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The frequency of a sinusoidal signal is a well defined quantity. 
However, often in practice, signals are not truly sinusoidal, or 
even aggregates of sinusoidal components. Nonstationary signals 
in particular do not lend themselves well to decomposition into 
sinusoidal components. For such signals, the notion of frequency 
loses its effectiveness, and one needs to use a parameter which 
accounts for the time-varying nature of the process. This need has 
given rise to the idea of instantaneous frequency. 

The instantaneous frequency (IF) of a signal is a parame- 
ter which is often of significant practical importance. In many 
situations such as seismic, radar, sonar, communications, and 
biomedical applications, the IF is a good descriptor of some 
physical phenomenon. 

This paper discusses the concept of instantaneous frequency, its 
definitions, and the correspondence between the various mathe- 
matical models formulated for representation of IF. The paper also 
considers the extent to which the IF corresponds to our intuitive 
expectation of reality. 

A historical review of the successive attempts to define the 
IF is presented. Then the relationships between the IF and the 
group-delay, analytic signal, and bandwidth-time (BT) product are 
explored, as well as the relationship with time-frequency distribu- 
tions. Finally, the notions of monocomponent and multicomponent 
signals, and instantaneous bandwidth are discussed. It is shown 
that all these notions are well described in the context of the theory 
presented. 

I .  INTRODUCTION 
This paper presents a tutorial review of the theory nec- 

essary to understand and utilize the notion of the instanta- 
neous frequency (IF) of a signal. Like many other signal 
processing concepts, the IF was originally defined in the 
context of FM modulation theory in communications. 

The importance of the IF concept stems from the fact that 
in many applications the signal analyst is confronted with 
the task of processing signals whose spectral characteristics 
(in particular the frequency of the spectral peaks) are 
varying with time. These signals are often referred to as 
“nonstationary,” a simple example being the chirp signal. 
The latter may be conceptualized crudely as a sine wave 
whose frequency sweeps with time. In seismic processing 
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these signals (referred to as “vibroseis” in geophysics) 
are used as an alternative to explosive type signals, and 
have the advantage that their spectral characteristics can 
be accurately controlled in almost every regard including 
duration, bandwidth and energy. These signals are also used 
extensively for estimation of Doppler frequency shift in 
radar returns, and for tracking the narrow-band components 
of passive sonar. They also appear in various natural 
situations, such as in the echo-location systems of bats. 

For these signals, the IF is an important characteristic; it 
is a time-varying parameter which defines the location of 
the signal’s spectral peak as it varies with time. Conceptu- 
ally it may be interpreted as the frequency of a sine wave 
which locally fits the signal under analysis. Physically, it 
has meaning only for monocomponent signals, where there 
is only one frequency or a narrow range of frequencies 
varying as a function of time. For multicomponent signals, 
the notion of a single-valued IF becomes meaningless, and 
a break-down into its components is needed. 

A theoretical treatment of instantaneous frequency is 
presented in this paper, while in the sequel, the discrete 
instantaneous frequency (DIF) is defined, the estimation 
procedures for the IF are discussed, and a review of 
applications is presented. 

11. THE CONCEPT OF INSTANTANEOUS FREQUENCY 

A. The Concept of Frequency 

In mechanics, the frequency of vibratory motion is de- 
fined as the number of oscillations per unit time, where 
vibratory motion is any to-and-fro motion and an oscillation 
is a complete to-and-fro motion. In one oscillation, the 
vibrating body moves from the equilibrium position to one 
end of the path, then to the other end of path, and finally 
back to the equilibrium position. Using this process as a 
model, then, frequency may be defined for any arbitrary 
vibratory motion. 

A special type of vibratory motion is a simple harmonic 
motion in which the acceleration is proportional to the 
displacement and always directed toward the equilibrium 
position. When a body moves with uniform speed in a 
circle, the projection of this motion on a diameter is simple 
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harmonic motion (Fig. 1). At instant, t ,  the projection, P ,  
has a displacement, velocity, and acceleration given by (l), 
(2) ,  and (3) respectively: 

s ( t )  = a0 cos e = a0 cos w t  

s'(t) = -sow sin w t  

s"(t) = -flow2 cos w t  

(1) 
(2) 

= -w2s( t )  (3) 

where the primes indicate the order of derivative. We can 
relate the frequency, f = w/27r, to displacement by solving 
differential equation (3). The solution is z ( t )  given by 

z ( t )  = CyejPrft (4) 

where w = 27~f is a uniform angular speed and a is an 
arbitrary constant. Equations (1H4) relate the concept of 
frequency to a practical example. 

In many applications there are traveling waves in materi- 
als (solid bodies, atmosphere, etc.) in which the motion of 
a particle at any fixed point can be described by a simple 
harmonic motion. The frequency f of the wave motion is 
defined as the number of waves which pass by any fixed 
point per unit time. The frequency, f ,  of electric current in 
a circuit may be defined similarly as the number of cycles 
per unit time. 

Let us now consider a signal s ( t )  which presents a 
weighted sum (a mixture) of harmonic vibrations. Given 
such a signal, the signal analyst wants to find out its exact 
spectral decomposition. This can be done by using the 
Fourier transform (FT) of the signal defined as 

S ( f )  = 1'" s(t)e- j2"f tdt .  ( 5 4  
-CY2 

The values of S ( f )  characterize entirely the signal s ( t )  
so that it can be reconstructed using the inverse Fourier 
transform (IFT) given by 

fa, 

s ( t )  = S(f)ej2"ftcIf. (5b) .I, 
The analysis equation (5a) and the synthesis equation (5b) 
are meaningful only for stationary signals, i.e., for signals 
with spectrum S ( f )  constant in time. Any stationary signal 
can be represented as the weighted sum of sine and cosine 
waves with particular frequencies, amplitudes and phases 
(note that for a particular frequency f, amplitude and phase 
of sine and cosine are constant). 

Clearly, the concept of frequency is unambiguous. We 
will see in the next section that things are not so definite 
in the nonstationary case. The sections that follow attempt 
to clarify the issue and to remove a number of apparent 
ambiguities. 

B. Generalization of the Concept of Frequency 
to Nonstationary Signals 

Since frequency usually defines the number of cycles or 
vibrations undergone during one unit of time by a body in 
periodic motion, there is an apparent paradox in associating 

I 

Fig. 1. Simple harmonic motion . s ( f )  = "0 cosB( t ) ,  where 
O ( t )  = d o t .  

the words instantaneous and frequency. For this reason the 
definition of IF is controversial, application-related, and 
empirically assessed. This section presents a review of early 
contributions to the study of IF in an attempt to clarify the 
concept and its interpretation, and to address this paradox. 

Carson and Fry in 1937 [11] considered a variable 
frequency in an electric circuit theory context and then 
applied the concept to frequency modulated (FM) signals. 
They defined an FM wave as 

w(t)  = exp ( j ( w 0 t  + X l m ( t ) d t ) )  (6) 

where W O  = 2 r f o  is a constant carrier frequency, X 
is a real parameter termed "the modulation index," and 
m(t) represents a low-frequency signal to be transmitted 
(Im(t)l 5 1). They defined the instantaneous angular 
frequency as 

O ( t )  = WO + Xm(t) (7) 

where m(t) has the dimension of frequency, and the 
instantaneous cyclic frequency as 

(8) 
X 

f i ( t )  = f o  + -m(t). 27T 

They argued that the notion of IF is a generalization of 
the definition of constant frequency, i.e., it is the rate of 
change of phase angle at time t. In 1946 Van der Pol 
[41] approached the problem of formulating a definition 
for the instantaneous frequency by analyzing an expression 
for simple harmonic motion: 

s ( t )  = acos(27Tft + e )  (9) 

where a is amplitude, f is frequency of the oscillation, d is 
a phase constant, and the argument of the cosine function, 
namely ( 2 ~ f t + B ) ,  is the phase qh(t). He defined amplitude 
modulation by making the amplitude, a, vary as a function 
of t ,  as described in (10): 

(10) 

where g ( t )  is the modulating signal (Fig. 2). Similarly, he 
defined the phase modulation by 

O(t) = &[l + pg(t ) ]  (phase modulation) (11) 

so that the phase, which is the argument of the cosine 
function in (9), becomes: 4(t)  = 2 r f t  + d ( t )  (Fig. 2).  

a ( t )  = ao[l + ,ug(t)] (amplitude modulation) 
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Fig. 2. 
signal is s ( t )  = a ( t ) .  c o s q ( t ) ;  a(t ) -envelope;  o(t)-phase. 

Envelope and instantaneous phase of FM signal. FM 

In order to obtain an expression for frequency modulation, 
Van der Pol noted that it would be erroneous simply to 
substitute f in (9) by 

fz(t) = f o [ l  + Pdt)l  (12) 

because it would lead to physical inconsistencies, since by 
substituting (12) into (9), the resultant phase does not yield 
(11). Instead, he reasoned that expression (9) for harmonic 
oscillations must be rewritten in the form: 

where the whole argument of the cosine function is the 
phase q$(t). This reasoning led him to the definition of the 
instantaneous frequency: 

Thus using a real representation of the signal, he arrived 
at a similar definition of IF to that of Carson and Fry [ l l ]  
who used a complex representation of the signal. 

The next important step in the study of IF was made 
by Gabor [20] who proposed a method for generating a 
unique complex signal from a real one. His method for 
doing so is first to find the FT of the real signal and then to 
“suppress the amplitudes belonging to negative frequencies 
and multiply the amplitudes of positive frequencies by 
two.” He also showed that this procedure is equivalent to 
the following time-domain procedure: 

where ~ ( t )  is Gabor’s complex signal, s ( t )  is the real signal 
and H is the Hilbert transform (HT) (see Appendix A for 
its properties), defined as 

where p.v. denotes the Cauchy principle value of the 
integral [22b]. Signals, s ( t )  and H[s(t)] ,  are often said 
to be in quadrature, because in theory they are out of 
phase by ~ / 2 .  However, in reality this is true only under 
certain conditions (discussed in Section 111-A-1)). Gabor’s 

motivation to define and work with a complex signal was 
that only by doing so was he able to define the central 
moments of frequency of the signal: 

Here Z(  f )  is the spectrum of the complex signal. If the 
spectrum of the real signal was used in (17), all odd 
moments would be zero since IS( f ) I 2  is even, and this 
would not fit well with physical reality. Gabor’s complex 
signal is referred to as the “analytic signal” (see Appendix 

Ville [42] unified the work done by Carson and Fry [ l l ]  
and Gabor [20] and defined the IF of a signal expressed by 
s ( t )  = a ( t )  cosq$(t) as 

1 d  
27r d t  

where z ( t )  is the analytic signal given by (15). Ville went 
further and noted that since the IF was time-varying, there 
should intuitively be some instantaneous spectrum associ- 
ated with it-with the mean value of the frequencies in this 
instantaneous spectrum being the IF. Using Gabor’s average 
measures [20], he showed that the average frequency in a 
signal’s spectrum was equal to the time average of the IF 
[42]: 

A). 

(18) fz(t) = --[argz(t)l 

( f )  = (fa) (19) 

where 

J’” f i z ( f ) i 2 d f  
( f )  = -ym (204 s_, l Z ( f ) I 2 d f  

lm Ib(t)12dt 

/” f i ( t ) l z ( t ) l 2 d t  (fz) = (20b) 

(Note that (20a) is an averaging over frequencies and that 
(20b) is an averaging over time). Using these results, Ville 
formulated a distribution of the signal in time and frequency 
now commonly referred to as the Wigner-Ville Distribution 
(WVD) [42]: 

W(t ,  f )  = /+m ~ ( t  + r / 2 ) z * ( t  - r / 2 ) e - j 2 n f r d r .  (21) 

(Note that W(t ,  f )  is the FT with respect to r of the product 
~ ( t  + r / 2 )  . z* (t - r / 2 )  and is numerically evaluated using 
FFT algorithms [6]). Ville showed [42] that the first moment 
of the WVD with respect to frequency yields the IF: 

-W 

(22) 
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1) Interpretation of Instantaneous Frequency: TO provide 
insight into the meaning of the IF, let us consider the 
problem of positioning a signal, s ( t ) ,  in the frequency 
domain. We construct the analytic signal, ~ ( t )  = a ( t )  . 
e j4 ( t ) ,  as defined in (15). Its spectrum Z(  f )  is given by 

Z(  f )  = /’“ z ( t ) e - j z X f t d t  (23) 
--03 

The application of the stationary phase principle (see Ap- 
pendix B) indicates that this integral will have its largest 
value at the frequency, f s ,  for which the phase is stationary, 
i.e., for f s  such that 

which leads to 

671 U L .  

This indicates that if f s  is a function of t, fs( t )  provides 
a measure of the frequency domain signal energy concen- 
tration as a function of time. This measure equals the IF of 
the signal; this property explains the importance of the IF 
in signal recognition, tracking, estimation, and modeling. 

However, the interpretation of the IF is often a subject 
of controversy. Shekel [35], for example, argued that the 
IF defined by 

1 
2 7 ~  dt  

f i ( t )  = -- 

is not a unique function of time, since any amplitude 
modulated (AM) wave, written in complex form, may be 
expressed as either m(t)e jZaf t  or moej4( t ) .  The latter 
expression represents a wave with a constant amplitude 
and a complicated IF law, while the former expression 
represents a wave with complicated amplitude law and a 
constant IF. The implication is that there are many ways 
of constructing a complex signal starting from a real one. 
A unique complex representation of a signal is obtained by 
using the HT, as Gabor and Ville have noted [20], [42], 
but whether or not it corresponds to any physical reality is 
another question. This point is discussed further in Section 
111. 

Mandel [28] also challenged any physical interpretation 
of the IF. He discussed its relationship with spectral fre- 
quency in terms of Fourier decomposition. He argued that 
there is no one-to-one relationship between these two kinds 
of frequencies and provided examples of signals to prove 
it. He also claimed that the only similarity between the IF 
and Fourier decomposition frequency is that the average 
frequency of the Fourier spectrum equals the time average 
of the IF. This coincidence, however, does not extend 
to higher order moments (as Ville [42] showed for the 
second moment). Let us consider the signal Mandel chose 
to illustrate his point: 

. (28) z ( t )  = ale(jwo-Aw/2)t + a2e j (wo+Aw/2) t  

If we express ~ ( t )  in terms of envelope and phase a ( t )  . 
ej$( t )  we have 

(29) 
(-a1 + u2) sin ( A w l 2 ) t  
(a1 + ~ 2 )  COS (Aw/2)t 

4(t)  = tan-l 

and now the instantaneous frequency given by Ville’s 
definition (18) is 

The Fourier spectrum of ~ ( t )  is obvious from (28)-it 
consists of two components symmetrically placed with 
respect to f o .  The IF given by (30) varies with time, but 
excursions of f i ( t )  about f o  are not symmetrical; “they 
are entirely upwards if u2 > a1 and entirely downwards if 
a1 > a2” [28]. However, in this example, we argue that the 
analytic signal in (28) corresponds to the bicomponent real 
signal s ( t )  = sl(t) +s2(t) .  Hence, the IF is not meaningful 
for s ( t )  but only for the single component signals sl(t) and 
s2(t )  taken separately. Therefore, the IF expressed by (30) 
is outside the scope of the original definition (see Section 

Mandel strongly promoted the idea that the IF and 
Fourier frequencies are different quantities, and that 
one source of their mutual confusion is the same 
name-frequency-attached to both of them. Finally, 
Mandel asks a question: Which of these two quantities is 
most closely related to measurements? He also provides 
the answer: It strongly depends “on the nature of the 
experiment.” 

Priestley indicated [32] that a nonstationary process in 
general cannot be represented in a meaningful way by the 
simple Fourier expansion as described by (5b). For exam- 
ple, consider the nonstationary signal with time-varying 
amplitude: 

11-C). 

- t 2 / 2  
y(t) = A .  e cos(257fot + 4 0 ) .  (31) 

The FT of y(t) consists of two Gaussian functions centered 
at f o  and - f o  and thus it contains Fourier components at 
all frequencies. It is possible to use an alternative form 
for representing y(t): it consists of just two “frequency” 
components (at f o  and - fo ) ,  with each component having 
a time-varying amplitude A . These two repre- 
sentations of y(t) are equally valid. They correspond to 
different “families” of basic orthogonal functions used for 
representation. In the former case, the family consists of 
sines and cosines with constant amplitudes, and in latter 
case it consists of sines and cosines with time-varying 
amplitudes. 

According to the conventional definition, the term “fre- 
quency” is associated specifically with the sine and cosine 
functions. In order to apply the notion of frequency in 
the analysis of nonstationary signals, it is necessary to 
introduce a new basic family of functions which must be 
nonstationary and still have an oscillatory form so that 
the notion of “frequency” is applicable. Thus Priestley 
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suggested that an arbitrary nonstationary signal s ( t )  can 
be represented as 

+m 

s ( t )  = 1, r t ( f ) S ( f ) d f  (32) 

where 

r t ( f )  = A t ( f )  . (33) 

Priestley’s approach leads to a model where signals are 
locally represented by a frequency and a spread about 
that frequency. In Ville’s approach, frequency is always 
defined as the first derivative of the phase, regardless of 
stationarity. The two models are related, but Priestley ’s is 
readily applicable to multicomponent signals, while Ville’s 
is valid only for monocomponent signals. 

Another understanding of the meaning of the IF has 
been proposed by Cohen. He developed a generalized 
formulation for the distribution of energy in time and 
frequency [14]. The IF can then be considered to be the 
average of the frequencies that exist in the time-frequency 
plane at a given time [17]. This can be expressed as 

(34) 

Several other authors have also contributed to the study of 
IF [l] ,  [21], [22], [24], [34]. Rihaczek [34] investigated the 
points in the time-frequency plane of his complex energy 
distribution where the signal energy is concentrated. He 
showed that the energy was concentrated in frequency about 
the IF. Ackroyd [ l ]  extended this result by showing that 
the first moment of the Rihaczek Distribution yields the 
IF, regardless of how fast the IF varies. The problems 
associated with defining the IF are analogous to the prob- 
lems associated with defining the instantaneous amplitude 
or envelope [34a]. A review of frequency, amplitude and 
phase in the context of oscillation theory is provided in 
[40a]. Other authors have contributed to the development 
of the discrete IF, which will be dealt with in the sequel [8]. 

C. Model, Notations, Definitions 
The review in the previous section shows that there 

are many ways of generalizing stationary models to the 
nonstationary case. In the following sections of this paper, 
we will restrict nonstationary signals to the class of FM 
signals, i.e., signals s ( t )  which can be represented by the 
following model: 

N 

s ( t )  = S k ( t )  + n(t) (35) 
k = l  

where n(t)  is a noise representing any undesirable compo- 
nents, and the s k ( t )  are N single component nonstationary 
signals described by envelopes U k  ( t )  and instantaneous fre- 
quencies f i ,  ( t )  such that the analytic signal Z k ( t )  associated 
with s k ( t )  may be expressed as 

z k ( t )  = ak(t)  ’ e’4k(t)  (36) 

where 

d k ( t )  = 2T f i , ( T )  dT. (37) L 
In this model if IC = 1, the signal may be referred to as 
monocomponent signal; if k 2 2, the signal is referred to 
as multicomponent signal. The model defined by (35), (36), 
and (37) applies for multicomponent signals and allows the 
modeling of N time-varying frequency laws. Priestley ’s 
model is different in that it considers all frequencies to 
exist and assigns an amplitude to each one of them and, if 
they are nonexistent, they are assigned zero amplitude. 

111. INSTANTANEOUS FREQUENCY, GROUP DELAY, 
THE HT AND THE ANALYTIC SIGNAL 

A .  The HT and the Analytic Signal 
Although Gabor provided a good intuitive justification 

for his introduction of the HT-based analytic signal, it 
is important to note that one may define other methods 
for constructing a complex signal from a real one. For 
example, one may use the alternative procedure of taking 
the quadrature component of s ( t )  as the imaginary part of 
the complex signal as will be described in later sections. 
This leads in general to a signal different from that defined 
by Gabor and Ville. Further insight into this ambiguity 
may be gained by realizing that, given some real data 
represented by one function of time, we want to determine 
two functions of time that characterize the data. These two 
functions may represent either the envelope and phase or 
the real and imaginary parts. The nonuniqueness of the 
transformation can be seen by considering the following 
signal: 

One could either define the phase as 2.rrflt with amplitude 
modulation, a ( t )  = cos 271. f z t ,  or the phase as 27r f z t  with 
amplitude modulation, a ( t )  = cos 27r f l t .  

It is not surprising, then, that this so-called analytic signal 
does not always correspond to a signal plus its quadrature 
component, a fact which is significant, given the widespread 
use of this method in areas such as communication theory. 
The reason is that constructing the analytic signal via the 
HT operation is equivalent to eliminating negative frequen- 
cies of the spectrum. If there is any significant leakage 
of the “positive” spectral components into the negative 
spectral region, then the HT will not yield the quadrature 
component of the input signal. As a consequence, any use 
of the IF may lead to doubtful results if one is not careful. 

1) Conditions under which the HT Exactly Generates the 
Quadrature Component: Let us consider a real FM signal of 
the form, a(t).cos 4( t ) ,  and let us see under what conditions 
the following equation can be verified: 

a ( t )  cos 4( t )  + j ~ [ a ( t )  cos 4(t)l = a( t )e j+( t ) .  (39) 

The problem was investigated for complex finite-energy 
signals in [2], 191, [30], and [33]. The solution is found by 
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using Bedrosian's product theorem (BPT) summarized in 
Appendix C. It leads to the following result: 

Equation (39) is valid if the spectrum A ( f )  = F { a ( t ) }  
lies entirely in the region I f 1  < f 0  and the spectrum 
F{cos q5(t)} exists only outside this region. 

Proof: If the first condition of the BPT (see Appendix 
C) is fulfilled we can write: 

a ( t )  cos4(t) + j H  {.(t)cos4(t)} 
= a ( t )  cos 4( t )  + j a ( t ) H  {cos 4 ( t ) )  
= a( t>cosd( t )  + j a ( t ) s i n 4 ( t )  
- - a ( t )  . ej+(t) 

It can be seen from these equations that the HT-based 
analytic signal generator is a type of high frequency se- 
lector, as the predominantly high frequency portion of the 
signal becomes the complex phase term [24], [42]. This is 
illustrated further by considering again the signal in (38): 

s ( t )  = ~ 0 ~ ( 2 1 r f ~ t ) c 0 ~ ( 2 ~ f 2 t ) ; f 2  > f l  (40) 

The analytic signal produced via the HT is of the form: 

z ( t )  = cos(21rflt)ej~"f". (41) 

Thus the HT method inherently selects the highest fre- 
quency cosine for replacement by an exponential. 

2) Interpretation of the HT-Generated Analytic Signal?: 
The HT and the analytic signal are not always interpretable 
in a way which is meaningful and representative of physical 
phenomena. As explained previously, if we have a modu- 
lated signal of the form, a(t)ej'#'(t), where physical meaning 
is attached to a ( t )  and 4(t) ,  and if the spectra of a ( t )  
and 4(t)  are not separated in frequency, then the HT will 
be a result of overlapping and phase-distorted functions. 
Although the analytic signal will be of the form: 

a ( t )e jd4t)  (42) 

and will be unique, a,@) and 4*(t) will have questionable 
practical meaning. This leads to the assertion: 

The amplitude a ( t )  and phase +(t) of a signal may only 
be considered independently if the spectra of a ( t )  and 
cos $(t)  are separated in frequency. 

Thus the more closely a signal approaches a narrow- 
band condition, the better the Hilbert Transformed signal 
approximates the quadrature signal, and the more likely the 
HT-based analytic signal is to provide an accurate model of 
a real system with a particular IF; also the better in general 
will be the estimate of instantaneous frequency. This will 
be illustrated in Section IV-D by examples. 

B. Instantaneous Frequency and Group Delay 
1)  Definitions: This section relates the widely used con- 

cepts of instantaneous frequency and group-delay. Consider 
a signal s ( t ) ,  with z ( t )  its corresponding analytic signal. 
The instantaneous frequency of s ( t )  is defined by the 
derivative of the phase of z ( t )  as expressed in (18), or in a 

form which will be useful for discrete-time implementation 
(see [S, pt. 21): 

1 
f i ( t )  = lim -(arg[z(t + st)] 

6t-0 4TSt 
- arg[z(t - st)])  mod21r (43) 

where the notation (mod 21r) represents a modulo 21r op- 
eration to account for arg[z(t)] being defined on [-n, +T). 

The complex signal z ( t )  = a(t)ej4( t )  has a complex 
spectrum of the form: 

where a ( t )  and A ( f )  are positive functions. Another quan- 
tity of interest often used to describe the signal is the group 
delay (GD) defined by 

(45) 

The group-delay may be interpreted as representing the 
variation of the propagation time as a function of the 
frequency of an impulse travelling through a linear filter 
with impulse response, h(t)  = s ( t ) .  Equation (45) can be 
rewritten similarly to (43) as 

1 
r g ( f )  = Sf-0  lim --(arg[Z(f 4IrSf + S f ) ]  

- arg[Z( f - S f ) ] )  mod27r. (46) 

Equations (43) and (46) are useful because they can be 
translated directly to the discrete-time case. The relationship 
between the laws can be seen by noting that for a general 
complex signal, the following relationships hold: 

where F and F-' denote the FT and the IFT, respectively, 
and where * and * denote the convolution in time and 
frequency, respectively. 

It is clear that the phase spectrum, O ( f ) ,  and hence the 
GD, depend on both the phase and amplitude of the time 
signal; and the signal phase, $(t), and hence the IF, also 
depend on both phase spectrum and amplitude spectrum. 

2) Interpretation of Group-Delay: Given a signal s ( t ) ,  the 
value o f t  = rg, when assumed to be unique, is considered 
to describe the localization of the signal in the time domain. 
If rg is a function of f ,  then it describes the localization 
of various spectral components of the signal in the time 
domain. 

Proof: Consider z ( t )  expressed in terms of its FT, 
~ ( f )  = I Z ( f ) l e j e ( f )  

t f  

z ( t )  = ~ ( f )  e j 2 x f t  df (49) 

= lz(f)l e j [ ~ ( f ) + 2 ~ f t ] ] f .  (50) 
00 
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In application of the stationary phase principle (see Appen- 
dix B), if lZ( f ) l  varies slowly with f while cos[d( f )  + 
21rft] varies rapidly with f (i.e., it has many alternations), 
then the largest value of the integral (50) is obtained for 
the value of t which satisfies: 

d d d ( f )  -[2Irft + d ( f ) ]  = 27rt + - = 0 
df df (51) 

for which the solution is 

Q.E.D. 

Iv .  
PRODUCT ON THE NOTIONS OF INSTANTANEOUS 
FREQUENCY AND GROUP DELAY 

INFLUENCE OF THE BANDWIDTH-TIME ( B O  

This section relates the previous concepts under discus- 
sion to the BT product of the signal. This is done so 
that one may take into account the practical limitations 
of signals such as finite duration and finite bandwidth in 
the definitions and estimation procedures for instantaneous 
frequency and related quantities. 

A. Bandwidth, Duration, and Asymptotic Signals 

I)B and T: The duration, T ,  and the bandwidth, B,  
are broad characteristics of the signal and respectively 
provide some measure of the “epoch” of the signal and 
its spectrum. In practice, if the value of the signal in the 
time domain decreases below a certain threshold, then, 
we can say that the signal is negligible. This threshold 
is determined by ambient noise that is always present. 
Sometimes, we consider that the signal is negligible even 
before its level goes below that of the ambient noise; in 
other cases, even if the signal is immersed in noise, a signal 
can be detected. Note that similar reasoning applies to the 
frequency domain. A threshold determined by the noise 
levels influences decisions regarding the definition of the 
signal bandwidth. 

Finally, the problem of defining the duration of a signal 
is a question of convention. It is the same as for the band- 
width. Everything depends on the particular application 
considered, and one should adapt definitions in the way 
which is most appropriate for the particular question being 
considered (see [7] for more details). 

Several definitions are available for the measure of B and 
T [37a], [22a]. A definition commonly used was proposed 
by Gabor [20]: Let s ( t )  be a zero-mean finite-energy signal; 
the effective duration, T,, and the effective bandwidth, B,, 
are respectively given by 

Bs2 = J - m  03 (54) .I_, lS(f)I2df 

2) Relationship between B and T: Let us consider a sig- 
nal s ( t )  of duration T in the strict sense, and let us dilate 
(stretch) or compress s ( t )  along the time axis, but without 
changing the amplitude of the signal. 

If s k ( t )  = s ( k t )  is the dilated (stretched) signal, then the 
spectrum Sk(f) is given by 

If the time scale is multiplied by k ,  the frequency scale is 
divided by k ,  i.e., a dilation of the signal in time leads to 
a compression in frequency. This suggests the possibility 
of a relationship of the type BT = constant, the constant 
depending on the signal. With the definitions of equivalent 
bandwidth and equivalent duration given in (53) and (54) 
respectively, we know that this product is a constant, and 
that the minimum value of 1 / 4 ~  is attained for a Gaussian 
signal [20], [36]. 

Several authors have tried to develop a theoretical basis 
for the imposition of finite duration and finite bandwidth. A 
review is given in [7]. Lacoume and Kofman [27] formally 
defined a signal class CBT as the class of finite energy 
signals whose energy is approximately localized in the band 
[-B/2, B/2] and in time [-T/2, T/2] .  Almost all signals 
encountered in practical applications belong to this class. 
One may also define a subset of this class, to encompass 
what are known as “asymptotic” signals. These signals, in 
addition to having finite duration, bandwidth and energy, 
are characterized by a large BT product. We will consider 
signals with a BT product sufficiently high (BT > 10) so 
that the approximation error involved in assuming band and 
time limited functions is very small. (Landau and Pollak 
[38] have found that more than 99% of signal energy is 
preserved within the limits of B and T if BT > 5). Note 
that FM signals used in communications and seismic belong 
to this class. All signals considered subsequently will be 
assumed to be asymptotic. 

Another means of understanding the influence of the BT 
product on the IF and GD is to think of the BT product 
as providing an indication of the “richness” of information 
contained in the signal. This product could be compared 
with the number of realizations needed to estimate the 
probability density function (PDF) of a stochastic process. 
With only a few experiments available, the estimate does 
not really make sense, and it would make a poor basis for 
defining the process. Similarly, if there is a short signal, 
characterization by its IF has limited meaning, because 
there is not enough data to observe any variation. On the 
other hand, if the signal has a longer duration, then its IF 
becomes more meaningful. 

B. Useful Definitions and Properties for Asymptotic Signals 

We give, as follows, a number of definitions and results J --oo 
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that have proved useful in practice when dealing with the 
IF’S of real signals. 

Definition 1: An asymptotic signal, . s ( t ) ,  is referred to as 
a monocomponent (or invertible) signal if for that signal, 
the instantaneous frequency, fi ( t ) ,  accurately represents the 
frequency modulation law of the signal and is single-valued 
and invertible, so that the function f , - ’ ( f )  exists (see Fig. 

Definition 2: An asymptotic signal, s ( t ) ,  is referred to 
as a multicomponent signal if there exists a finite number, 
N ,  of monocomponent signals, s Z ( t ) .  z = 1. N such that 
the relation s ( t )  = s Z ( t )  holds for all values o f t  for 
which s ( t )  is defined, i.e., if s ( t )  can be characterized as 
the sum of several monocomponent signals, and such that 
the decomposition is meaningful. Only one of .si(t) need 
to be asymptotic. This decomposition is not unique; it is 
application dependent (see Figs. 3(b) and (c)). 

Often, in the process of breaking up a signal into mean- 
ingful components, it is the continuous pattern representing 
the variation as a function of time of the energy concentra- 
tion in the t - f domain which determines whether there is 
only one or several components. This energy concentration 
may be measured by the local bandwidth or spread about the 
instantaneous frequency of the signal (or its subcomponents 
in the case of a multicomponent signal). This is illustrated 
in Figs. 4(a) and (b), and the question is studied in detail 
in [7], [lo], and [16]-[18]. See also Section V-A for a 
discussion in the context of time-frequency distributions. 

Property I :  The energy distribution of an asymptotic 
signal, s ( t ) ,  is concentrated in a finite domain (time- 
bandwidth) of the time-frequency ( t  - f )  plane about the 
IF, and the degree of concentration is a function of the BT 
product [7], [38] (see Fig. 5). 

Property 2: For a monocomponent asymptotic signal 
with BT large and with IF law monotonic, it was shown 
that f i ( t )  approaches ~ , - ‘ ( f )  [9]; i.e., these two functions 
are the inverse of each other. In this case, the t - f  laws have 
a physical meaning: the instantaneous frequency, f i  ( t ) ,  de- 
scribes the frequency modulation law of the signal, s ( t ) ,  and 
~ , ( f )  represents the time delay of the signal (see Fig. 6(b)). 

Property 3: For a monocomponent signal, if BT is small, 
then fig # 7;’; i.e., these two functions are not the 
inverse of each other. In this case, no physical meaning 
can be associated with these t - f laws, although they are 
mathematically well defined [26] (Fig. 6(a)). This question 
is also studied in [5]. 

Note that there are two requirements for the IF and GD 
laws to be the inverse of one another. The first is that 
the variations in time of the IF be monotonic and the 
second is that BT be large. The first condition ensures 
that every image of mapping f i  has only one preimage in 
time space T.  Large BT, the second condition, ensures 
that every element in T is mapped to a single image in 
B. This requirement can be understood via the stationary 
phase principle which states that for large BT value signals, 
at each instant of time t o ,  only one frequency (say f o )  is 
dominant in the spectrum of signal. For small BT value 
signals, the IF does not admit a one-to-one mapping because 

3 m  

f 

* 
f 

Fig. 3. 
plane (a) example of monocomponent signal; (b), (c) examples of 
multicomponent signals. 

Monocomponent and multicomponent signals in time-frequency 

at particular time instant, there is no dominant frequency. 
The fact that the IF and the GD do not map to a single law 

for low BT signals may seem surprising, since intuitively, 
the two quantities portray the same information-the time- 
frequency characterization of the signal. The discrepancy 
can be explained by the way the GD is defined. It is based 
on the phase of the FT, which for small BT signals, exhibits 
significant oscillation due to the Gibbs phenomenon [31]. It 
is tempting to try to define the GD via a different spectral 
representation which might remove the “spurious” effects. 
These oscillation are real, though, and can be related to 
some physical limitations of filters. The differences then, 
between the IF and the GD laws for low BT, are in some 
senses a necessary reflection of the practical limitations for 
short duration sequences. 

When a signal has a defined inverse function of IF, that 
inverse function is identical to GD [7], [9]. However, there 
still remains the question: What is the relationship between 
GD and IF when conditions: 1) monotonic temporal vari- 
ation of IF; 2)  large BT, are not satisfied? This question 
is not answered yet. The results of time-frequency signal 
analysis (using time-frequency distributions), intuitively 
suggest that in the frequency domain the GD should be the 
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frequency 

frequency 

(b) 
Fig. 4. Separability of signal components (a) multicomponent 
signal-verall the components are well separated; (b) monocom- 
ponent signal4verall the components are not well separated. 

corresponding concept to that of the IF in the time domain. 
The problem is that if the IF law is not monotonic, the 
GD is not a single-valued function and therefore can not 
be expressed in explicit form, so that definition of the GD 
(45) is not correct. In addition, one can argue that even the 
definition of the IF (18) is not correct for small BT signals 
and for multiple component signals. 

Figure 7 presents the results of an experiment set up to 
gain a better understanding of the relationship between IF 
and GD. In this experiment, we construct three signals of 
the form given by (13) generated by N successive delayed 
sinusoids whose frequencies increase linearly as a function 
of time so that the IF can be expressed as 

f 2  - fl f z ( t )  = fl  + (2  - 1 ) -  N (55) 

where ( ( i  - l ) T ) / N  < t < i T / N ; B  = f 2  - f l  > 0 
and i = 1 , 2 , .  . . , N .  The amplitudes of  the sinusoids 
are constants. These signals are shown in Figs. 7(d), (e), 
and ( f )  for N equal to 5, 10, and “infinity,” respectively. 
Their spectra are plotted in Figs. 7(a), (b), and (c). The 
signal shown in Fig. 7(d) is constructed by adding five 
sinusoids which are delayed linearly. The signal in Fig. 7(e) 

I V 
frequency -t 

Fig. 5. Time-frequency representation for signals with different 
BT value. Concentration of time-frequency distribution increases 
with the BT. 

is constructed by adding ten such sinusoids. The signal in 
Fig. 7(f) is constructed by adding an “infinite” number of 
such sinusoids, i.e., by making the frequency increasing 
linearly with time. The estimated IF and GD laws of 
these three signals given by (13) and (55) are shown on 
Figs. 7(g), (h), and (i). The solid line represents the IF 
(in coordinate system-frequency versus time) whereas the 
dotted line represents the GD (in coordinate system-time 
versus frequency) using the same axes and the scales. By 
construction, the instantaneous frequency of these signals 
varies linearly as a function of time. One can also observe 
on Figs. 7(g), (h), and (i) that as a consequence the group 
delay is also linear. This may seem to be a natural result 
valid for any value of the BT product, except for the 
fact that one cannot construct a pure frequency within a 
short duration. A large duration is needed to construct the 
proposed signal, i.e., one needs a large BT product. 

C. Influence of the BT Product and the Signal Central 
Frequency on the Analytic Signal Formation 

This section extends the results of Section 111 to the class 
of double limited signals, that is signals which are almost 
band-limited and time-limited. For this class, we can state 
the following theorems. 

Theorem 1: For a signal of the form, s ( t )  = a( t )  cos 
(27r f o t  + q$(t)), where fo is the constant or tonal frequency, 
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large BT value implies a very dispersive phase charac- 
teristic $(t) ,  so that condition (B5) from Appendix B is 
fulfilled (note that BT >> 1 and condition (B5) are asymp- 
totically equivalent). If instantaneous frequency $ / ( t ) / 2 n  
is a monotonic function of time (i.e., there is only one 
stationary phase point) 1401 then the Fourier integrals in 
(56) can be approximated as 

502 

1w 

- g 300 

3 U 

7 
U a, 
k 200 

+ 100 

0 

Fig. 6. Relationship between instantaneous frequency and 
group-delay. Estimated laws of instantaneous frequency (solid line) 
and group-delay (dashed line) for (a) small BT signal; (b) large 
BT signal. Note that IF and GD are plotted in the same coordinate 
system, such that frequency is the ordinate for IF and time is the 
ordinate for GD. 

l56 

with an arbitrary BT value, the analytic signal derived 
using a HT approaches an exact representation of the signal 
plus its imaginary quadrature part, a( t )e j (2nfot+4(t)) ,  as fo 
becomes large and approaches infinity. 

Proof: The proof is based on work by Nuttall 1301, 
where he shows that the difference in energy between 
the HT-generated analytic signal and the signal plus its 
imaginary quadrature part is the energy in the spectrum 
of &(f) = F{a( t ) e j4 ( t ) } ,  below f = -fo. Thus the 
representation becomes exact as fo approaches infinity. 
This result is clearly applicable to the class of signals 
considered here. 

Theorem 2: If the signal, s ( t )  = a(t)cos$(t) ,  has a 
monotonic purely positive frequency law (d4 /d t  2 0, for 
all t), and a large BT product, then the analytic signal 
generated by applying the HT approaches ~ ( t )  = u(t)ej4( t )  
asymptotically as BT approaches infinity. 

Proof: Jones 1251 gave a full proof. The basic steps are 
as follows. First we find the FT: 

This can be done using the stationary phase principle. A 

(58) 

where to and tl are stationary phase points for the first and 
the second term, respectively. Here the plus sign applies 
when $"(to) > 0, and the minus sign when $"( to)  < 0. 
The stationary phase points satisfy: 

uj'(to) = 27rf (59) 
$'(t l)  = -2.rr.f. (60) 

Due to the assumption that instantaneous frequency 
$/(t)/27r is positive, (59) has solutions only for positive 
frequencies. Thus S,(f) = 0 for f 5 0. By similar 
reasoning one can show that S2( f )  = 0 for f 2 0. Now 
since the FT of the HT-based analytic signal ~ ( t )  is [31]: 

f < o  
Z ( f ) =  S(f); f = O  (61) {L; f > O  

it follows that 

Z(f)  = 2 S l ( f )  (62) 

and recalling that S,(f) = 1 / 2  F{a( t ) e j4 ( t ) }  we prove 
that ~ ( t )  = a( t )e j4( t ) .  

D. Practical Consideration of Theorems 
for forming the Analytic Signal 

In order to illustrate the effect of the BT value of 
the signal (Theorem 2), and the central frequency of the 
signal (Theorem 1) on the analytic signal generation and IF 
estimation accuracy, two experiments were performed by 
computer simulations. In both of them we consider signal 
of the form: 

~ ( t )  = - T / 2 )  . C O S ( ~ T  fot + 1/2ctt2) (63) 

(with positive and monotonic IF law), where I IT ( t )  is a box 
car function indicating that s ( t )  has a finite duration T ,  i.e., 
H,(t) = 1 for - T / 2  5 t 5 T / 2  and n ~ ( t )  = 0 elsewhere. 

There are two types of complex signals related to the 
real signal s ( t ) .  One is the so called "real plus imaginary 
quadrature" (RQ) complex signal, obtained by substitution 
of cosine in (63) with exponential (note that in practice 
only a set of real data is given, and this type of substitution 
is not possible because the mathematical expression (63) 
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Fig. 7. Instantaneous frequency and group delay of sinusoidal sweeps. Estimated laws of 
instantaneous frequency (solid line) and group-delay (dashed line) for: (a),(d),(g) 5 steps; (b),(e),(h) 
10 steps; (c),(f),(i) "infinite" number of steps. The two laws approach each other asymptotically. 

is not available). Another complex signal related to s ( t )  is 
the analytic signal generated by the HT. The RQ complex 
signal is considered to be the ideal signal that one would 
want to use. The analytic signal correctly approximates 
the RQ complex signal under the conditions stated by the 
Theorems 1 and 2. 

Experiment I :  We have designed this experiment in order 
to illustrate the influence of the central frequency f o  on 
the formation of the analytic signal (Theorem 1). The 
experiment shows that a good approximation of the RQ 
complex signal II,(t) .exp(j2nfot+jat2) can be achieved 
even for a low BT signal provided its central frequency is 
large and positive. In Fig. 8 it is shown that by increasing 
the central frequency f o ,  the spectral leakage of the RQ 
complex signal is substantially reduced, thus enabling the 
analytic signal to be its good approximation. The effect of 
this operation on IF estimation accuracy is illustrated in 
Fig. 9. 

Experiment 2: This experiment is designed in order to 
illustrate the influence of BT on the formation of the 
analytic signal. The experiment shows that the analytic 
signal is a good approximation of the RQ complex signal 
if BT is large (Theorem 2). Figure 10 illustrates the 
amplitude spectra of the RQ complex and analytic signal 

for a small and large BT. For a small BT signal one 
can observe that there is a substantial spectral leakage 
of the RQ signal to negative frequencies, so that the 
analytic signal approximates it poorly. The effect of this 
poor approximation on IF estimation is destructive-Fig. 
11 illustrates this point. 

These two theorems relate the apparent difference in ap- 
proach between the two methods of defining and measuring 
the IF: the IF describing the FM law in communication 
theory, and the signal analyst's IF [23]. Although the 
same quantity is being estimated, the different approaches 
adopted may lead to different results: 

i) Consider the typical FM transmission signal in com- 
munications systems: 

s ( t )  = a ( t ) .  cos27r(fot + lm m ( ~ ) d ~ )  (64) 

Here, the IF is a known physically meaningful quan- 
tity-it corresponds to the constant carrier frequency 
plus the varying frequency carrying the message. The 
signal may be demodulated using a device such as 
a phase-locked-loop or a zero-crossing detector, and 
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Fig. 8. Spectra of analytic signal and real+quadrature complex 
signal for large and small central frequency. Spectra of analytic 
signal generated by HT (dashed line) and RQ complex signal 
n ( t ) e x p o ( t )  (solid line) for: (a) small central frequency fo; (b) 
large central frequency fo (N. B. Small and large fo are given with 
respect to the sampling frequency which is in this case 100 Hz). 

one finds 

The IF variations about f o  are small (FM signal is 
narrowband with bandwidth B); fo is in general large; 
a ( t )  has a finite duration T such that in general BT is 
large. Then the analytic signal is a good approximation 
of the RQ signal a ( t )  . exp[j21rfot + j 

ii) In the general signal-based definition of Ville the 
analytic signal is first generated and the IF becomes 
the derivative of the phase as given by eq.(43) which 
leads to practical IF estimators that can be used to 
demodulate the signal in a high SNR environment 

7n(7)d7]. 

(71, PI. 
The previous theorems indicate under what conditions the 

two representations of IF described in i) and ii) approach 
each other closely. 
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Fig. 9. Analytic signal versus real+quadrature complex sig- 
nal-The effect of increased central frequency fo on if estimation. 
Instantaneous frequency laws estimated from the signals considered 
in Fig. 8. (a) small central frequency; (b) large central frequency. 
Estimation of IF from analytic signal is better for large fo. 

E. Calculation of the Instantaneous Frequency 
and Group Delay: An Example 

bandwidth, B, satisfying the condition BT >> 1, 
Consider the following chirp signal with duration, T ,  and 

s ( t )  = rIT(t)cos$(t)  where 4(t)  = 27r(fct + 1/2at2) 

with a = B/T and f c  = f o  + B/2. Theorem 2 states that 
the analytic signal associated with the large BT signal, s ( t ) ,  
is approximately obtained by replacing the cosine function 
by an exponential function. Thus 

(66) 

Then, f i ( t )  can be considered as an operator mapping the 
space Tt of time instants, t ,  to the space B f  of frequencies, 
f .  The inverse operator, g ( t )  = ftyl(t), represents the 
inverse mapping and is easily defined by extracting t as 
a function of f i ( t )  in (67): 

g ( t )  = a-l( f&) - f c ) .  (68) 
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Fig. 10. Spectra of analytic signal and real+quadrature com- 
plex signal for large and small BT signal. Spectra of analytic 
signal generated by HT (dashed line) and RQ complex signal 
a ( t )  . exp Q(t) (solid line) for: (a) small BT;  (h) large BT (note 
that for large BT we can not distinguish solid and dashed line as 
they are exactly superimposed). 

This result is now compared with the time delay, ~ , ( f ) ,  of 
the signal. The FT of the signal, ~ ( t ) ,  is [7]: 

The time delay, ~ , ( f ) ,  is easily derived [7] as 

and can be seen to represent the same operator as g = f,” . 
For the chirp signal, ( 6 7 x 7 0 )  show that fi(t) is a unique 

time-frequency characteristic of the signal. IF estimation is 
therefore an important problem in this case (BT >> 1) 
where it provides the unique t - f law of the signal. 

On the other hand, for small BT signals, two different 
time-frequency laws can be identified, specifically fi (t) 
and T, (f), and therefore, their interpretation becomes less 
meaningful (see Fig. 6). Although this does not necessarily 
preclude the use of the estimation methods, care must be 
taken in their interpretation [26]. 
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Fig. 11. Analytic signal versus real+quadrature complex sig- 
nal-The effect of BT value on IF estimation. Instantaneous 
frequency laws estimated from the signals considered in Fig. 10. 
Note that estimation of IF from the analytic signal is valid for 
large BT signals. 

Estimation of 6: Although the IF provides information 
regarding the “internal organization of the signal,” other 
relevant information, such as the spread of the signal 
around its t - f law [17], is not available. An alternate 
method based on time-frequency distributions (TFD’s) has 
the convenience that all the information regarding t - f 
law, spread, etc., is presented in one single representation, 
and the IF law may be simply observed from its peaks. The 
following section relates the IF to TFD’s. 

V. RELATIONSHIP BETWEEN IF AND 
TIME-FREQUENCY DISTRIBUTIONS 

A. General Results 
This and the following sections examine the relation be- 

tween the IF of a signal and its TFD. TFD’s were introduced 
as a means of representing signals whose frequency content 
is varying with time, and for which both time domain 
representations and frequency domain representations are 
inadequate to describe the signal appropriately [7]. Ideally, 
one would expect from a time-frequency representation of 
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a signal that it peaks about the IF, with a spread related 
to the FT of the envelope of the signal. Accordingly, for 
monocomponent signals of the form of a( t )e j4( t )  it would 
be intuitively satisfying to generate a TFD of the following 
form [9] 

44 f )  = 4 4  f ) ; o ( f  - f i ( t ) )  (71) 

where A ( t ,  f )  is the time-frequency representation of the 
amplitude function, a@). Thus the amplitude and phase 
would be separable, providing an easily interpretable distri- 
bution; the distribution is centered around the time-varying 
IF with the amplitude information distributed in time and 
frequency. 

Few distributions considered at present provide a TFD 
of the form given in (71). The Wigner-Ville distribution 
(WVD) of a signal with a large BT product yields a 
distribution of the following general form [3]: 

where Ai is the Airy function, and IC ensures that 

Thus it can be seen that the frequency location informa- 
tion is present but in a very complicated way. Only for the 
case where the 3rd order derivative of the phase function is 
zero, does the WVD produce a distribution of the form of 
(71). In other cases where the phase is more complicated, 
the distributions are distorted by the FT’s of the higher 
order phase derivative terms. 

Other TFD’s may be calculated by a single generalized 
formula, derived by Cohen [14]: 

s_’,” W(t ,  f ) d f  = a2W. 

p(t ,  f )  = I+“ s’” S’rr e j 2 4 - t )  g(v, r ) z ( u  + 7 / 2 )  
-m -m -m 

’ z*(u - r / 2 ) e - j z T f T d v d u d r  (73) 

where g(v, r )  is a function which defines the particular TFD 
chosen, and where U and r have the dimensions of time and 
v has the dimension of frequency. Any bilinear distribution 
can be generated from (73) by choosing different kernels 
g(v, r).  Now for any TFD p( t ,  f )  the conditional average 
value of frequency at particular time, say t ,  is 

1’” f P ( t ,  f ) d f  

1, P ( t ,  f ) d f  
( f ) ,  = -ym (74) 

One can show that the conditional frequency moment, ( f ) t ,  
at a particular time equals the IF, f i ( t ) ,  for TFD’s whose 
kernels satisfy the following condition [4], [13]: 

g(v,O) = 1 (754  

The result given by (74) and (75) is a generalization of 
the result obtained by Ville in 1948 for the WVD [42]. 
Note that if g ( v , r )  = 1, p ( t , f )  reduces to the WVD. 
Similarly, the GD will be given as the first moment in 
time of any TFD characterized by a function g(v, r )  which 
satisfies (76). Again the WVD satisfies this condition: 

g ( 0 , r )  = 1 (764  

Iv=o 

Many distributions yield the IF by correct first moment 
calculation as discussed previously, but this is often com- 
putationally expensive and adversely affected by noise [8]. 
It would be an advantageous feature of a distribution to 
allow estimation of the IF simply by peak detection. With 
signals whose phase functions are quadratic (i.e., 3rd order 
derivative zero), the WVD of the signal will be of the form 
of (71) and thus IF estimation can be achieved by peak 
detection. In addition, one can also observe the spread about 
the IF at each instant of time. The same reasoning holds 
for the group-delay as well. 

B. Instantaneous Bandwidth 
Since the IF may be considered to be the average of 

the frequencies present at a given time instant, it seems 
reasonable to enquire about the standard deviation, or 
spread at that time. This spread may be interpreted as an 
instantaneous bandwidth (IBFrelated to the IF in a way 
analogous to the frequencyibandwidth relationship. 

A related concept introduced in [34] is that of “ele- 
mentary cells” which specify the signal concentration, the 
dimension of the cells depending on the FM law of the 
signal and the BT product of the signal (Fig. 12). Rihaczek 
defined the dimensions of these cells by introducing the 
notion of “relaxation time,” T,, and “dynamic bandwidth,” 
Bd, as [34] 

(77) 

Since the classical bandwidth definition is the spread of 
frequencies about the average: 

+W s_, ( f  - ( m 2 l s ( f ) l 2 d f  

1- l S ( f ) I 2 d f  

s_, ( f  - f i ( U 2 P ( t ,  f ) d f  

d w  = +m (79) 

it is natural to expect that the IB should be of the form 
+m 

aj ( t )  = (80) 
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Fig. 12. Elementary cells in time-frequency plane 

where p ( t , f )  is as defined in (73). 
As is the case with the true bandwidth of (79) (which is 

purely a function of the magnitude spectrum), it is expected 
that the IB will simply be a function of the time amplitude, 

Since the WVD provides high signal energy concen- 
tration in time and frequency, it is tempting to try to 
use it to measure the spread of frequencies with time. 
Unfortunately, however, the spread of the IF for the WVD 
is only positive for certain types of signals (which includes 
those with positive definite amplitude functions, such as 
Gaussian signals). Even when the spread is positive some 
negative distribution values may appear in the calculation, 
and thus its usefulness is questionable [25]. 

Other TFD’s may provide more useful measures of 
spread. Cohen and Lee have shown that by setting g”(0) = 
1/4 in the general formulation for TFD’s, a positive mea- 
sure of spread is assured. They also showed that for all such 
TFD’s the spread is given by [17] 

4 t ) .  

This positive measure of spread equals the second (fre- 
quency) moment of any distribution whose smoothing func- 
tion satisfies g”(0) = 1/4. Cohen and Lee gave additional 
arguments in [16] and [lBa] to justify this definition. It is 
helpful to compare this result with the relation between 
the global second moments of the frequency and the IF, 
derived by Mandel [28]: 

(82), (83) 

Mandel originally used this relationship to emphasize the 
distinction between the frequency and the IF as their second 
and higher global moments do not coincide. We consider 
the relationship for a different reason. The equation seems 
to suggest that the frequency spread or bandwidth may be 
broken into two components. The first component is due to 
the variation of the IF with time, and the second component 
is due to the amplitude envelope variations. This second 
component is of the same form as Cohen and Lee’s measure 
of IB. 

It should be noted that although Cohen and Lee’s TFD- 
based spread in (81) is always positive, it is derived from 
distributions which may become negative. Hence, there is 
some question as to the validity of such a measure. In 
consideration of this latter complication, it is instructive 
to examine the nature of the spread of the IF in a purely 
positive TFD. This has been done for the Short-Time 
Fourier Transform (STFT) by Cohen [18]. He showed that if 
the terms due to windowing effects are removed, the spread 
of the IF for the STFT again reduces to that given in (81). 

While it is difficult to establish the expression in (81) 
conclusively as the best measure for the IB, it does fit neatly 
into our intuitive understanding. If the envelope, a( t ) ,  is 
constant (no amplitude modulation), there is no spread 
about the IF, i.e., the IF is the only existing frequency at 
a particular time. If amplitude modulation is present, the 
effect is to produce many neighboring frequencies, with 
the instantaneous frequency being the average of these 
frequencies (see Priestley [32]). The notion that there is a 
spread of frequencies evolving in time also partly answers 
the questions raised by Mandel. For an arbitrary distribution 
of a given variable, there is no guarantee that the mean, the 
median or the mode will coincide. Hence, to require that 
the mean spectral spread equals the mean instantaneous IF 
spread seems an unreasonable expectation. 

Cohen and Lee’s expression for the IB, however, raises 
a concern with the current use of TFD’s because none of 
the TFD’s used in practice today obey the condition that 
g” (0)  = 1/4. Additionally, it has been shown that if a TFD 
is positive everywhere (e.g., the STFT), its first moment 
does not yield the IF, but a smeared version thereof [4], 
[7]. There appears room, then, for improvements in the 
commonly accepted representations of time-varying signals. 

C. Multicomponent Signals 
The concept of IF as previously defined loses its meaning 

when a multicomponent signal is considered. In this case, 
the signal can be modeled as a weighted sum of monocom- 
ponent signals, each one with its own IF (see Section 11-C). 
For example, consider the signal: 

%(t)  = a 1 ( t ) c o s h ( t )  + az( t )cos$z( t ) .  (84) 

Assuming that each individual signal has a large BT 
product (with a purely positive IF), application of the linear 
HT will produce an analytic signal of the form: 

zm( t )  = u l ( t )e jb l ( t )  + a z ( t ) e j + ~ ( ~ ) .  

am(t )  =[a1(t I2 + a2(q2  - k ( t ) a z ( t )  

(85) 

The envelope of zm( t )  is: 

’ cos (+l(t) - $2(t)>11’2. (86) 

This envelope could be fast varying. In addition, the phase 
has resulted from a nonlinear combination of the two 
phase factors and may possess erratic behavior. Previous 
discussions and results therefore do not apply. 

To answer the question of what makes a signal monocom- 
ponent or multicomponent it is helpful to consider first a 
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general TFD of Cohen's Class [15]. The bilinear kernel, 
z(u + 7-/2)z*(u - ./a), of (43) introduces cross-terms 
when two or more analytic signals are present. This is even 
true for the manifestly positive STFT [9]. The cross-terms 
actually appear in the neighborhood of the auto-terms, with 
their extent and size being dependent on the interaction 
of the auto-term ambiguity functions and the window-the 
greater the separation of the ambiguity functions the more 
diminished will be the cross-terms [43]. Thus one could 
define a multicomponent signal as being one which has 
cross-terms present. Such a definition, however, is hard to 
test in practice. 

Perhaps a more practical way of testing for whether a 
signal is monocomponent or multicomponent would be to 
test whether or not the energy distribution at a particular 
time is spread about only one frequency or whether there 
is a clear separation of the energy about two or more 
frequencies. 

It should be noted that decomposition of a multicompo- 
nent signal is not unique, unless the components do not 
coincide at any point in the time-frequency plane. As an 
example, Fig. 13 shows two different separations of the 
monocomponent signals. The decomposition is application 
dependent. 

VI. CONCLUSION 
In this paper we have investigated the basic concepts 

necessary for the interpretation and use of the instanta- 
neous frequency. This is an important problem in signal 
processing, and it raises fundamental questions in signal 
representation, many of which have been addressed here. 
The relationship between the IF and TFD's has been 
stressed. The points covered include the HT, analytic signal, 
group delay, monocomponent and multicomponent signals, 
instantaneous bandwidth and relationships of all the latter 
with the instantaneous frequency. While a number of key 
questions are resolved in this area, there is still much 
work remaining to be done before these notions become 
standard tools in the engineering community. This paper is 
a contribution towards this aim. 

A~PPENDIX A 

A. Properties of the HT and the Analytic Signal 
I )  Formulations and Basic Properties: Gabor [20] first 

used the HT to generate the complex analytic signal 
according to: 

s( t )  = s ( t )  + jy( t )  (All 

where y(t) = H [ s ( t ) ]  represents the HT of s ( t )  defined as 

and satisfies the following properties [36]: 

i )  Y(t) = H[s(t)l (-43) 
ii) s ( t )  = -H[Y(t)l (A41 
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(b) 
Fig. 13. Two different separations of the multicomponent signal. 
If two IF laws cross each other in the time-frequency plane, their 
separation is not unique in general case. The dashed lines in (a) 
and (b) lead to two different possibilities. 

iii) s(t)  = -HZ[s( t )]  
iv) s ( t )  and y(t) contain the same spectral components. 

Note that if s ( t )  admits an associated analytic signal z ( t ) ,  
it has only one and vice-versa. Under some nonrestrictive 
conditions the function, z ( r ) ,  of the complex variable, 
r = t + ju ,  can be shown to be an analytic function in 
the upper half plane, Im(r) 2 0. That is, (A3), (A4), (A5) 
satisfy the Cauchy-Riemann conditions [36]. Moreover, the 
real part of z ( r )  equals s ( t )  on the real axis: 

z ( 7 )  = s ( t ,  U )  + jy( t ,  U )  ('46) 

when r -+ t, i.e., when U + 0, we obtain: 

z(t)  = s ( t )  + j y ( t ) .  (A71 

The imaginary part of z ( r )  takes on the value y ( t ) ,  and is 
often called the quadrature signal. The analytic signal may 
also be defined in the frequency domain as follows. 

An analytic signal is a function z ( r )  of a complex 
variable r = t + j u  defined for Im(r)  2 0, for which 
there exists a complex function, Z ( f ) ,  of the real variable, 
f, defined for f 2 0, so that z ( r )  is its FT: 

By definition, an analytic signal has therefore a spectrum 
limited to positive frequencies only. We consider that 
Z(0)  = S(0)  = 0. This property can be used to determine 
the analytic signal associated with a given real signal in the 
frequency domain. A useful property of analytic signals 
which follows immediately from the fact that there are 
no negative frequencies present, is that one only needs to 
sample at half the Nyquist rate [36]. 
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B. Envelope and Instantaneous Phase 
Given the signal, s ( t )  = a ( t ) c o s 4 ( t ) ,  subject to some 

conditions discussed later, we may express ~ ( t )  in polar 
coordinates as 

Z ( t )  = a( t )eJ4( t )  (A9) 

where 

a ( t )  = J S Z ( t )  + y 2 ( t )  

and 

a ( t )  is referred to as the instantaneous amplitude or enve- 
lope and 4(t)  is referred to as the instantaneous phase (see 
Fig. 2). From (A10) we obtain that a ( t )  2 J s ( t ) ( ,  which 
indicates that the curve C1 representing the absolute value 
of the signal, I s ( t ) l ,  does not intersect with the curve C2 

representing a( t ) .  Further we can show that a ( t )  = s ( t )  
when y ( t )  = 0 and these two functions have the same 
tangent [36]. The reason for the use of the term, signal 
envelope is that the curve C1 envelopes the curve Cz. 

A~PENDIX B 

A. Stationary Phase Principle 
The stationary phase principle is a useful tool in develop- 

ing the concept of instantaneous frequency. It was used by 
Carson and Fry [ I l l  to estimate the limits of IF variations 
for FM signals, by Rihaczek [34] to show that the energy is 
concentrated in frequency about the IF. It was also used by 
Vakman [39] to explain a seemingly paradoxical situation 
of instantaneous frequency: although the IF is a local 
concept (indicated by term “instantaneous”), to calculate 
it is necessary to determine the HT of the signal, that is 
one has to know the entire history of the signal in the time 
domain. The stationary phase principle is also used to prove 
many results presented in [9] and in this paper. 

B. Formulation [ I  91 
We have to calculate: 

I ,  = l;2 U ( x ) c o s ~ , ( z )  dx (B1) 

= Re{ Ix2 U ( X ) ~ ’ + - ( ~ )  dx} (B2) 

&(x )  = 4(cx.x) is parameterized by a. If U ( T )  varies 
slowly, while 4 ,  (2;) varies over 2 ~ ,  then the positive values 
of cos &(x) tend to compensate its negative values, so as 
to make the result of the integral very small. However, if 
& ( x )  has stationary values for which d$,(x)/dz = 0, 
then for these values, the integral will be large (Fig. 14). 
The large values of the integral, I,, will be obtained for 
the values of a which make 4(x ,  a )  stationary, i.e., 

x1 
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C. Application 

determine a Fourier integral of the form 
The principle can be applied whenever it is necessary to 

providing that the exponential factor is oscillating rapidly 
compared to the amplitude factor of the integral (B4) in 
vicinity of the stationary phase point t o ,  i.e., 

where the values of stationary phase points are found from 
the equation 

d 
d t  
-[4(t) - 2T f t ]  = 0. 

If (B6) has only one solution (att = to) ,  then the approxi- 
mation of integral (B4) is given by 

Here the plus sign applies when $”(to) > 0, and the 
minus sign when (6”(to) < 0. Equation (B6) will indeed 
have a solitary solution if the instantaneous frequency law 
4 ’ ( t ) / 2 ~  changes monotonically. Note also that condition 
(B5) can be interpreted using Cohen’s definition of IB [I61 
as 

APPENDIX C 

A. Bedrosian’s Theorem for Complex Signals 
Let x ( t )  and y ( t )  denote generally complex finite energy 

signals of the real variable t. Their FT’s are X ( f )  = 
F { x ( t ) }  and Y ( f )  = F { y ( t ) } .  If 

2) 

or 

ii) 

then 

X ( f )  = 0 for I f [  > a and 
Y ( f )  = 0 for I f 1  < b, where b 2 a 2 0 

(Cl) 

X ( f )  = 0 for f < -a and 
Y ( f )  = 0 for f < b,  where b 2 a 2 0 

(C2) 
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phase; (b) [-( . r )  cos o( . r ) ;  (c) integral I,. 

B. Discussion: 

The illustration of the stationary phase principle: (a) 

Conditions i) and ii) are necessary and sufficient [12]. 
Condition i) has very important practical meaning 
because it is applied when z ( t )  and y ( t )  are real 
functions. In this case, spectra X ( f )  and Y ( f )  must 
be disjoint (Fig. lS(a)). 
Condition ii) is applied when z ( t )  and g ( t )  are 
complex. In this case spectra X ( f )  and Y ( f )  both 
must be right-sided and need not be disjoint (see Fig. 

A special case of condition ii) is when a = b = 0. 
Then, both z ( t )  and y(t) are analytic signals and (Cl) 
can be extended as follows: 

W ) ) .  

H[4t)Y(t)l = 4 t )  . H[Y(t)l = Y(t )  ’ H [z ( t ) ] .  (C4) 

ACKNOWLEDGMENT 

The author acknowledges the support of the Australian 
Defence Science and Technology Organization (DSTO) and 
the Australian Research Council (ARC). In addition, the 

BOASHASH: INSTANTANEOUS FREQUENCY OF SIGNAL: PART I 

(b) 

Fig. 15. 
(a) case for real signals; (b) case for complex signals. 

Regions of integration for Bedrosian product theorem 

author wishes to thank Peter O’Shea, Graeme Jones, and 
Branko Ristic for their contribution and help in preparing 
this manuscript, and Leon Cohen, University of New York, 
for helpful discussions and suggestions. The author also 
acknowledges the review of the final document by former 
colleague Dave Mackerras. In addition, the author thanks 
the anonymous reviewers for their helpful comments and 
suggestions. 

REFERENCES 
M. H. Ackroyd, “Instantaneous and time varying spectra-An 
introduction,” J .  Radio and Electron. Eng., vol. 39, no. 3, 1970. 
E. Bedrosian, “A product theorem for Hilbert transforms,” Proc. 
IEEE, vol. 51, pp. 6 8 M 8 9 ,  1963. 
M. V. Berry, “Semi-classical mechanics in phase space: a study 
of Wigner’s function,” Phil. Trans. Rqy. Soc., vol. A.287, pp. 

B. Bouachache, B. Escudie, P. Flandrin, and J. Grea, “Sur une 
condition necessaire et sufficiente de positivite de la represen- 
tation conjointe en temps et frequence,” Compte Rend. Acad. 
Sci., vol. 288, pp. 307-309, 1979. 
B. Bouachache and P. Flandrin, “Wigner-Ville analysis of time- 
varying signals,” in Proc. IEEE Int. Conf: Acoust., Speech, 
Signal Processing 82, Paris, France, pp. 1329-1333, 1982. 
B. Boashash, “Note on the use of the Wigner distribution 
for time frequency signal analysis,” lEEE Trans. on Acoustic, 
Speech, Signal Processing, vol. 36, pp. 1518-1521, Sept., 1988. 
B. Boashash, “Time-frequency signal analysis, the choice of 
a method and its applications,” in Advances in Spectrum Es- 
timation and Array Processing, vol. 1 of 2, S. Haykin, Ed. 
Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 418-517. 
B. Boashash, “Estimating and interpreting the instantaneous 
frequency of a signal: A tutorial review-Part 2: algorithms 
and applications,” Proc. IEEE, vol. 80, April 1992, this issue. 
B. Boashash. G. Jones, and P. O’Shea, “Instantaneous frequency 
of signals: concepts, estimation techniques and applications,” in 
Advanced Algorithms and Architectures for Signal Processing 
IV, Franklin T. Luk, Ed., Proc. SPIE 1154, pp. 382400,  1989. 
B. Boashash and G. Jones, “Instantaneous frequency and time 
frequency distributions,” in Time Frequency Signal Analysis - 
Methods and Applications, B. Boashash, Ed., Longman Cheshire 
(ISBN No: 0 582 86873 4), 1991. 

237-271, 1977. 

537 



[ 111 J. Carson and T. Fry, “Variable frequency electric circuit theory 
with application to the theory of frequency modulation,” Bell 
System Tech. J., vol. 16, pp. 513-540, 1937. 

[I21 M. Chiollaz, B. Escudie, and A. Hellion, “Une condition 
necessaire et suffisante pour l’ecriture du modele exponentiel 
des signaux d’energie fini,” Ann. Telecommunic., vol. 33, nos. 
1-2, pp. 69-70, 1978. 

[I31 T. A. C. M. Claasen and W. F. G. Meckenbrauker, “The Wigner 
distribution-Tool for time-frequency signal analysis-Parts I 
and 11,” Philips Research J . ,  vol. 35, pp. 217-250 and pp. 
276300, 1980. 

[ 141 L. Cohen, “Generalised phase-space distributions,” J. Math. 

[ 151 L. Cohen, “Time-frequency distributions-A review,” Proc. 
IEEE, vol. 77, pp. 941-981, 1989. 

[ 161 L. Cohen, “Instantaneous bandwidth,” in Time-Frequency Sig- 
nal Analysis - Methods and Applications, B. Boashash, Ed., 
Longman Chesire, (ISBN No: 0 582 86873 4), 1991. 

171 L. Cohen and C. Lee, “Instantaneous frequency, its standard de- 
viation and multicomponent Signals,” in Advanced Algorithms 
and Architectures for Signal Processing Ill, Franklin T. Luk, 
Ed., Proc. SPIE, vol. 975, pp. 186-208, 1988. 

181 L. Cohen and C. Lee, “Instantaneous frequency and time- 
frequency distributions,” in Proc. IEEE Int. Conf: Circuits and 
Systems, pp. 1231, 1989. 

8b] L. Cohen and C. Lee, “Instantaneous bandwidth for signals 
and spectrogram,” in Proc. Int. Conf: Acoust. Speech and Signal 
Proc., pp. 2451-2454, Albuquerque, NM, 1990. 

[19] E. T. Copson, Asymptotic Expansions. New York: Cambridge 
University Press, 1965. 

[20] D. Gabor, “Theory of communication,” Proc. IEE, vol. 93 (III), 
pp. 429457,  1946. 

[21] L. Griffiths, “Rapid measurement of digital instantaneous fre- 
quency,” IEEE Trans. on Acoust. Speech, Signal Processing, 
vol. 23, 1975. 

[22] M. S. Gupta, “Definition of instantaneous frequency and fre- 
quency measurability,” Amer. J .  Phys., vol. 43, no. 12, Dec. 
1975. 

[22a] S. Haykin, An introduction to analog and digital communica- 
tions, Wiley, 1989. 

[22b] F. B. Hildebrand, Advanced Calculus for Engineers. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1949. 

[23] G. Jones and B. Boashash, “The concepts of time-frequency sig- 
nal analysis, instantaneous frequency and instantaneous band- 
width,” in Proc. IREECON, Australia, 1989. 

[24] G. Jones and B. Boashash, “On the concepts of instantaneous 
frequency, time-delay, instantaneous bandwidth and their rela- 
tion to time-frequency distributions,” in Proc. IEEE Int. Conf: 
Acoust., Speech, Signal Processing 90, pp. 2467-2470, 1990. 

[25] G. Jones, Ph.D. dissertation, Queensland, University of Tech- 
nology, 1992. 

[26] K. Kodera, R. Gendrin, and C. Villedary, “Analysis of time- 
varying signals with small BT products,” IEEE Trans. A C ~ U S I .  
Speech, Signal Processing, vol. 26, pp. 64-76, Feb. 1978. 

[27] J. L Lacoume and W. Kofman, “Description des processus non- 
stationnaires par la representation temp-frequence-Applica- 
tions,” Colloque national sur le traitement du signal et ses 
applications, Nice, France, 1975. 

[28] L. Mandel, “Interpretation of instantaneous frequency,” Amer. 
J .  Phys., vol. 42, pp. 840-846, 1974. 

[29] K. V. Mardia, Statistics of Directional Data. London, UK: 
Academic Press, 1972. 

[30] A. Nuttall, “On the quadrature approximation to the Hilbert 
transform of modulated signals,” Proc. IEEE, vol. 54, pp. 1458, 
1966. 

[31] A. V. Oppenheim and R. W. Schaffer, Discrete Time Signal 
Processing Englewood Cliffs, NJ: Prentice-Hall, 1989. 

[32] M. B. Priestley, Non-linear and Non-stationary Time-series 
Analysis. 

[33] A. Rihaczek, “Hilbert transforms and the complex representa- 
tion of signals,” Proc. IEEE, vol. 54, pp. 43&435, 1966. 

[34] A. Rihaczek, “Signal energy distribution in time and fre- 

Phys., vol. 7, pp. 781-786, 1966. 

London, U K  Academic Press, 1988. 

quency”, IEEE Trans. Inform. Theory, vol. IT-14, pp. 369-374, 
1968. 

[34a] S. O.Rice, “Envelopes of narrow-band signals”,” in Proc. IEEE, 
vol. 70, pp. 692-699, July 1982. 

[35] J. Shekel, “Instantaneous frequency,” Proc. IRE, vol. 41, pp. 
548, 1953. 

[36] A. Spataru, Theorie de la Transmission de /’Information -1: 
signaux et bruits, translation from Editura Technica, Bucarest, 
Romania, 1970. 

[37] L. R. 0. Storey, “An investigation of whistling atmospherics”, 
Trans. Roy. Soc., vol. A246, pp. 113-141, 1953. 

[37a] D. Slepian, “On bandwidth,” in Proc. IEEE, vol. 64, pp. 
292-300, Mar. 1976. 

[38] D. Slepian, H. Landau, and H. Pollak, “Prolate spheroidal wave 
functions-Fourier analysis and uncertainty, I, I1 and 111,” Bell 
Syst. Tech. J . ,  vol. 40, no.1, pp. 43-84, 1961. 

[39] D. E. Vakman, “Do we know what are the instantaneous 
frequency and instantaneous amplitude of a signal,” Radio Eng. 
and Electron. Phys., vol. 21(6), pp. 95-100, June 1976. 

[40] __ , Sophisticated Signals and Uncertainty Principle in Radar. 
New York: Springer-Verlag, 1968. 

[40a] D. E. Vakman and L. A. Vainshtein, “Amplitude, phase, 
frequency-Fundamental concepts of oscillation theory,” in 
Sov.Phys.Usp., vol. 20 (12), pp. 1002-1016, Dec. 1977. 

[41] B. Van der Pol, “The fundamental principles of frequency 
modulation,” Proc. IEE, vol. 93 (111), pp. 153-158, 1946. 

[42] J. Ville, “Theorie et application de la notion de signal analytic,” 
Cables et Transmissions, vol. 2A(1), pp. 61-74, Paris, France, 
1948. Translation by I. Selin, “Theory and applications of the 
notion of complex signal,” Report T-92, RAND Corporation, 
Santa Monica, CA. 

[43] W. J. Williams and J. Jeong, “Reduced interference time- 
frequency distributions,” in Time-Frequency Signal Analysis - 
Methods and Applications, B. Boashash, Ed., Longman Chesire 
(ISBN No: 0 582 86873 4), 1991. 

Boualem Boashash (Senior Member, IEEE) 
received the Diplome d’ingenieur-Physique 
Electronique from the ICPI University of Lyon, 
France, in 1978. He received the M.S. degree 
from the Institut National Polytechnique de 
Grenoble, Grenoble, France in 1979, and the 
Doctorate (Docteur-Ingenieur) degree from the 
same university in May 1982. 

In 1979 he joined Elf-Aquitaine Geophysical 
Research Centre, Pau, France, where he was a 
research eneineer in the signal Drocessine grow. 

In May 1982, he joined the Institut National des SGenc‘es Appli&& cie 
Lyon, Lyon, France, where he was a Maitre-Assistant AssociC. In January 
1984, he joined the Electrical Engineering Department of the University 
of Queensland, Australia, as a lecturer, Senior Lecturer (1986), and then 
Reader (1989). In 1990, he joined Bond University, Graduate School 
of Science and Technology, as adjunct Professor of signal processing. 
In 1991, he joined the Queensland University of Technology as the 
foundation Professor of signal processing and director of the Centre for 
Signal Processing Research. He is the editor of the book Time-Frequency 
Signal Analysis: Methods and Applications, Longman-Cheshire, 1991. He 
has contributed several chapters to advanced signal processing books 
including the chapter “Time-Frequency Signal Analysis” in Advances in 
Spectrum Estimation, S. Haykin, Ed., Prentice-Hall, 1991. He has also 
written over one hundred technical publications, has supervised twelve 
Ph.D. students and five Masters students. His research interests are 
time-frequency signal analysis, spectral estimation, signal detection and 
classification, and higher-order spectra. 

Dr. Boashash is the chairman of the International Symposium on Signal 
Processing and its applications, organized regularly in Australia since 
1987. 

S38 PROCEEDINGS OF THE IEEE, VOL 80, NO 4, APRIL 1992 

- ~ 
~~ 


