Proc. Digital del Continguts Musicals

Session 2: Sequence Recognition

- 1 Speech Recognition
- **2** Sequence Modeling
- **3** Hidden Markov Models
 - Chord Sequence Recognition

Dan Ellis <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/muscontent/

Laboratory for Recognition and Organization of Speech and Audio Columbia University, New York Spring 2003

Musical Content - Dan Ellis 2: Sequence Recognition

2003-03-19 - 1

Speech Recognition

• Standard speech recognition

- 'State of the art' word-error rates (WERs):
 - 2% (dictation) 30% (telephone conversations)

1

Speech units

• Speech is highly variable

- simple templates won't do
- spectral variation (voice quality)
- time-warp problems

• Match short segments (states), allow repeats

• Speech models are distributions p(X|q)

Speech features: Cepstra Idea: Decorrelate & summarize spectral slices: \bullet $X_m[l] = IDFT\{\log|S[mH, k]|\}$ - easier to model: Features Covariance matrix Example joint distrib (10,15) 20 25 -2 20 15 10 16 Auditory -3 12 -4 8 -5 5 20 16 coefficients Cepstral 12 12 10 8 6 -2 Δ -3 2 -4∟ -5 150 frames 20 100 15 50 5 10 5 C₀ 'normalizes out' average log energy **Decorrelated pdfs fit diagonal Gaussians** ۲

- DCT is close to PCA for log spectra

Acoustic model training

• Goal: describe p(X|q) with e.g. GMMs

- Training data labels from:
 - manual phonetic annotation
 - 'best path' from earlier classifier (Viterbi)
 - EM: joint estimation of labels & pdfs

HMM decoding

• Feature vectors cannot be reliably classified into phonemes

- Use top-down constraints to get good results
 - allowable phonemes
 - dictionary of known words
 - grammar of possible sentences
- Decoder searches all possible state sequences
 - at least notionally; pruning makes it possible

Outline

2 Sequence Modeling

- Dynamic Time Warp
- probabilistic framework
- (3) **Hidden Markov Models**
- **Chord Sequence Recognition** (4)

Sequence Modeling

• Template matching: Framewise comparison of input & templates:

- comparison between frames?
- constraints?

Input frames f_i

- Best path via traceback from final state
 - have to store predecessors for (almost) every (i,j)

DTW-based recognition

- Reference templates for each possible word
- Isolated word:
 - mark endpoints of input word
 - calculate scores through each template (+prune)
 - choose best

• Continuous speech

one matrix of template slices;
 special-case constraints at word ends

DTW-based recognition (2)

- + Successfully handles timing variation
- + Able to recognize speech at reasonable cost
- Distance metric?
 - pseudo-Euclidean space?
- Warp penalties?
- How to choose templates?
 - several templates per word?
 - choose 'most representative'?
 - align and average?
- \rightarrow need a *rigorous* foundation...

Statistical sequence recognition

- DTW limited because it's hard to optimize
 - interpretation of distance, transition costs?
- Need a theoretical foundation: Probability
- Formulate recognition as MAP choice among models:

$$M^* = \underset{M_j}{\operatorname{argmax}} p(M_j | X, \Theta)$$

- X = observed features
- M_j = word-sequence models
- Θ = all current parameters

Statistical formulation (2)

- Can rearrange via Bayes' rule (& drop p(X)): $M^* = \underset{M_i}{\operatorname{argmax}} p(M_j | X, \Theta)$
 - = argmax $p(X|M_j, \Theta_A)p(M_j|\Theta_L)$
 - $p(X | M_j)$ = likelihood of obs'v'ns under model
 - $p(M_j)$ = prior probability of model
 - Θ_A = acoustics-related model parameters
 - Θ_L = language-related model parameters

• Questions:

- what form of model to use for $p(X|M_i, \Theta_A)$?
- how to find Θ_A (training)?
- how to solve for M_j (decoding)?

State-based modeling

- Assume discrete-state model for the speech:
 - observations are divided up into time frames
 - model \rightarrow states \rightarrow observations:

Probability of observations given model is:

$$p(X|M_j) = \sum_{\text{all } Q_k} p(X_1^N | Q_k, M_j) \cdot p(Q_k | M_j)$$

- sum over all possible state sequences Q_k
- How do observations depend on states? How do state sequences depend on model? What is 'in' the model?

Defining classifier targets

- Choice of $\{q^i\}$ can make a big difference
 - must support recognition task
 - must be a practical classification task
- Hand-labeling is one source...
 - 'experts' mark spectrogram boundaries
- ...Forced alignment is another
 - 'best guess' with existing classifiers, given words
- Result is *targets* for each training frame:

Forced alignment

• Best labeling given existing classifier constrained by known word sequence

Gaussian Mixture Models vs. Neural Nets

- GMMs fit distribution of features under states:
 - separate 'likelihood' model for each state q^i

$$p(\mathbf{x}|q^k) = \frac{1}{(\sqrt{2\pi})^d |\Sigma_k|^{1/2}} \cdot \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

- match any distribution given enough data
- Neural nets estimate posteriors directly $p(q^k | \mathbf{x}) = F[\sum_j w_{jk} \cdot F[\sum_j w_{ij} x_i]]$
 - parameters set to discriminate classes
- Posteriors & likelihoods related by Bayes' rule:

$$p(q^{k}|\mathbf{x}) = \frac{p(\mathbf{x}|q^{k}) \cdot Pr(q^{k})}{\sum_{j} p(\mathbf{x}|q^{j}) \cdot Pr(q^{j})}$$

Outline

- Speech Recognition
- 2 Sequence Modeling
- **3** Hidden Markov Models
 - generative HMMs
 - HMM model fitting
 - .. applied to Singing Detection
- **4** Chord Sequence Recognition

Hidden Markov Models

- A (first order) Markov model is a finite-state system whose behavior depends only on the current state
- E.g. generative Markov model:

SAAAAAABBBBBBBBCCCCBBBBBCE

Hidden Markov models

- = Markov model where state sequence $Q = \{q_n\}$ is not directly observable (= 'hidden')
- But, observations *X* do depend on *Q*:
 - x_n is rv that depends on current state: p(x|q)

(Generative) Markov models (2)

- HMM is specified by:
- states q^i

- transition probabilities a_{ij} $p(q_n^j | q_{n-1}^i) \equiv a_{ij}$

 (\bullet)

- k
 a
 t
 •

 •
 1.0
 0.0
 0.0
 0.0

 k
 0.9
 0.1
 0.0
 0.0

 a
 0.0
 0.9
 0.1
 0.0

 t
 0.0
 0.0
 0.9
 0.1

+ (initial state probabilities
$$p(q_1^i) \equiv \pi_i$$
)

Markov models for speech

- Speech models M_j
 - typ. left-to-right HMMs (sequence constraint)
 - observation & evolution are conditionally independent of rest given (hidden) state q_n

- self-loops for time dilation

Markov models for sequence recognition

- Independence of observations:
 - observation x_n depends only current state q_n

$$p(X|Q) = p(x_1, x_2, \dots x_N | q_1, q_2, \dots q_N)$$

= $p(x_1 | q_1) \cdot p(x_2 | q_2) \cdot \dots p(x_N | q_N)$
= $\prod_{n=1}^{N} p(x_n | q_n) = \prod_{n=1}^{N} b_{q_n}(x_n)$

• Markov transitions:

```
- transition to next state q_{i+1} depends only on q_i

p(Q|M) = p(q_1, q_2, ..., q_N|M)

= p(q_N|q_1...q_{N-1})p(q_{N-1}|q_1...q_{N-2})...p(q_2|q_1)p(q_1)

= p(q_N|q_{N-1})p(q_{N-1}|q_{N-2})...p(q_2|q_1)p(q_1)

= p(q_1)\prod_{n=2}^{N} p(q_n|q_{n-1}) = \pi_{q_1}\prod_{n=2}^{N} a_{q_{n-1}q_n}

Musical Content - Dan Ellis 2: Sequence Recognition 2003-03-19-23
```

Model fit calculation

• From 'state-based modeling':

$$p(X|M_j) = \sum_{\text{all } Q_k} p(X_1^N | Q_k, M_j) \cdot p(Q_k | M_j)$$

$$p(X|Q) = \prod_{n=1}^{N} b_{q_n}(x_n)$$

• For HMMs:

$$p(Q|M) = \pi_{q_1} \cdot \prod_{n=2}^{N} a_{q_{n-1}q_n}$$

- Hence, solve for M^* :
 - calculate $p(X|M_j)$ for each available model, scale by prior $p(M_j) \rightarrow p(M_j|X)$
- Sum over all Q_k ???

All possible 3-emission paths Q_k from S to E

q_0	q_1	q_2	q_3	q_4	$p(Q \mid M) = \prod_{n} p(q_n q_{n-1})$	$p(X \mid Q, M) = \prod_n p(x_n q_n)$	$p(X,Q \mid M)$
S	Α	Α	Α	Е	.9 x .7 x .7 x .1 = 0.0441	2.5 x 0.2 x 0.1 = 0.05	0.0022
S	Α	Α	В	Е	.9 x .7 x .2 x .2 = 0.0252	2.5 x 0.2 x 2.3 = 1.15	0.0290
S	Α	В	В	Е	.9 x .2 x .8 x .2 = 0.0288	2.5 x 2.2 x 2.3 = 12.65	0.3643
S	В	В	В	Е	.1 x .8 x .8 x .2 = 0.0128	0.1 x 2.2 x 2.3 = 0.506	0.0065
					$\Sigma = 0.1109$	$\Sigma = p(X \mid M)$) = 0.4020

The 'forward recursion'

- Dynamic-programming-like technique to calculate sum over all Q_k
- Define $\alpha_n(i)$ as the probability of *getting to* state q^i at time step *n* (by any path):

$$\alpha_n(i) = p(x_1, x_2, \dots, x_n, q_n = q^i) = p(X_1^n, q_n^i)$$

Forward recursion (2)

• Initialize
$$\alpha_1(i) = \pi_i \cdot b_i(x_1)$$

• Then total probability
$$p(X_1^N | M) = \sum_{i=1}^{S} \alpha_N(i)$$

→ Practical way to solve for $p(X | M_j)$ and hence perform recognition

Optimal path

- May be interested in actual q_n assignments
 - which state was 'active' at each time frame
 - e.g. phone labelling (for training?)
- Total probability is over all paths...
- ... but can also solve for single best path
 "Viterbi" state sequence
- Probability along best path to state q_{n+1}^j :

$$\alpha_{n+1}^*(j) = \left[\max_i \left\{\alpha_n^*(i)a_{ij}\right\}\right] \cdot b_j(x_{n+1})$$

- backtrack from final state to get best path
- final probability is product only (no sum)
 → log-domain calculation just summation
- Total probability often dominated by best path:

$$p(X, Q^* | M) \approx p(X | M)$$

Interpreting the Viterbi path

- Viterbi path assigns each x_n to a state q^i
 - performing classification based on $b_i(x)$
 - ... at the same time as applying transition constraints a_{ij}

• Can be used for segmentation

- train an HMM with 'garbage' and 'target' states
- decode on new data to find 'targets', boundaries

• Can use for (heuristic) training

- e.g. train classifiers based on labels...

Recognition with HMMs

- Isolated word
 - choose best $p(M|X) \propto p(X|M)p(M)$

- Continuous speech
 - Viterbi decoding of one large HMM gives words

HMM example: Different state sequences

Model inference: Emission probabilities

Validity of HMM assumptions

- Key assumption is *conditional independence*:
 Given qⁱ, future evolution & obs. distribution are independent of previous events
 - duration behavior: self-loops imply exponential distribution

- independence of successive x_n s

HMMs for Singing Detection

- Previous singing detection system made noisy frame-level classifications
 - smoothing greatly improved frame accuracy
 - but: boundary resolution blurred
- HMM solves for best boundary location without blurring

- Viterbi path backtrace is best-l'hood state seq.
- Improves:
 - Frame accuracy?
 - boundary accuracy
 - number of segments

Singing Detection HMM results

GMMs from last session used as emission models

- HMM has lower frame accuracy...
 - ... but ground-truth labels are suspect?
 - boundaries look sharper

HMM Model Training

- Probabilistic foundation allows us to *train* HMMs to 'fit' training data
 - i.e. estimate a_{ij} , $b_i(x)$ given interpretations
 - better than DTW...
- Algorithms to improve $p(M \mid X)$ are key to success of HMMs
 - maximum-likelihood of models...
- Problem arises because state alignments *Q* of training examples are generally unknown
- → Viterbi training
 - choose 'best' labels (heuristic)
- → EM training
 - 'fuzzy labels' (guaranteed local convergence)

Viterbi training

"Fit models to data"
 = Viterbi best-path alignment

• "Re-estimate model parameters":

pdf e.g. 1D Gauss:
$$\mu_i = \frac{\sum_{n \in q^i} x_n}{\#(q_n^i)}$$

count transitions: $a_{ij} = \frac{\#(q_{n-1}^i \rightarrow q_n^j)}{\#(q_n^i)}$

- And repeat...
- But: converges only if good initialization

EM for HMMs

- Expectation-Maximization (EM): optimizes models with unknown parameters
 - finds locally-optimal parameters Θ to maximize data likelihood $p(x_{train}|\Theta)$
 - makes sense for decision rules like $p(x|M_j) \cdot p(M_j)$
- Principle: adjust Θ to maximize expected log likelihood of known *x* & unknown *u*:

 $E[\log p(x, u|\Theta)] = \sum_{u} p(u|x, \Theta_{old}) \log[p(x|u, \Theta)p(u|\Theta)]$

- for GMMs, unknowns = mix assignments k
- for HMMs, unknowns = hidden state q_n (take Θ to include M_j)
- Interpretation: "fuzzy" values for unknowns

What EM does

 Maximize data likelihood by repeatedly estimating unknowns and re-maximizing expected log likelihood:

EM update equations

• For acoustic model (e.g. 1-D Gauss):

$$\mu_{i} = \frac{\sum_{n} p(q_{n}^{i} | X, \Theta_{\text{old}}) \cdot x_{n}}{\sum_{n} p(q_{n}^{i} | X, \Theta_{\text{old}})}$$

• For transition probabilities:

$$\rho(q_n^j | q_{n-1}^i) = a_{ij}^{\text{new}} = \frac{\sum_n p(q_{n-1}^i, q_n^j | X, \Theta_{\text{old}})}{\sum_n p(q_{n-1}^i | X, \Theta_{\text{old}})}$$

- Fuzzy versions of Viterbi training
 - reduce to Viterbi if p(q|X) = 1/0
- Require 'state occupancy probabilities',

$$p(q_n^i | X_1^N, \Theta_{\text{old}})$$

- calculated by the "forward-backward" algorithm

HMM training in practice

EM only finds local optimum
 → critically dependent on initialization

- approximate parameters / rough alignment

• Applicable for more than just words...

Training summary

Training data + basic model topologies
 → derive fully-trained models

- alignment all handled implicitly
- What do the states end up *meaning*?
 - not necessarily what you intended;
 whatever locally maximizes data likelihood
- What if the models or transcriptions are bad?
 - slow convergence, poor discrimination in models
- Other kinds of data, transcriptions
 - less constrained initial models...

Outline

- **1** Speech Recognition
- 2 Sequence Modeling
- **3** Hidden Markov Models

4 Chord Sequence Recognition

- Data and features
- EM training
- Results

Chord Sequence Recognition

(Alex Sheh)

- HMM technology assigns a single state to each • time frame
 - e.g. phone (or other subword)
 - solutions for multiple states exist, but are much harder to use
- Analogs of word transcription in music?
 - notes? because many overlap at onces
 - chords: unique, global property at each time
- Chord transcription is an interesting task lacksquare
 - highly characteristic of a piece of music
 - chord labels are somewhat ambiguous
 - ... but spoken words can be too

Chord Recognition: Features

- Chord identity relies on fine pitch structure
- Cepstra are designed to hide pitch
 - ... because pitch is not useful in speech recog.
 - ... so cepstra are unlikely to be useful here
- "Pitch Class Profile" (Fujishima 1999) maps FFT into chroma equivalence bins

Or something better:
 e.g. subharmonics from autocorrelation?

Chord Recognition: Data

- Could train GMMs from hand-marked chords
 - but: no data available, no fun to annotate...
- The speech recognition training procedure:
 - training data: utterances + word, no timings
 - use EM to figure out the best alignments
- Try this for chords:
 - start with audio + chord sequence only
 - EM defines both boundaries and class models

Chord Recognition: Results

How well do the features model chords? • **Chord-label frame accuracies:**

features	Forced alignment frame accuracy	Recognition frame accuracy	
Cepstra + deltas	22%	18%	
PCP-24	47%	25%	
PCP-24-rot	75%	18%	

Beatles-Beatles_For_Sale-Eight_Days_{avv}eek-4096-24-1to5

when forced, aligns chords OK but can't recognize pitch them!

Chord Recognition: Models

- Best feature was PCP-rot
 - shared models for Major, Minor etc. chords (suitably rotated to align root)
 - \rightarrow better generalization, more data per model
- Means of GMMs show what was learned:

- Future work:
 - more training data
 - different chord classes?
 - better features

Summary

- The time dimension complicates pattern recognition
- Hidden Markov Models provide a rigorous, trainable (if simplistic) foundation
- Advanced techniques from speech recognition can be applied to music

What else can we do? How about real problems?

References

Takuya Fujishima (1999)

"Realtime Chord Recognition of Musical Sound: A System Using Common Lisp Music", Proc. ICMC, Beijing, Oct. 1999.

Ben Gold & Nelson Morgan (2000) Speech and Audio Signal Processing: Processing and perception of speech and music, Wiley, 2000.

Musical Content - Dan Ellis 2: Sequence Recognition

