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Music Content Analysis

 

• Music contains information
at many levels

 

- what is it?

 

• We’d like to get this information out 
automatically

 

- fine-level transcription of events
- broad-level classification of pieces

 

• Information extraction can be framed as:
pattern classification / recognition
or machine learning

 

- build systems based on (labeled) training data

1
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Music analysis

 

• What might we want to get out of music?

• Instrument identification

 

- different levels of specificity
- ‘registers’ within instruments

 

• Score recovery

 

- transcribe the note sequence
- extract the ‘performance’

 

• Ensemble performance

 

- ‘gestalts’: chords, tone colors

 

• Broader timescales

 

- phrasing & musical structure
- artist / genre clustering and classification
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Course Outline

 

• Session 1: Pattern Classification

 

- MLP Neural Networks
- GMM distribution models
- Singing detection

 

• Session 2: Sequence Recognition

 

- The Hidden Markov Model
- Chord sequence recognition

 

• Session 3: Musical Applications

 

- Note transcription
- Music summarization
- Music Information Retrieval
- Similarity browsing
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Outline

 

Music Content Analysis

Pattern Classification

 

- classification
- decision boundaries
- neural networks

 

The Statistical Approach

Distribution Models

Singing Detection
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Pattern Classification

 

• Classification means:
finding categorical (

 

discrete

 

) labels 
for real-world (

 

continuous

 

) observations

• Why?

 

- information extraction
- conditional processing
- detect exceptions
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Building a classifier

 

• Define classes/attributes

 

- could state explicit rules
- better to define through ‘training’ examples

 

• Define feature space

• Define decision algorithm

 

- set parameters from examples

 

• Measure performance

 

- calculate (weighted) error rate
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Classification system parts

signal

segment

feature vector

class

Pre-processing/
segmentation

Feature extraction

Classification

Post-processing

Sensor

•  STFT
•  Locate vowels

•  Formant extraction

•  Context constraints
•  Costs/risk
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Feature extraction

 

• Right features are critical

 

- waveform vs. formants vs. cepstra
-

 

invariance

 

 under irrelevant modifications

 

• Theoretically equivalent features 
may act very differently in practice

 

- representations make important aspects explicit
- remove irrelevant information

 

• Feature design incorporates 
‘domain knowledge’

 

- more data 

 

→

 

 less need for ‘cleverness’?

 

• Smaller ‘feature space’ (fewer dimensions)

 

→

 

 simpler models (fewer parameters)

 

→

 

 less training data needed

 

→

 

 faster training
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Minimum distance classification

 

• Find closest match (nearest neighbor)

 

- choice of distance metric 

 

D

 

(

 

x

 

,

 

y

 

) is important

 

• Find representative match (class prototypes)

 

- class data {
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Linear classifiers

 

• Minimum Euclidean distance is equivalent to a 
linear discriminant function:

 

- examples {

 

 y

 

ω

 

,i 

 

} 

 

→

 

 template 

 

z
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 = 

 

mean
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- observed feature vector 

 

x

 

 = [

 

x
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 ...]

 

T

 

- Euclidean distance metric 

- minimum distance rule:

class  

- i.e. choose class O over U if

            ...
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Linear classification boundaries

• Min-distance divides normal to class centers:

• Scaling axes changes boundary:
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Decision boundaries

• Linear functions give linear boundaries
- planes and hyperplanes as dimensions increase

• Linear boundaries can become curves under 
feature transformations

- e.g. a linear discriminant in x' = [x1
2 x2

2 ...]T

• What about more complex boundaries?

- i.e. if a linear discriminant is 

how about a nonlinear function?

-  changes only threshold space, but

 offers more flexibility, and 

  has even more ...

wixi∑

F wixi∑[ ]

F wijxii∑[ ]
j∑

F w jk F wijxii∑[ ]⋅
j∑[ ]
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Neural networks

• Sums over nonlinear functions of sums 
→ large range of decision surfaces

• e.g. Multi-layer perceptron (MLP) 
with 1 hidden layer:

• Problem is finding the weights wij ...
(training)

yk F w jk F wijxij∑[ ]⋅
j∑[ ]=
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Back-propagation training

• Find wij to minimize e.g. 

for training set of patterns {xn} and desired 
(target) outputs {tn} 

• Differentiate error with respect to weights
- contribution from each pattern xn, tn:

• i.e. gradient descent with learning rate α

E y xn( ) tn–
2

n∑=

yk F w jk h j⋅
j∑[ ]=

w jk∂
∂E

y∂
∂E

Σ∂
∂y

w jk∂
∂

w jkh jj∑( )⋅ ⋅=

2 y t–( ) F ' Σ[ ] h j⋅ ⋅=

w jk w jk α
w jk∂

∂E
⋅–=
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Neural net example

• 2 input units (normalized F1, F2)

• 5 hidden units,  3 output units (“U”, “O”, “A”)

• Sigmoid nonlinearity: 
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Neural net training

example...
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Outline

Music Content Analysis

Pattern Classification

The Statistical Approach
- Conditional distributions
- Bayes rule

Distribution Models

Singing Detection
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The Statistical Approach

• Observations are random variables
whose distribution depends on the class:

• Source distributions p(x|ωi)

- reflect variability in feature
- reflect noise in observation
- generally have to be estimated from data

(rather than known in advance)

3

Class
ωi

(hidden)
discrete continuous

Observation
x

p(x|ωi)
Pr(ωi|x)

p(x|ωi)

x

ω1 ω2 ω3 ω4
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Random Variables review

• Random vars have joint distributions (pdf’s):

- marginal 

- covariance 

xµx

σx

σxyσyµy

y
p(x,y)

p(
y)
p(x)

p x( ) p x y,( ) yd∫=

Σ E o µ–( ) o µ–( )
T

[ ]
σx

2
σxy

σxy σy
2

= =
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Conditional probability

• Knowing one value in a joint distribution 
constrains the remainder:

• Bayes’ rule: 

→ can reverse conditioning given priors/marginal
- either term can be discrete or continuous

x

y

Y

p(x,y)

p(x | y = Y )

p x y,( ) p x y( ) p y( )⋅=

 p y x( )
p x y( ) p y( )⋅

p x( )
--------------------------------=⇒
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Priors and posteriors

• Bayesian inference can be interpreted as 
updating prior beliefs with new information, x:

• Posterior is prior scaled by likelihood 
& normalized by evidence (so Σ(posteriors) = 1)

• Objection: priors are often unknown
- but omitting them amounts to assuming they are 

all equal

Pr ωi( )
p x ωi( )

p x ω j( ) Pr ω j( )⋅
j∑

---------------------------------------------------⋅ Pr ωi x( )=

Posterior
probability

‘Evidence’ = p(x)

Likelihood

Prior 
probability

Bayes’ Rule:
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Bayesian (MAP) classifier

• Minimize the probability of error by 
choosing maximum a posteriori (MAP) class:

               

• Intuitively right - choose most probable class in 
light of the observation

• Given models for each distribution , 

the search for 

becomes  

but denominator = p(x) is the same over all ωi

hence 

ω̂ Pr ωi x( )
ωi

argmax =

p x ωi( )

ω̂ Pr ωi x( )
ωi

argmax =

p x ωi( ) Pr ωi( )⋅

p x ω j( ) Pr ω j( )⋅
j∑

---------------------------------------------------
ωi

argmax 

ω̂ p x ωi( ) Pr ωi( )⋅
ωi

argmax =
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Practical implementation

• Optimal classifier is 

but we don’t know 

• Can model directly  e.g. train a neural net 
to map from inputs x to a set of outputs Pr(ωi)
- a discriminative model

• Often easier to model conditional distributions
 then use Bayes’ rule to find MAP class

ω̂ Pr ωi x( )
ωi

argmax =

Pr ωi x( )

p x ωi( )

Labeled
training

examples
{xn,ωxn}

Sort
according
to class

Estimate
conditional pdf

for class ω1

p(x|ω1)



Musical Content - Dan Ellis 1: Pattern Recognition 2003-03-18 - 25

Outline

Music Content Analysis

Pattern Classification

The Statistical Approach

Distribution Models
- Gaussian models
- Gaussian mixtures

Singing Detection
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Distribution Models

• Easiest way to model distributions is via 
parametric model
- assume known form, estimate a few parameters

• Gaussian model is simple & useful:

in 1 dim:  

• Parameters mean µi and variance σi
2 → fit

4

p x ωi( )
1

2πσi

---------------- 1
2
---

x µi–

σi
-------------
 
 
  2

–exp⋅=

normalization to make it sum to 1

p(x|ωi)

xµi

σi

PM
PM
e1/2
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Gaussians in d dimensions:

• Described by d dimensional mean vector µi

and d x d covariance matrix Σi

• Classify by maximizing log likelihood i.e.

p x ωi( )
1

2π( )
d
Σi

1 2⁄
----------------------------------- 1

2
--- x µµµµi–( )

T
Σi

1–
x µi–( )–exp⋅=
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2

4

0

2

4

0

0.5

1

0 1 2 3 4 5
0

1

2

3

4

5

1
2
--- x µµµµi–( )
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1–
x µi–( )–

1
2
--- Σilog– Pr ωi( )log+

ωi
argmax 
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Gaussian Mixture models (GMMs)

• Single Gaussians cannot model
- distributions with multiple modes
- distributions with nonlinear correlation

• What about a weighted sum? 

i.e.  

where {ck} is a set of weights and

{ } is a set of Gaussian components

- can fit anything given enough components

• Interpretation: each observation is generated 
by one of the Gaussians, chosen at random 
with priors 

p x( ) ck p x mk( )
k
∑≈

p x mk( )

ck Pr mk( )=
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Gaussian mixtures (2)

• e.g. nonlinear correlation:

• Problem: finding ck and mk parameters

- easy if we knew which mk generated each x
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Expectation-maximization (EM)

• General procedure for estimating a model when 
some parameters are unknown
- e.g. which component generated a value in a 

Gaussian mixture model

• Procedure:
Iteratively update fixed model parameters Θ to 
maximize Q=expected value of log-probability 
of known training data xtrn

and unknown parameters u:

- iterative because  changes 

each time we change Θ
- can prove this increases data likelihood,

hence maximum-likelihood (ML) model
- local optimum - depends on initialization

Q Θ Θold,( ) Pr u xtrn Θold,( ) p u xtrn Θ,( )log
u
∑=

Pr u xtrn Θold,( )
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Fitting GMMs with EM

• Want to find component Gaussians 
 plus weights 

to maximize likelihood of training data xtrn

• If we could assign each x to a particular mk , 
estimation would be direct

• Hence, treat ks (mixture indices) as unknown, 

form , 
differentiate with respect to model parameters
→ equations for µk, Σk and ck to maximize Q...

mk µk Σk,{ }= ck Pr mk( )=

Q E p x k, Θ( )log[ ]=
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GMM EM update equations:

• Solve for maximizing Q:

• Each involves , 

‘fuzzy membership’ of xn to Gaussian k

• Parameter is just sample average, weighted by 
‘fuzzy membership’

µk

p k xn Θ,( ) xn⋅
n∑

p k xn Θ,( )
n∑

----------------------------------------------=

Σk

p k xn Θ,( ) xn µk–( ) xn µk–( )
T

n∑
p k xn Θ,( )

n∑
-------------------------------------------------------------------------------------=

ck
1
N
---- p k xn Θ,( )

n∑=

p k xn Θ,( )
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GMM examples

• Vowel data fit with different mixture counts:

example...
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Methodological Remarks:
Training and test data

• A rich model can learn every training example 
(overtraining)

• But, goal is to classify new, unseen data
i.e. generalization
- sometimes use ‘cross validation’ set to decide 

when to stop training

• For evaluation results to be meaningful:
- don’t test with training data!
- don’t train on test data (even indirectly...)

training or parameters

error
rate

Test
data

Training
data

Overfitting
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Model complexity

• More model parameters → better fit
- more Gaussian mixture components
- more MLP hidden units

• More training data → can use larger models

• For best generalization (no overfitting), there 
will be some optimal model size:
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Outline

Music Content Analysis

Pattern Classification

The Statistical Approach

Distribution Models

Singing Detection
- Motivation
- Features
- Classifiers
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Singing Detection
(Berenzweig et al. ’01)

• Can we automatically detect when singing is 
present?

- for further processing (lyrics recognition?)
- as a song signature?
- as a basis for classification?

5
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Singing Detection: Requirements

• Labelled training examples
- 60 x 15 sec. radio excerpts 
- hand-mark sung phrases

• Labelled test data
- several complete tracks from 

CDs, hand-labelled

• Feature choice
- Mel-frequency Cepstral Coefficients (MFCCs)

popular for speech; maybe sung voice too?
- separation of voices?
- temporal dimension

• Classifier choice
- MLP Neural Net
- GMMs for singing / music
- SVM?
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MLP Neural Net

• Directly estimate p(singing | x)

- net has 26 inputs (+∆), 15 HUs, 2 o/ps (26:15:2)

• How many hidden units?
- depends on data amount, boundary complexity

• Feature context window?
- useful in speech

• Delta features?
- useful in speech

• Training parameters...

C0
C1

C12

“singing”music

“not singing”...

MFCC
calculation
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MLP Results

• Raw net outputs on a CD track (FA 74.1%):

• Smoothed for continuity: best FA = 90.5%
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GMM System

• Separate models for p(x|sing), p(x|no sing)
- combined via likelihood ratio test

• How many Gaussians for each?
- say 20; depends on data & complexity

• What kind of covariance?
- diagonal (spherical?)

C0
C1

C12

p(X|“singing”)

music singing?MFCC
calculation

GMM1

...
p(X|“no singing”)

GMM2

Log l'hood
ratio test
p(X|“singing”)

log
p(X|“not”)
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GMM Results

• Raw and smoothed results (Best FA=84.9%):

• MLP has advantage of discriminant training

• Each GMM trains only on data subset 
→ faster to train? (2 x 10 min vs. 20 min)
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Summary

• Music content analysis:
Pattern classification

• Basic machine learning methods:
Neural Nets, GMMs

• Singing detection: classic application

but...  the time dimension?
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