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Speech Recognition

 

• Standard speech recognition

• ‘State of the art’ word-error rates (WERs):

 

- 2% (dictation) - 30% (telephone conversations)
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Speech units

 

• Speech is highly variable

 

- simple templates won’t do
- spectral variation (voice quality)
-

 

time-warp

 

 problems

 

• Match short segments (states), allow repeats

 

- model with pseudo-stationary slices of ~ 10 ms

 

• Speech models are distributions 
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Speech features:  Cepstra

 

• Idea: Decorrelate & summarize spectral slices:

 

- easier to model:

- C

 

0

 

 ‘normalizes out’ average log energy

 

• Decorrelated pdfs fit diagonal Gaussians

 

- DCT is close to PCA for log spectra
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Acoustic model training

 

• Goal: describe  with e.g. GMMs

• Training data labels from:

 

- manual phonetic annotation
- ‘best path’ from earlier classifier (Viterbi)
- EM: joint estimation of labels & pdfs
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HMM decoding

 

• Feature vectors cannot be reliably classified 
into phonemes

• Use top-down constraints to get good results

 

- allowable phonemes
- dictionary of known words
- grammar of possible sentences

 

• Decoder searches all possible state sequences

 

- at least notionally; pruning makes it possible
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Outline

 

Speech Recognition 

Sequence Modeling

 

- Dynamic Time Warp
- probabilistic framework

 

Hidden Markov Models

Chord Sequence Recognition
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Sequence Modeling

 

• Template matching: 
Framewise comparison of input & templates:

 

- distance metric?
- comparison between frames?
- constraints?
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Dynamic Time Warp (DTW)

 

• Find lowest-cost constrained path:

 

- matrix d(i,j) of distances between input frame f

 

i

 

 
and reference frame r

 

j

 

- allowable predecessors & transition costs T

 

xy

 

• Best path via traceback from final state

 

- have to store predecessors for (almost) every (i,j)
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DTW-based recognition

 

• Reference templates for each possible word

• Isolated word:

 

- mark endpoints of input word
- calculate scores through each template (+prune)
- choose best

 

• Continuous speech

 

- one matrix of template slices;
special-case constraints at word ends
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DTW-based recognition (2)

 

+ Successfully handles timing variation

+ Able to recognize speech at reasonable cost

- Distance metric?

 

- pseudo-Euclidean space?

 

- Warp penalties?

- How to choose templates?

 

- several templates per word?
- choose ‘most representative’?
- align and average?

 

→

 

need a 

 

rigorous

 

 foundation...
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Statistical sequence recognition

 

• DTW limited because it’s hard to optimize

 

- interpretation of distance, transition costs?

 

• Need a theoretical foundation: Probability

• Formulate recognition 
as MAP choice among models:

 

-

 

X

 

 = observed features
-

 

M

 

j

 

 = word-sequence models

-

 

Θ

 

 = all current parameters

M
*

p M j X Θ,( )
M j

argmax =
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Statistical formulation (2)

 

• Can rearrange via Bayes’ rule (& drop 

 

p

 

(

 

X

 

)

 

 ):

 

-

 

p

 

(

 

X 

 

| 

 

M

 

j

 

)

 

 = likelihood of obs’v’ns under model

-

 

p

 

(

 

M

 

j) = prior probability of model

- ΘA = acoustics-related model parameters

- ΘL = language-related model parameters

• Questions:

- what form of model to use for ?

- how to find ΘA (training)?

- how to solve for Mj (decoding)?

M
*

p M j X Θ,( )
M j

argmax =

p X M j ΘA,( ) p M j ΘL( )
M j

argmax =

p X M j ΘA,( )
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State-based modeling

• Assume discrete-state model for the speech:
- observations are divided up into time frames
- model → states → observations:

• Probability of observations given model is:

- sum over all possible state sequences Qk

• How do observations depend on states?
How do state sequences depend on model?
What is ‘in’ the model?

q1Qk : q2 q3 q4 q5 q6 ...

x1X1 : x2 x3 x4 x5 x6 ...

time

states

N
observed feature 

vectors

Model Mj

p X M j( ) p X1
N

Qk M j,( ) p Qk M j( )⋅
all Qk

∑=
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Defining classifier targets

• Choice of {qi} can make a big difference
- must support recognition task
- must be a practical classification task

• Hand-labeling is one source...
- ‘experts’ mark spectrogram boundaries

• ...Forced alignment is another
- ‘best guess’ with existing classifiers, given words

• Result is targets for each training frame:
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Training
targets g

time

w eh n
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Forced alignment

• Best labeling given existing classifier
constrained by known word sequence
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Gaussian Mixture Models vs. Neural Nets

• GMMs fit distribution of features under states:

- separate ‘likelihood’ model for each state qi

- match any distribution given enough data

• Neural nets estimate posteriors directly

- parameters set to discriminate classes

• Posteriors & likelihoods related by Bayes’ rule:  

p x q
k

( )
1

2π( )
d
Σk

1 2⁄
------------------------------------ 1

2
--- x µµµµk–( )

T
Σk

1–
x µk–( )–exp⋅=

p q
k

x( ) F w jk F wijxij∑[ ]⋅
j∑[ ]=

p q
k

x( )
p x q

k
( ) Pr q

k
( )⋅

p x q j( ) Pr q j( )⋅
j∑

-----------------------------------------------=
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Outline

Speech Recognition

Sequence Modeling

Hidden Markov Models
- generative HMMs
- HMM model fitting
- .. applied to Singing Detection

Chord Sequence Recognition
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Hidden Markov Models

• A (first order) Markov model 
is a finite-state system 
whose behavior depends 
only on the current state 

• E.g. generative Markov model:
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Hidden Markov models

• = Markov model where state sequence Q = {qn} 
is not directly observable (= ‘hidden’)

• But, observations X do depend on Q:

- xn is rv that depends on current state: 

- can still tell something about state seq...
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(Generative) Markov models (2)

• HMM is specified by:

+ (initial state probabilities  )

k a t

k a t •

k a t •

••

•

•

•
k
a
t

k a t •

0.9  0.1  0.0  0.0
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0.0  0.9  0.1  0.0
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p(x|q)

x

-  states qi

-  transition
   probabilities aij

-  emission 
   distributions bi(x)

p qn
j qn 1–

i( ) aij≡

p x qi( ) bi x( )≡

p q1
i( ) πi≡



Musical Content - Dan Ellis 2: Sequence Recognition 2003-03-19 - 22

Markov models for speech

• Speech models Mj

- typ. left-to-right HMMs (sequence constraint)
- observation & evolution are conditionally 

independent of rest given (hidden) state qn

- self-loops for time dilation
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Markov models for sequence recognition

• Independence of observations:

- observation xn depends only current state qn

• Markov transitions:

- transition to next state qi+1 depends only on qi

p X Q( ) p x1 x2 …xN, , q1 q2 …qN, ,( )=

p x1 q1( ) p x2 q2( ) … p xN qN( )⋅ ⋅=

p xn qn( )
n 1=

N
∏= bqn

xn( )
n 1=

N
∏=

p Q M( ) p q1 q2 …qN, , M( )=

p qN q1…qN 1–( ) p qN 1– q1…qN 2–( )…p q2 q1( ) p q1( )=

p qN qN 1–( ) p qN 1– qN 2–( )…p q2 q1( ) p q1( )=

p q1( ) p qn qn 1–( )
n 2=

N
∏= πq1

aqn 1– qnn 2=

N
∏=
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Model fit calculation

• From ‘state-based modeling’:

• For HMMs:

• Hence, solve for M* :

- calculate  for each available model, 

scale by prior  →  

• Sum over all Qk ???

p X M j( ) p X1
N

Qk M j,( ) p Qk M j( )⋅
all Qk

∑=

p X Q( ) bqn
xn( )

n 1=

N
∏=

p Q M( ) πq1
aqn 1– qnn 2=

N
∏⋅=

p X M j( )

p M j( ) p M j X( )
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Summing over all paths

q0 q1 q2 q3 q4
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The ‘forward recursion’

• Dynamic-programming-like technique to 
calculate sum over all Qk

• Define  as the probability of getting to 

state qi at time step n (by any path):

• Then  can be calculated recursively:

αn i( )

αn i( ) p x1 x2 …xn qn=q
i

, , ,( ) p X1
n

qn
i

,( )≡=

αn 1+ j( )

Time steps n

M
o

d
el

 s
ta

te
s 

qi

αn(i+1)

αn(i)

ai+1j

aij

bj(xn+1)

αn+1(j) = [Σ αn(i)·aij]·bj(xn+1)
i=1

S
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Forward recursion (2)

• Initialize 

• Then total probability 

→ Practical way to solve for p(X | Mj) and hence
perform recognition

α1 i( ) πi bi x1( )⋅=

p X1
N

M( ) αN i( )
i 1=

S

∑=

Observations
X

p(X | M1)·p(M1)

p(X | M2)·p(M2)

Choose best
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Optimal path

• May be interested in actual qn assignments

- which state was ‘active’ at each time frame
- e.g. phone labelling (for training?)

• Total probability is over all paths...

• ... but can also solve for single best path
= “Viterbi” state sequence

• Probability along best path to state :

- backtrack from final state to get best path
- final probability is product only (no sum)
→ log-domain calculation just summation

• Total probability often dominated by best path:

qn 1+
j

αn 1+
*

j( ) αn
*

i( )aij
 
 
 

i
max b j xn 1+( )⋅=

p X Q
*

, M( ) p X M( )≈
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Interpreting the Viterbi path

• Viterbi path assigns each xn to a state qi

- performing classification based on bi(x)

- ... at the same time as applying transition 
constraints aij

• Can be used for segmentation
- train an HMM with ‘garbage’ and ‘target’ states
- decode on new data to find ‘targets’, boundaries

• Can use for (heuristic) training
- e.g. train classifiers based on labels...

0 10 20 300
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Viterbi labels:

Inferred classification

x n
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Recognition with HMMs

• Isolated word

- choose best 

• Continuous speech
- Viterbi decoding of one large HMM gives words

p M X( ) p X M( ) p M( )∝

Model M1
p(X | M1)·p(M1) = ...

Model M2
p(X | M2)·p(M2) = ...

Model M3
p(X | M3)·p(M3) = ...
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HMM example: 
Different state sequences
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Model inference:
Emission probabilities
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Model inference:
Transition probabilities
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Validity of HMM assumptions

• Key assumption is conditional independence:

Given qi, future evolution & obs. distribution
are independent of previous events
- duration behavior: self-loops imply exponential 

distribution

- independence of successive xns

  ?

n

p(N = n)

γ 1−γ

γ(1−γ)

n

xn

p(xn|qi)

p X( ) p xn qi( )∏=
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HMMs for Singing Detection

• Previous singing detection system made noisy 
frame-level classifications
- smoothing greatly improved frame accuracy
- but: boundary resolution blurred

• HMM solves for best boundary location 
without blurring

- Viterbi path backtrace is best-l’hood state seq.

• Improves:
- Frame accuracy?
- boundary accuracy
- number of segments
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Singing Detection HMM results

• GMMs from last session used as emission 
models

• HMM has lower frame accuracy...
- ... but ground-truth labels are suspect?
- boundaries look sharper
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HMM Model Training

• Probabilistic foundation allows us to train 
HMMs to ‘fit’ training data
- i.e. estimate aij, bi(x) given interpretations

- better than DTW...

• Algorithms to improve p(M | X) are key to 
success of HMMs
- maximum-likelihood of models...

• Problem arises because state alignments Q of 
training examples are generally unknown

→ Viterbi training
- choose ‘best’ labels (heuristic)

→ EM training
- ‘fuzzy labels’ (guaranteed local convergence)
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Viterbi training

• “Fit models to data” 
= Viterbi best-path alignment

• “Re-estimate model parameters”:

pdf e.g. 1D Gauss: 

count transitions: 

• And repeat...

• But: converges only if good initialization

th r iy

Data

Viterbi
labels Q*

µi

xnn qi∈∑

# qn
i

( )
-----------------------=

aij

# qn 1–
i

qn
j

→( )

# qn
i

( )
------------------------------------=
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EM for HMMs

• Expectation-Maximization (EM):
optimizes models with unknown parameters
- finds locally-optimal parameters Θ 

to maximize data likelihood 

- makes sense for decision rules like 

• Principle: adjust Θ to maximize expected log 
likelihood of known x & unknown u:

- for GMMs, unknowns = mix assignments k
- for HMMs, unknowns = hidden state qn

(take Θ to include Mj)

• Interpretation: “fuzzy” values for unknowns

p xtrain Θ( )

p x M j( ) p M j( )⋅

E p x u, Θ( )log[ ] p u x Θold,( ) p x u Θ,( ) p u Θ( )[ ]log
u
∑=
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What EM does

• Maximize data likelihood 
by repeatedly estimating unknowns 
and re-maximizing expected log likelihood:

D
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X

 | 
Θ

)

Successive parameter 
estimates Θ

Estimate
unknowns
 p(qn | X,Θ)

Re-estimate
unknowns

etc...

local optimum

Adjust model params Θ to maximize 
expected log likelihood
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EM update equations

• For acoustic model (e.g. 1-D Gauss):

• For transition probabilities:

• Fuzzy versions of Viterbi training

- reduce to Viterbi if 

• Require ‘state occupancy probabilities’,

 

- calculated by the “forward-backward” algorithm
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HMM training in practice

• EM only finds local optimum
→ critically dependent on initialization
- approximate parameters / rough alignment

• Applicable for more than just words...

ae1 ae2 ae3

dh1 dh2

Model inventory

Uniform
initialization
alignments

Initialization
parameters

Repeat until 
convergence

E-step:
probabilities
of unknowns

M-step:
maximize via
parameters

Labelled training data
dh ax k ae t

s ae t aa n

dh

dh

s ae t aa n

ax

ax

k

k

ae

ae

t
Θinit

p(qn|X1,Θold)i    N

Θ : max E[log p(X,Q | Θ)]
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Training summary

• Training data + basic model topologies
     → derive fully-trained models

- alignment all handled implicitly

• What do the states end up meaning?
- not necessarily what you intended;

whatever locally maximizes data likelihood

• What if the models or transcriptions are bad?
- slow convergence, poor discrimination in models

• Other kinds of data, transcriptions
- less constrained initial models...

TWO ONE

FIVE

ONE  =  w  ah  n
TWO =   t  uw 

sil

w ah n

th r iy

t uw
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Outline

Speech Recognition

Sequence Modeling

Hidden Markov Models

Chord Sequence Recognition
- Data and features
- EM training
- Results

1

2

3

4
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Chord Sequence Recognition
(Alex Sheh)

• HMM technology assigns a single state to each 
time frame
- e.g. phone (or other subword)
- solutions for multiple states exist, but are much 

harder to use

• Analogs of word transcription in music?
- notes?   because many overlap at onces
- chords:  unique, global property at each time

• Chord transcription is an interesting task
- highly characteristic of a piece of music
- chord labels are somewhat ambiguous

... but spoken words can be too

4
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Chord Recognition: Features

• Chord identity relies on fine pitch structure

• Cepstra are designed to hide pitch
- ... because pitch is not useful in speech recog.
- ... so cepstra are unlikely to be useful here

• “Pitch Class Profile” (Fujishima 1999)
maps FFT into chroma equivalence bins

• Or something better: 
e.g. subharmonics from autocorrelation?

24 2 f k( )log⋅〈 〉
24

i=

b i[ ] X k[ ]
2

k Bi∈
∑=
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Chord Recognition: Data

• Could train GMMs from hand-marked chords
- but: no data available, no fun to annotate...

• The speech recognition training procedure:
- training data: utterances + word, no timings
- use EM to figure out the best alignments

• Try this for chords:
- start with audio + chord sequence only
- EM defines both boundaries and class models

time / sec

fr
eq

 / 
kH

z

0 5 10 15 20 25
0

1

2

3

4

5

The Beatles - Hard Day's Night
# The Beatles - A Hard Day's Night 
#
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G 
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G 
Bm Em Bm G Em C D G Cadd9 G F6 G Cadd9 G
 F6 G C D G C9 G D 
G C7 G F6 G C7 G F6 G C D G C9 G Bm Em Bm
 G Em C D 
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G 
C9 G Cadd9 Fadd9

(Dataset: 20 early Beatles 
tracks)
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Chord Recognition: Results

• How well do the features model chords?
Chord-label frame accuracies:

- when forced, aligns 
chords OK
but can’t recognize 
them!

features
Forced alignment 
frame accuracy

Recognition 
frame accuracy

Cepstra + deltas 22% 18%

PCP-24 47% 25%

PCP-24-rot 75% 18%
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Chord Recognition: Models

• Best feature was PCP-rot
- shared models for Major, Minor etc. chords

(suitably rotated to align root)
→ better generalization, more data per model

• Means of 
GMMs show 
what was 
learned:

• Future work:
- more training data
- different chord classes?
- better features
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Summary

• The time dimension complicates pattern 
recognition

• Hidden Markov Models provide a rigorous, 
trainable (if simplistic) foundation

• Advanced techniques from speech recognition 
can be applied to music

What else can we do?  How about real problems?
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