluation
- **3** Music Information Retrieval
- 4 Similarity Browsing

Summarization

What does it mean to 'summarize'?

- compact representation of larger entity
- maximize 'information content'
- sufficient to recognize known item

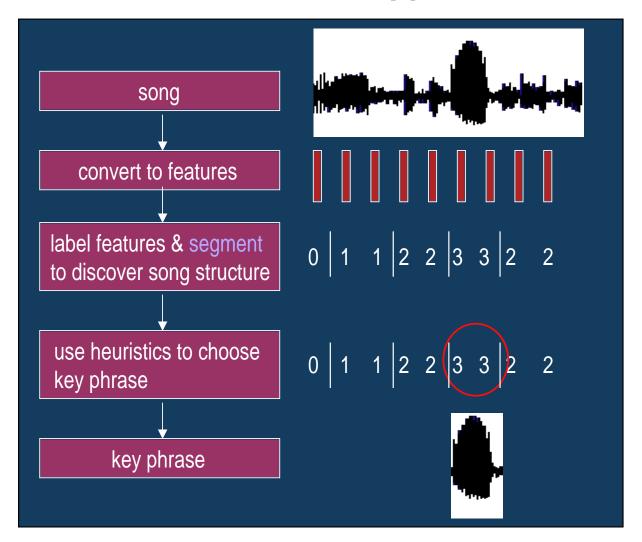
• So summarizing music?

- short version e.g. <10% duration (< 20s for pop)
- sufficient to identify style, artist
- e.g. chorus or 'hook'?

Why?

- browsing existing collection
- discovery among unknown works
- commerce...

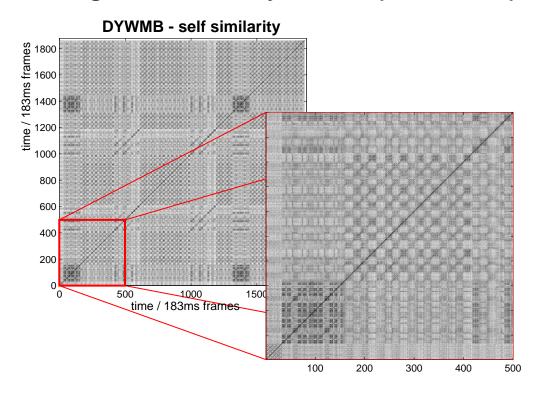
Summarization Approach



- (with thanks to Beth Logan)

Segmentation

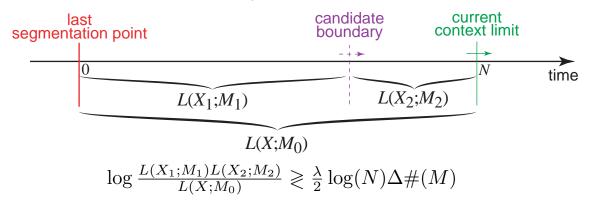
- Find contiguous regions that are internally similar and different from neighbors
- E.g. "self-similarity" matrix (Foote 1997)



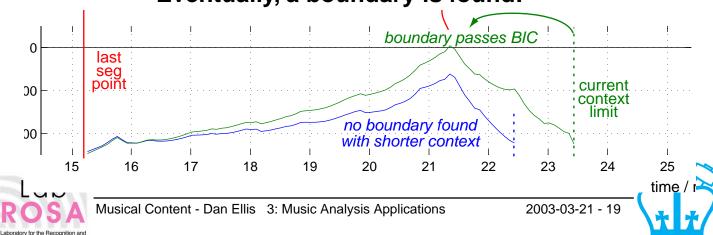
2D convolution of checkerboard down diagonal
 compare fixed windows at every point

BIC segmentation

- Want to use evidence from whole segment, not just local window
- Do 'significance test' on every possible division of every possible context



Eventually, a boundary is found:



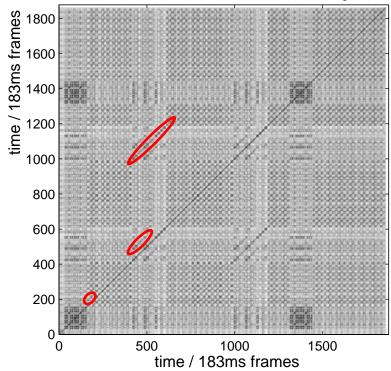
HMM segmentation

- Recall, HMM Viterbi path is joint classification and segmentation
 - e.g. for singing/accompaniment segmentation
- But: HMM states need to be defined already
 - define a 'generic set'? (MPEG7)
 - learn them from the piece to be segmented? (Chu & Logan 2000, Peeters et. al 2002)
- Result is 'anonymous' state sequence characteristic of particular piece

Finding Repeats

- Music frequently repeats key phrases
- Repeats give off-diagonal ridges in Similarity matrix (Bartsch '01)

DYWMB - self similarity

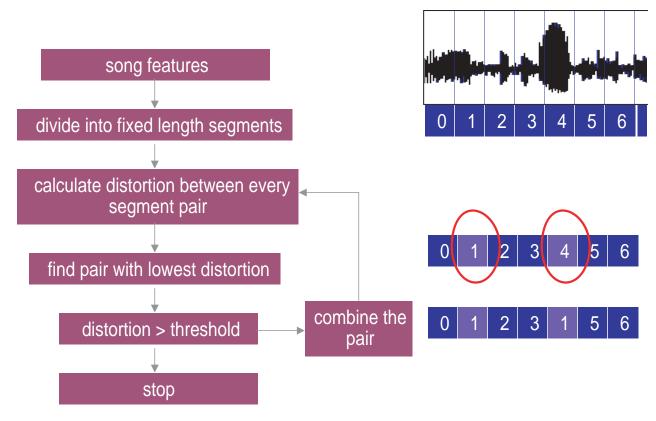


• Or: clustering at phrase-level ...

Clustering-based summarization

(Logan & Chu 2000)

Find segments in song by greedy clustering:



- Biggest cluster chosen as "key phrase"
 - large contiguous block taken as example

Evaluating Summaries

- Hard to evaluate: What is the 'right answer'?
 - difficult to construct or judge a summary until you know the song...
- Bartsch & Wakefield:
 93 songs, 'chorus' hand-marked,
 70% frame-level precision-recall
 - aiming to find chorus/refrain
- Chu & Logan:
 18 Beatles #1 hits rated by 10 subjects as Good/Average/Poor
 - "significantly better than random"
- Without a good metric, how to make choices to improve the algorithm?

Outline

- 1 Transcription
- 2 Summarization
- **3** Music Information Retrieval
 - What it could mean
 - Unsupervised clustering
 - Learned classification
- 4 Similarity Browsing

3

Music Information Retrieval

- Text-based searching concepts for music?
 - "musical Google"
 - finding a specific item
 - finding something vague
 - finding something new
- Significant commercial interest
- Basic idea: Project music into a space where neighbors are "similar"
- (Competition from human labeling)

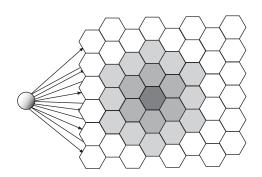
Music IR: Queries & Evaluation

- What is the form of the query?
- Query by Humming
 - considerable attention, recent demonstrations
 - need/user base?
- Query by noisy example
 - "Name that tune" in a noisy bar
 - Shazam Ltd.: commercial deployment
 - database access is the hard part?
- Query by multiple examples
 - "Find me more stuff like this"
- Text queries? (Whitman & Smaragdis 2002)
- Evaluation problems
 - requires large, shareable music corpus!
 - requires a well-defined task

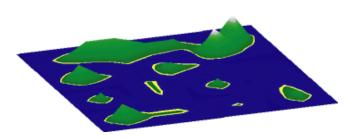
Unsupervised Clustering

(Rauber, Pampalk, Merkl 2002)

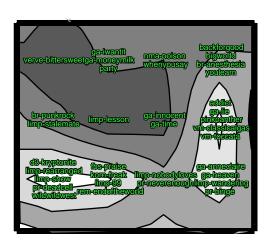
- Map music into an auditory-based space
- Build 'clusters' of nearby
 → similar music
 - "Self-Organizing Maps" (Kohonen)



Look at the results:



"Islands of Music"



- quantitative evaluation?

Genre Classification

(Tzanetakis et al. 2001)

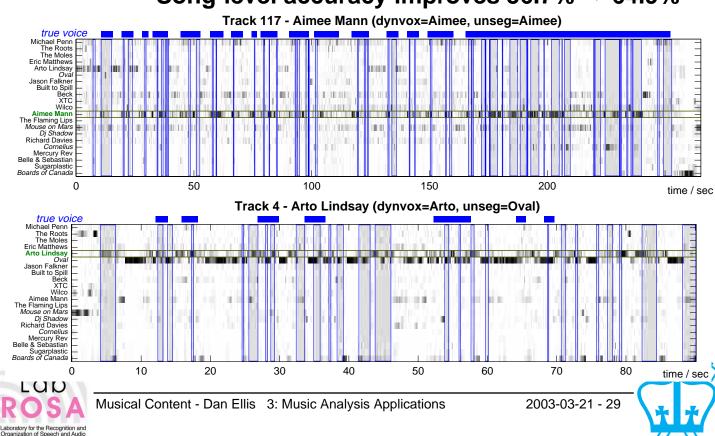
- Classifying music into genres would get you some way towards finding "more like this"
- Genre labels are problematic, but they exist
- Real-time visualization of "GenreGram":

- 9 spectral and 8 rhythm features every 200ms
- 15 genres trained on 50 examples each, single Gaussian model → ~ 60% correct

Artist Classification

(Berenzweig et al. 2001)

- Artist label as available stand-in for genre
- Train MLP to classify frames among 21 artists
- Using only "voice" segments:
 Song-level accuracy improves 56.7% → 64.9%



Artist Similarity

- **Artist classes as a basis for overall similarity:** Less corrupt than 'record store genres'?
- But: what is similarity between artists?
 - pattern recognition systems give a number...

en care braxton lara fabi**er**asure ah carev ianet jackson whitney' eiffel 65 celine_dionet_shop_boys laurychristina_aguileraqua sade sof backstales aints _spice_girlsbelintla_carlise pi ain miroquai nelly_auntædoennox

IUXELLE

Which artist is most similar to: Janet Jackson?

- 1. R. Kelly
- 2. Paula Abdul
- 3. Aaliyah
- 4. Milli Vanilli
- 5. En Vogue
- 6. Kansas
- 7. Garbage
- 8. Pink
- 9. Christina Aguilera

Need subjective ground truth: Collected via web site

www.musicseer.com

- **Results:**
 - 1800 users, 22,500 judgments collected over 6 months

Outline

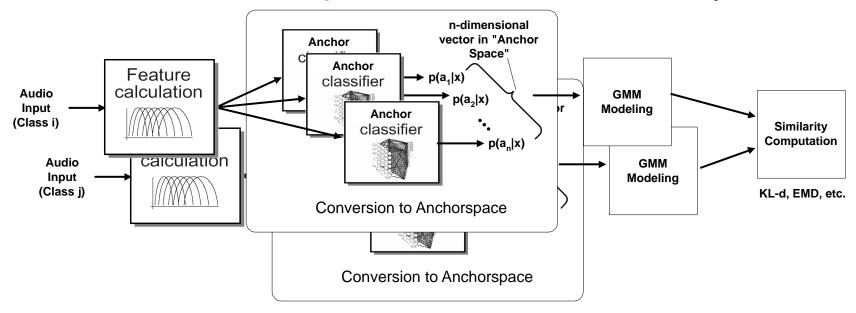
- 1 Transcription
- 2 Summarization
- **3** Music Information Retrieval
- 4 Similarity Browsing
 - Anchor space
 - Playola browser

Similarity Browsing

- Most interesting problem in music IR is finding new music
 - is there anything on mp3.com that I would like?
- Need a space where music/artists are arranged according to perceived similarity
- Particularly interested in little-known bands
 - little or no 'community data' (e.g. collab. filtering)
 - audio-based measures are critical
- Also need models of personal preference
 - where in the space is stuff I like
 - relative sensitivity to different dimensions

Anchor space

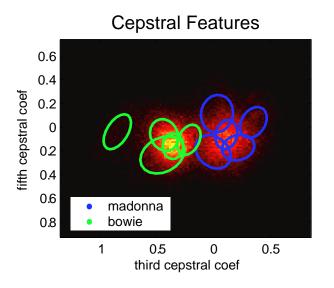
- A classifier trained for one artist (or genre)
 will respond partially to a similar artist
- A new artist will evoke a particular pattern of responses over a set of classifiers
- We can treat these classifier outputs as a new feature space in which to estimate similarity

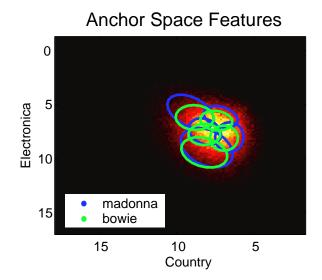


"Anchor space" reflects subjective qualities?

Anchor space visualization

• Comparing 2D projections of per-frame feature points in cepstral and anchor spaces:

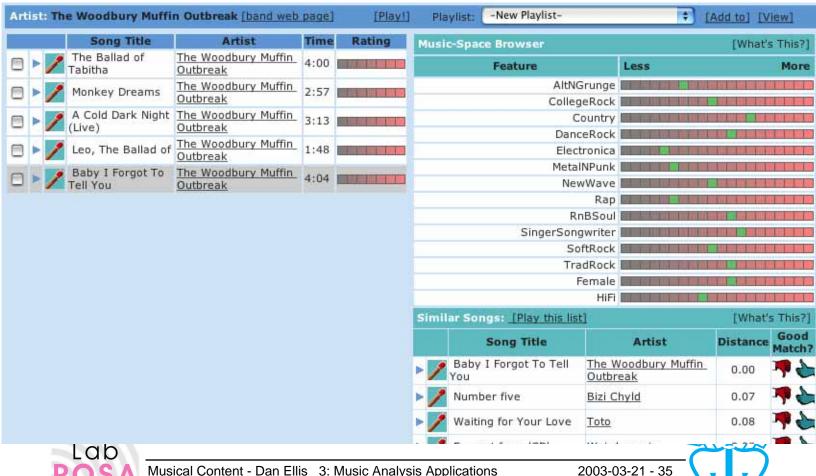




- each artist represented by 5GMM
- greater separation under MFCCs!
- but: relevant information?

Playola interface (www.playola.org)

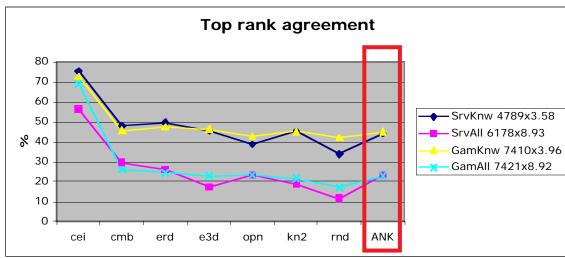
- **Browser finds closest matches to single tracks** or entire artists in anchor space
- Direct manipulation of anchor space axes



Laboratory for the Recognition and Organization of Speech and Audio

Evaluation

- Are recommendations good or bad?
- Subjective evaluation is the ground truth
 - .. but subjects don't know the bands being recommended
 - can take a long time to decide if a recommendation is good
- Measure match to other similarity judgments
 - e.g. musicseer data:



Summary

- Music transcription: Hard, but some progress
- Music summarization:
 New, interesting problem
- Music IR:
 Alternative paradigms, lots of interest

Data-based machine learning techniques are valuable in each case

References

Mark A. Bartsch and Gregory H. Wakefield (2001) "To Catch a Chorus: Using Chroma-based Representations for Audio Thumbnailing", Proc. WASPAA, Mohonk, Oct 2001.

http://musen.engin.umich.edu/papers/bartsch_wakefield_waspaa01_final.pdf

A. Berenzweig, D. Ellis, S. Lawrence (2002). "Using Voice Segments to Improve Artist Classification of Music ", Proc. AES-22 Intl. Conf. on Virt., Synth., and Ent. Audio. Espoo, Finland, June 2002.

http://www.ee.columbia.edu/~dpwe/pubs/aes02-aclass.pdf

A. Berenzweig, D. Ellis, S. Lawrence (2002). "Anchor Space for Classification and Similarity Measurement of Music", Proc. ICME-03, Baltimore, July 2003.

http://www.ee.columbia.edu/~dpwe/pubs/icme03-anchor.pdf

J. Foote (1997), "A similarity measure for automatic audio classification", Proc. AAAI Spring Symposium on Intelligent Integration and Use of Text, Image, Video, and Audio Corpora, March 1997.

http://citeseer.nj.nec.com/foote97similarity.html

Masataka Goto (2001), "A Predominant-F0 Estimation Method for CD Recordings: MAP Estimation using EM Algorithm for Adaptive Tone Models", Proc. ICASSP 2001, Salt Lake City, May 2001.

http://staff.aist.go.jp/m.goto/PAPER/ICASSP2001goto.pdf

A. Klapuri, T. Virtanen, A. Eronen, J. Seppänen (2001), "Automatic transcription of musical recordings", Proc. CRAC workshop, Eurospeech, Denmark, Sep 2001.

http://www.cs.tut.fi/sgn/arg/klap/crac2001/crac2001.pdf

Beth Logan and Stephen Chu (2000), "Music summarization using key phrases", Proc. IEEE ICASSP, Istanbul, June 2000.

http://crl.research.compag.com/publications/techreports/reports/2000-1.pdf

References (2)

G. Peeters, A. La Burthe, X. Rodet (2002), "Toward automatic music audio summary generation from signal analysis", Proc. ISMIR-02, Paris, October 2002.

http://ismir2002.ircam.fr/proceedings%5C02-FP03-3.pdf

Andreas Rauber, Elias Pampalk and Dieter Merkl (2002), "Using Psychoacoustic models and Self-Organizing Maps to create a hierarchical structuring of music by musical styles", Proc. ISMIR-02, Paris, October 2002.

http://ismir2002.ircam.fr/proceedings%5C02-FP02-4.pdf

G. Tzanetakis, G. Essl, P. Cook (2001), "Automatic Musical Genre Classification of Audio Signals", Proc. ISMIR-01, Bloomington, October 2001.

http://ismir2001.indiana.edu/pdf/tzanetakis.pdf

P. J. Walmsley, S. J. Godsill, and P. J. W. Rayner (1999), "Polyphonic pitch tracking using joint Bayesian estimation of multiple frame parameters", Proc. WASPAA, Mohonk, Oct 1999. http://www.ee.columbia.edu/~dpwe/papers/WalmGR99-polypitch.pdf

Brian Whitman and Paris Smaragdis (2002), "Combining Musical and Cultural Features for Intelligent Style Detection", Proc. ISMIR-02, Paris, October 2002.

http://ismir2002.ircam.fr/proceedings%5C02-FP02-1.pdf

