Proc. Digital del Continguts Musicals

Session 1: Pattern Recognition

- **1** Music Content Analysis
- **2** Pattern Classification
- **3** The Statistical Approach
- **4** Distribution Models
- **5** Singing Detection

Dan Ellis <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/muscontent/

Laboratory for Recognition and Organization of Speech and Audio Columbia University, New York Spring 2003

Musical Content - Dan Ellis 1: Pattern Recognition

2003-03-18 - 1

Music Content Analysis

- Music contains information
 at many levels
 - what is it?
- We'd like to get this information out automatically
 - fine-level transcription of events
 - broad-level classification of pieces
- Information extraction can be framed as: pattern classification / recognition or machine learning
 - build systems based on (labeled) training data

Music analysis

- What might we want to get out of music?
- Instrument identification
 - different levels of specificity
 - 'registers' within instruments

• Score recovery

- transcribe the note sequence
- extract the 'performance'

Ensemble performance

- 'gestalts': chords, tone colors
- Broader timescales
 - phrasing & musical structure
 - artist / genre clustering and classification

Course Outline

• Session 1: Pattern Classification

- MLP Neural Networks
- GMM distribution models
- Singing detection

• Session 2: Sequence Recognition

- The Hidden Markov Model
- Chord sequence recognition

• Session 3: Musical Applications

- Note transcription
- Music summarization
- Music Information Retrieval
- Similarity browsing

Outline

Pattern Classification

- classification
- decision boundaries
- neural networks
- **3** The Statistical Approach
- **4** Distribution Models
- **5** Singing Detection

- Why?
 - information extraction
 - conditional processing
 - detect exceptions

Building a classifier

• Define classes/attributes

- could state explicit rules
- better to define through 'training' examples
- Define feature space
- Define decision algorithm
 - set parameters from examples
- Measure performance
 - calculate (weighted) error rate

2003-03-18 - 7

Classification system parts

Feature extraction

• Right features are critical

- waveform vs. formants vs. cepstra
- invariance under irrelevant modifications
- Theoretically equivalent features may act very differently in practice
 - representations make important aspects explicit
 - remove irrelevant information
- Feature design incorporates 'domain knowledge'
 - more data \rightarrow less need for 'cleverness'?
- Smaller 'feature space' (fewer dimensions)
 - → simpler models (fewer parameters)
 - \rightarrow less training data needed
 - \rightarrow faster training

Minimum distance classification

- Find closest match (nearest neighbor) min[D(x, y_{ω, i})]
 - choice of distance metric D(x,y) is important
- Find representative match (class prototypes) $min[D(x, z_{\omega})]$
 - class data { $y_{\omega,i}$ } \rightarrow class model z_{ω}

Linear classifiers

- Minimum Euclidean distance is equivalent to a linear discriminant function:
 - examples $\{y_{\omega,i}\} \rightarrow \text{template } z_{\omega} = \text{mean}\{y_{\omega,i}\}$
 - observed feature vector $x = [x_1 x_2 ...]^T$
 - Euclidean distance metric

$$D[x, y] = \sqrt{(x - y)^{T}(x - y)}$$

- minimum distance rule:

class
$$i = \underset{i}{\operatorname{argmin}} D[x, z_i]$$

$$= \underset{i}{\operatorname{argmin}} D^2[x, z_i]$$

- i.e. choose class O over U if

$$D^{2}[x, z_{O}] < D^{2}[x, z_{U}]$$
 ...

Linear classification boundaries

• Min-distance divides normal to class centers:

• Scaling axes changes boundary:

Decision boundaries

- Linear functions give linear boundaries
 - planes and hyperplanes as dimensions increase
- Linear boundaries can become curves under feature transformations
 - e.g. a linear discriminant in $\mathbf{x}' = [x_1^2 x_2^2 \dots]^T$

• What about more complex boundaries?

- i.e. if a linear discriminant is $\sum w_i x_i$ how about a nonlinear function?
- $F[\sum w_i x_i]$ changes only threshold space, but $\sum_j F[\sum_i w_{ij} x_i]$ offers more flexibility, and $F[\sum_j w_{jk} \cdot F[\sum_i w_{ij} x_i]]$ has even more ...

Neural networks

- Sums over nonlinear functions of sums
 → large range of decision surfaces
- e.g. Multi-layer perceptron (MLP) with 1 hidden layer:

Problem is finding the weights w_{ij} ...
 (*training*)

Back-propagation training

- Find w_{ij} to minimize e.g. $E = \sum_{n} |y(x_n) t_n|^2$ for training set of patterns $\{x_n\}$ and desired (target) outputs $\{t_n\}$
- Differentiate error with respect to weights

- contribution from each pattern
$$x_n$$
, t_n :

$$y_{k} = F[\sum_{j} w_{jk} \cdot h_{j}]$$

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial \Sigma} \cdot \frac{\partial}{\partial w_{jk}} (\sum_{j} w_{jk} h_{j})$$

$$= 2(y-t) \cdot F'[\Sigma] \cdot h_{j}$$

$$w_{jk} = w_{jk} - \alpha \cdot \frac{\partial E}{\partial w_{jk}}$$

- i.e. gradient descent with learning rate $\boldsymbol{\alpha}$

Neural net example

- 2 input units (normalized F1, F2)
- 5 hidden units, 3 output units ("U", "O", "A")

• Sigmoid nonlinearity:

Outline

- **1** Music Content Analysis
- **2** Pattern Classification

3 The Statistical Approach

- Conditional distributions
- Bayes rule
- **4** Distribution Models
- **5** Singing Detection

The Statistical Approach

• Observations are random variables whose distribution depends on the class:

- Source distributions $p(x|\omega_i)$
 - reflect variability in feature
 - reflect noise in observation
 - generally have to be estimated from data (rather than known in advance) $p(x|\omega_i)$

X

Random Variables review

• Random vars have joint distributions (pdf's):

- marginal
$$p(x) = \int p(x, y) dy$$

- covariance
$$\Sigma = E[(\mathbf{0} - \mu)(\mathbf{0} - \mu)^T] = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix}$$

Conditional probability

• Knowing one value in a joint distribution constrains the remainder:

- Bayes' rule: $p(x, y) = p(x|y) \cdot p(y)$ $\Rightarrow p(y|x) = \frac{p(x|y) \cdot p(y)}{p(x)}$
- → can reverse conditioning given priors/marginal
 - either term can be discrete or continuous

Priors and posteriors

• Bayesian inference can be interpreted as updating prior beliefs with new information, *x*:

- Posterior is prior scaled by likelihood & normalized by evidence (so Σ (posteriors) = 1)
- Objection: priors are often unknown
 - but omitting them amounts to assuming they are all equal

Bayesian (MAP) classifier

• Minimize the probability of error by choosing maximum a posteriori (MAP) class:

$$\hat{\omega} = \underset{\omega_i}{\operatorname{argmax}} \Pr(\omega_i | x)$$

- Intuitively right choose most probable class in light of the observation
- Given models for each distribution $p(x|\omega_i)$, the search for $\hat{\omega} = \underset{\omega_i}{\operatorname{argmax}} Pr(\omega_i|x)$ becomes $\underset{\omega_i}{\operatorname{argmax}} \frac{p(x|\omega_i) \cdot Pr(\omega_i)}{\sum_j p(x|\omega_j) \cdot Pr(\omega_j)}$

but denominator = p(x) is the same over all ω_i

hence
$$\hat{\omega} = \underset{\omega_i}{\operatorname{argmax}} p(x|\omega_i) \cdot Pr(\omega_i)$$

Practical implementation

• Optimal classifier is $\hat{\omega} = \underset{\omega_i}{\operatorname{argmax}} Pr(\omega_i | x)$

but we don't know $Pr(\omega_i | x)$

- Can model directly e.g. train a neural net to map from inputs *x* to a set of outputs *Pr*(ω_i)
 - a *discriminative* model
- Often easier to model conditional distributions $p(x|\omega_i)$ then use Bayes' rule to find MAP class

Outline

- **1** Music Content Analysis
- **2** Pattern Classification
- **3** The Statistical Approach
- **4** Distribution Models
 - Gaussian models
 - Gaussian mixtures
- **5** Singing Detection

Distribution Models

- Easiest way to model distributions is via parametric model
 - assume known form, estimate a few parameters
- Gaussian model is simple & useful:

in 1 dim:
$$p(x|\omega_i) = \frac{1}{\sqrt{2\pi\sigma_i}} \cdot \exp\left[-\frac{1}{2}\left(\frac{x-\mu_i}{\sigma_i}\right)^2\right]$$

normalization to make it sum to 1

• Parameters mean μ_i and variance $\sigma_i^2 \rightarrow$ fit

Gaussians in *d* dimensions:

$$p(\mathbf{x}|\omega_i) = \frac{1}{(\sqrt{2\pi})^d |\Sigma_i|^{1/2}} \cdot \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)\right]$$

• Described by *d* dimensional mean vector μ_i and $d \times d$ covariance matrix Σ_i

• Classify by maximizing log likelihood i.e.

$$\underset{\omega_{i}}{\operatorname{argmax}} \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \boldsymbol{\Sigma}_{i}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i}) - \frac{1}{2} \log \left| \boldsymbol{\Sigma}_{i} \right| + \log Pr(\omega_{i}) \right]$$

$$\underset{\text{Lob}}{\operatorname{Rosan}}$$
Musical Content - Dan Ellis 1: Pattern Recognition 2003-03-18 - 27

Gaussian Mixture models (GMMs)

- Single Gaussians *cannot* model
 - distributions with multiple modes
 - distributions with nonlinear correlation
- What about a weighted sum?

i.e.
$$p(x) \approx \sum_{k} c_k p(x|m_k)$$

where $\{c_k\}$ is a set of weights and

 $\{p(x|m_k)\}$ is a set of Gaussian components

- can fit anything given enough components
- Interpretation: each observation is generated by one of the Gaussians, chosen at random with priors $c_k = Pr(m_k)$

- Problem: finding c_k and m_k parameters
 - easy if we knew which m_k generated each x

Expectation-maximization (EM)

- General procedure for estimating a model when some parameters are unknown
 - e.g. which component generated a value in a Gaussian mixture model
- Procedure:

Iteratively update fixed model parameters Θ to maximize Q=expected value of log-probability of known training data x_{trn}

and unknown parameters *u*:

$$Q(\Theta, \Theta_{old}) = \sum_{u} Pr(u | x_{trn}, \Theta_{old}) \log p(u, x_{trn} | \Theta)$$

- iterative because $Pr(u|x_{trn}, \Theta_{old})$ changes each time we change Θ
- can prove this increases data likelihood, hence maximum-likelihood (ML) model
- local optimum depends on initialization

Fitting GMMs with EM

- Want to find component Gaussians $m_k = \{\mu_k, \Sigma_k\}$ plus weights $c_k = Pr(m_k)$ to maximize likelihood of training data x_{trn}
- If we could assign each x to a particular m_k , estimation would be direct
- Hence, treat ks (mixture indices) as unknown, form Q = E[log p(x, k|Θ)], differentiate with respect to model parameters → equations for μk, Σk and ck to maximize Q...

GMM EM update equations:

• Solve for maximizing *Q*:

$$\begin{split} \boldsymbol{\mu}_{k} &= \frac{\sum_{n} p(k|\boldsymbol{x}_{n},\boldsymbol{\Theta}) \cdot \boldsymbol{x}_{n}}{\sum_{n} p(k|\boldsymbol{x}_{n},\boldsymbol{\Theta})} \\ \boldsymbol{\Sigma}_{k} &= \frac{\sum_{n} p(k|\boldsymbol{x}_{n},\boldsymbol{\Theta})(\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})(\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T}}{\sum_{n} p(k|\boldsymbol{x}_{n},\boldsymbol{\Theta})} \\ \boldsymbol{c}_{k} &= \frac{1}{N} \sum_{n} p(k|\boldsymbol{x}_{n},\boldsymbol{\Theta}) \end{split}$$

- Each involves $p(k|x_n, \Theta)$, 'fuzzy membership' of x_n to Gaussian k
- Parameter is just sample average, weighted by 'fuzzy membership'

GMM examples

Vowel data fit with different mixture counts:

Methodological Remarks: Training and test data

• A rich model can learn every training example (overtraining)

- But, goal is to classify new, unseen data i.e. *generalization*
 - sometimes use 'cross validation' set to decide when to stop training
- For evaluation results to be meaningful:
 - don't test with training data!
 - don't train on test data (even indirectly...)

Model complexity

- More model parameters \rightarrow better fit
 - more Gaussian mixture components
 - more MLP hidden units
- More training data \rightarrow can use larger models
- For best generalization (no overfitting), there will be some optimal model size:

Outline

- **1** Music Content Analysis
- **2** Pattern Classification
- **3** The Statistical Approach
- **4** Distribution Models
- **5** Singing Detection
 - Motivation
 - Features
 - Classifiers

- for further processing (lyrics recognition?)
- as a song signature?
- as a basis for classification?

Singing Detection: Requirements

- Labelled training examples
 - 60 x 15 sec. radio excerpts
 - hand-mark sung phrases
- Labelled test data
 - several complete tracks from CDs, hand-labelled

• Feature choice

- tri/mus/3 hand-label you tri/mus/8 tri/mus/19 tri/mus/28 tri/mus/28
- Mel-frequency Cepstral Coefficients (MFCCs) popular for speech; maybe sung voice too?
- separation of voices?
- temporal dimension
- Classifier choice
 - MLP Neural Net
 - GMMs for singing / music
 - SVM?

MLP Neural Net

• **Directly estimate** *p*(singing | *x*)

- net has 26 inputs (+Δ), 15 HUs, 2 o/ps (26:15:2)
- How many hidden units?
 - depends on data amount, boundary complexity
- Feature context window?
 - useful in speech
- Delta features?
 - useful in speech
- Training parameters...

MLP Results

• Raw net outputs on a CD track (FA 74.1%):

GMM System

- Separate models for p(x|sing), p(x|no sing)
 - combined via likelihood ratio test

- How many Gaussians for each?
 - say 20; depends on data & complexity
- What kind of covariance?
 - diagonal (spherical?)

GMM Results

• Raw and smoothed results (Best FA=84.9%):

- MLP has advantage of discriminant training
- Each GMM trains only on data subset
 → faster to train? (2 x 10 min vs. 20 min)

Summary

- Music content analysis: Pattern classification
- Basic machine learning methods: Neural Nets, GMMs
- Singing detection: classic application

but... the time dimension?

References

A.L. Berenzweig and D.P.W. Ellis (2001)"Locating Singing Voice Segments within Music Signals",

Proc. IEEE Workshop on Apps. of Sig. Proc. to Acous. and Audio, Mohonk NY, October 2001.

http://www.ee.columbia.edu/~dpwe/pubs/waspaa01-singing.pdf

R.O. Duda, P. Hart, R. Stork (2001) *Pattern Classification, 2nd Ed.* Wiley, 2001.

E. Scheirer and M. Slaney (1997)

"Construction and evaluation of a robust multifeature speech/music discriminator",

Proc. IEEE ICASSP, Munich, April 1997.

http://www.ee.columbia.edu/~dpwe/e6820/papers/ScheiS97-mussp.pdf

