Analysis of Everyday Sounds

Dan Ellis and Keansub Lee

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

- Personal and Consumer Audio
- 2. Segmenting & Clustering
- 3. Special-Purpose Detectors
- 4. Generic Concept Detectors
- 5. Challenges & Future

LabROSA Overview

Personal Audio Archives

- Easy to record everything you hear
 - <2GB / week @ 64 kbps</p>
- Hard to find anything
 - how to scan?
 - how to visualize?
 - how to index?
- Need automatic analysis
- Need minimal impact

Personal Audio Applications

- Automatic appointment-book history
 - o fills in when & where of movements
- "Life statistics"
 - how long did I spend in meetings this week?
 - most frequent conversations
 - favorite phrases?
- Retrieving details
 - what exactly did I promise?
 - o privacy issues...
- Nostalgia
- ... or what?

Consumer Video

- Short video clips as the evolution of snapshots
 - 10-60 sec, one location, no editing
 - browsing?

- More information for indexing...
 - video + audio
 - foreground + background

Information in Audio

Environmental recordings contain info on:

- location type (restaurant, street, ...) and specific
- activity talking, walking, typing
- people generic (2 males), specific (Chuck & John)
- spoken content ... maybe

but not:

- what people and things "looked like"
- o day/night ...
- ... except when correlated with audible features

A Brief History of Audio Processing

- Environmental sound classification draws on earlier sound classification work
 - as well as source separation...

2. Segmentation & Clustering

- Top-level structure for long recordings:
 Where are the major boundaries?
 - e.g. for diary application
 - support for manual browsing
- Length of fundamental time-frame
 - 60s rather than 10ms?
 - background more important than foreground
 - average out uncharacteristic transients
- Perceptually-motivated features
 - .. so results have perceptual relevance
 - broad spectrum + some detail

MFCC Features

• Need "timbral" features: Mel-Frequency Cepstral Coeffs (MFCCs)

• auditory-like frequency warping

• log-domain

discrete

cosine

transform

Spectrogram

Spectrogram

Mel-frequency

Mel-Frequency Cepstral Coefficients

freq / kHz 40 Mel channels 30 20 10 0 -10 dnefrency 10 level / dB 0.5 1.5 2.5

= orthogonalization

2007-07-24 р. 9/35

COLUMBIA UNIVERSITY

Long-Duration Features

Ellis & Lee '04

- Capture both average and variation
- Capture a little more detail in subbands...

Spectral Entropy

- Auditory spectrum: $A[n,j] = \sum_{j=1}^{N_F} w_{jk}X[n,k]$
- Spectral entropy \approx 'peakiness' of each band:

$$H[n,j] = -\sum_{k=0}^{N_F} \frac{w_{jk}X[n,k]}{A[n,j]} \cdot log\left(\frac{w_{jk}X[n,k]}{A[n,j]}\right)$$

BIC Segmentation

Chen & Gopalakrishnan '98

• BIC (Bayesian Info. Crit.) compares models:

$$\log \frac{L(X_1; M_1)L(X_2; M_2)}{L(X; M_0)} \ge \frac{\lambda}{2} \log(N) \Delta \#(M)$$

BIC Segmentation Results

- Evaluate: 62 hr hand-marked dataset
 - 8 days, 139 segments, 16 categories
 - measure Correct Accept % @ False Accept = 2%:

Feature Correct Accept

µ dВ	80.8%
μн	81.1%
σн/µн	81.6%
µав + о н/µн	84.0%
μав + σн/μн + μн	83.6%
mfcc	73.6%

Segment Clustering

- Daily activity has lots of repetition: Automatically cluster similar segments
 - 'affinity' of segments as KL2 distances

Spectral Clustering

Ng, Jordan, Weiss '0 I

• Eigenanalysis of affinity matrix: $A = U \cdot S \cdot V \propto$

 \mathbf{o} eigenvectors $\mathbf{v}_{\mathbf{k}}$ give cluster memberships

2007-07-24 p. 15/35

Clustering Results

- Clustering of automatic segments gives 'anonymous classes'
 - BIC criterion to choose number of clusters
 - make best correspondence to 16 GT clusters

- Frame-level scoring gives ~70% correct
 - o errors when same 'place' has multiple ambiences

Browsing Interface

- Browsing / Diary interface
 - links to other information (diary, email, photos)
 - synchronize with note taking? (Stifelman & Arons)
 - audio thumbnails

Analysis of Everyday Sounds - Ellis & Lee

Release Tools + "how to" for capture

3. Special-Purpose Detectors: Speech

- Speech emerges as most interesting content
- Just identifying speech would be useful
 - goal is speaker identification / labeling
- Lots of background noise
 - conventional Voice Activity Detection inadequate
- Insight: Listeners detect pitch track (melody)
 - look for voice-like periodicity in noise

COLUMBIA UNIVERSITY

Voice Periodicity Enhancement

Lee & Ellis '06

Noise-robust subband autocorrelation

Subtract local average

• suppresses steady background e.g. machine noise

- 15 min test set; 88% acc (no suppression: 79%)
- also for enhancing speech by harmonic filtering

Detecting Repeating Events

Ogle & Ellis '07

- Recurring sound events can be informative
 - indicate similar circumstance...
 - but: define "event" sound organization
 - define "recurring event" how similar?
 - ... and how to find them tractable?
- Idea: Use hashing (fingerprints)
 - index points to other occurrences of each hash;
 intersection of hashes points to match
 - much quicker search
 - use a fingerprint insensitive to background?

Shazam Fingerprints

A. Wang '06

COLUMBIA UNIVERSITY

• Prominent spectral onsets are landmarks; Use relations $\{f_1, f_2, \Delta t\}$ as hashes

o intrinsically robust to background noise

Exhaustive Search for Repeats

- More selective hashes →
 - few hits required to confirm match (faster; better precision)
 - but less robust to backgound (reduce recall)
- Works well when exact structure repeats
 - recorded music, electronic alerts
 - ono good for "organic" sounds e.g. garage door

Music Detector

Lee & Ellis '08

- Two characteristic features for music
 - strong, sustained periodicity (notes)
 - clear, rhythmic repetition (beat)
 - at least one should be present!

- Noise-robust pitch detector
 - looks for high-order autocorrelation
- Beat tracker
 - .. from Music IR work

4. Generic Concept Detectors

Chang, Ellis et al. '07

- Consumer Video application: How to assist browsing?
 - system automatically tags recordings
 - tags chosen by usefulness, feasibility
- Initial set of 25 tags defined:
 - o ''animal'', ''baby'', ''cheer'', ''dancing'' ...
 - human annotation of I300+ videos
 - evaluate by average precision
- Multimodal detection
 - separate audio + visual low-level detectors
 - (then fused...)

MFCC Covariance Representation

- Each clip/segment → fixed-size statistics
 - similar to speaker ID and music genre classification
- Full Covariance matrix of MFCCs
 - maps the kinds of spectral shapes present

Clip-to-clip distances for SVM classifier

by KL or 2nd Gaussian model

GMM Histogram Representation

- Want a more 'discrete' description
 - .. to accommodate nonuniformity in MFCC space
 - .. to enable other kinds of models...
- Divide up feature space with a single Gaussian Mixture Model
 - .. then represent each clip by the components used

2007-07-24 p. 26/35

Latent Semantic Analysis (LSA)

Hofmann '99

- Probabilistic LSA (pLSA) models each histogram as a mixture of several 'topics'
 - .. each clip may have several things going on
- Topic sets optimized through EM
 - $\circ p(ftr \mid clip) = \sum_{topics} p(ftr \mid topic) p(topic \mid clip)$

Audio-Only Results

Wide range of results:

- audio (music, ski) vs. non-audio (group, night)
- large AP uncertainty on infrequent classes

COLUMBIA UNIVERSITY

How does it 'feel'?

Browser impressions: How wrong is wrong?

Negative

Negative

Top 8 hits for "Baby"

Negative

Negative

Confusion analysis

• Where are the errors coming from?

Fused Results - AV Joint Boosting

Audio helps in many classes

Analysis of Everyday Sounds - Ellis & Lee

5. Future: Temporal Focus

- Global vs. local class models
 - tell-tale acoustics may be 'washed out' in statistics
 - try iterative realignment of HMMs:

New Way: Limited temporal extents

o "background" (bg) model shared by all clips

Handling Sound Mixtures

- MFCCs of mixtures ≠ mix of MFCCs
 - recognition despite widely varying background?
 - factorial models / Nonnegative Matrix Factorization
 - sinusoidal / landmark techniques

COLUMBIA UNIVERSITY

Larger Datasets

- Many detectors are visibly data-limited
 - getting data is ~ hard
 - labeling data is expensive
- Bootstrap from YouTube etc.

- lots of web video is edited/dubbed...
 - need a "consumer video" detector?
- Preliminary YouTube results disappointing
 - o downloaded data needed extensive clean-up
 - o models did not match Kodak data
- (Freely available data!)

Conclusions

- Environmental sound contains information
 - .. that's why we hear!
 - .. computers can hear it too
- Personal audio can be segmented, clustered
 - find specific sounds to help navigation/retrieval
- Consumer video can be 'tagged'
 - .. even in unpromising cases
 - audio is complementary to video
- Interesting directions for better models

References

- D. Ellis and K.S. Lee, "Minimal-Impact Audio-Based Personal Archives," *First ACM workshop on Continuous Archiving and Recording of Personal Experiences CARPE-04*, New York, Oct 2004, pp. 39-47.
- S. Chen and P. Gopalakrishnan, "Speaker, environment and channel change detection and clustering via the Bayesian Information Criterion," In *Proc. DARPA Broadcast News Transcription and Understanding Workshop*, 1998.
- A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In *Advances in NIPS*. MIT Press, Cambridge MA, 2001.
- K. Lee and D. Ellis, "Voice Activity Detection in Personal Audio Recordings Using Autocorrelogram Compensation," *Proc. Interspeech ICSLP-06*, pp. 1970-1973, Pittsburgh, Oct 2006.
- J. Ogle and D. Ellis, "Fingerprinting to Identify Repeated Sound Events in Long-Duration Personal Audio Recordings," *Proc. ICASSP-07*, Hawai'i, pp.I-233-236.
- A. Wang, "The Shazam music recognition service," *Communications of the ACM*, 49(8):44–48, Aug 2006.
- K. Lee and D. Ellis, "<u>Detecting Music in Ambient Audio by Long-Window Autocorrelation</u>," *Proc. ICASSP-08*, pp. 9-12, Las Vegas, April 2008.
- •S.-F. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A. Loui, J. Luo (2007), <u>Large-scale multimodal semantic concept detection for consumer video</u>, *Multimedia Information Retrieval workshop*, *ACM Multimedia* Augsburg, Germany, Sep 2007, pp. 255-264.
- •T. Hofmann. Probabilistic latent semantic indexing. In Proc. SIGIR, 1999

