EE E6820: Speech & Audio Processing & Recognition

Lecture 6: Nonspeech and Music

Dan Ellis <dpwe@ee.columbia.edu>
Michael Mandel <mim@ee.columbia.edu>

Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

February 26, 2009

- Music & nonspeech
- 2 Environmental Sounds
- Music Synthesis Techniques
- 4 Sinewave Synthesis

Outline

- Music & nonspeech
- 2 Environmental Sounds
- Music Synthesis Techniques
- 4 Sinewave Synthesis

Music & nonspeech

- What is 'nonspeech'?
 - according to research effort: a little music
 - in the world: most everything

• attributes?

Sound attributes

- Attributes suggest model parameters
- What do we notice about 'general' sound?
 - psychophysics: pitch, loudness, 'timbre'
 - bright/dull; sharp/soft; grating/soothing
 - sound is not 'abstract': tendency is to describe by source-events
- Ecological perspective
 - what matters about sound is 'what happened'
 - ightarrow our percepts express this more-or-less directly

Motivations for modeling

- Describe/classify
 - cast sound into model because want to use the resulting parameters
- Store/transmit
 - model implicitly exploits limited structure of signal
- Resynthesize/modify
 - model separates out interesting parameters

Analysis and synthesis

Analysis is the converse of synthesis:

- Can exist apart:
 - analysis for classification
 - synthesis of artificial sounds
- Often used together:
 - encoding/decoding of compressed formats
 - resynthesis based on analyses
 - analysis-by-synthesis

Outline

- Music & nonspeech
- 2 Environmental Sounds
- Music Synthesis Techniques
- 4 Sinewave Synthesis

Environmental Sounds

- Where sound comes from:
 mechanical interactions
 - contact / collisions
 - rubbing / scraping
 - ringing / vibrating
- Interest in environmental sounds
 - carry information about events around us.. including indirect hints
 - need to create them in virtual environments.. including soundtracks
- Approaches to synthesis
 - recording / sampling
 - synthesis algorithms

Collision sounds

- Factors influencing:
 - colliding bodies: size, material, damping
 - local properties at contact point (hardness)
 - energy of collision
- Source-filter model
 - "source" = excitation of collision event (energy, local properties at contact)
 - "filter" = resonance and radiation of energy (body properties)
- Variety of strike/scraping sounds
 - ▶ resonant freqs ~ size/shape
 - ▶ damping ~ material
 - lacktriangle HF content in excitation/strike \sim mallet, force

Sound textures

- What do we hear in:
 - a city street
 - ▶ a symphony orchestra
- How do we distinguish:
 - waterfall
 - rainfall
 - applause
 - static

Levels of ecological description...

Sound texture modeling (Athineos)

- Model broad spectral structure with LPC
 - could just resynthesize with noise
- Model fine temporal structure in residual with linear prediction in time domain

- precise dual of LPC in frequency
- 'poles' model temporal events

Allows modification / synthesis?

Outline

- Music & nonspeech
- Environmental Sounds
- Music Synthesis Techniques
- 4 Sinewave Synthesis

Music synthesis techniques

- What is music?
 - ▶ could be anything → flexible synthesis needed!
- Key elements of conventional music
 - instruments
 - → note-events (time, pitch, accent level)
 - → melody, harmony, rhythm
 - patterns of repetition & variation
- Synthesis framework:

instruments: common framework for many notes score: sequence of (time, pitch, level) note events

The nature of musical instrument notes

 Characterized by instrument (register), note, loudness/emphasis, articulation...

Distinguish how?

Development of music synthesis

- Goals of music synthesis:
 - generate realistic / pleasant new notes
 - control / explore timbre (quality)
- Earliest computer systems in 1960s (voice synthesis, algorithmic)
- Pure synthesis approaches:
 - ▶ 1970s: Analog synths
 - ▶ 1980s: FM (Stanford/Yamaha)
 - 1990s: Physical modeling, hybrids
- Analysis-synthesis methods:
 - sampling / wavetables
 - sinusoid modeling
 - harmonics + noise (+ transients)
- others?

Analog synthesis

• The minimum to make an 'interesting' sound

- Elements:
 - harmonics-rich oscillators
 - time-varying filters
 - time-varying envelope
 - modulation: low frequency + envelope-based
- Result:
 - time-varying spectrum, independent pitch

FM synthesis

- Fast frequency modulation \rightarrow sidebands: $\cos(\omega_c t + \beta \sin(\omega_m t)) = \sum_{n=-\infty}^{\infty} J_n(\beta) \cos((\omega_c + n\omega_m)t)$
- a harmonic series if $\omega_c = r\omega_m$ • $J_n(\beta)$ is a Bessel function:

 \rightarrow Complex harmonic spectra by varying β

- $ightharpoonup \omega_c = 2000 \; \mathrm{Hz}, \; \omega_m = 200 \; \mathrm{Hz}$
- what use?

Sampling synthesis

- Resynthesis from real notes
 - \rightarrow vary pitch, duration, level
- Pitch: stretch (resample) waveform

Duration: loop a 'sustain' section

• Level: cross-fade different examples

- need to 'line up' source samples
- ▶ good & bad?

Outline

- Music & nonspeech
- 2 Environmental Sounds
- Music Synthesis Techniques
- Sinewave Synthesis

Sinewave synthesis

- If patterns of harmonics are what matter, why not generate them all explicitly: $s[n] = \sum_k A_k[n] \cos(k \cdot \omega_0[n] \cdot n)$
 - particularly powerful model for pitched signals
- Analysis (as with speech):
 - find peaks in STFT $|S[\omega, n]|$ & track
 - or track fundamental ω_0 (harmonics / autocorrelation) & sample STFT at $k\cdot\omega_0$
 - \rightarrow set of $A_k[n]$ to duplicate tone:

Synthesis via bank of oscillators

• The underlying STFT:

$$X[k, n_0] = \sum_{n=0}^{N-1} x[n+n_0] \cdot w[n] \cdot \exp -j\left(\frac{2\pi kn}{N}\right)$$

- ▶ what value for *N* (FFT length & window size)?
- ▶ what value for H (hop size: $n_0 = r \cdot H$, $r = 0, 1, 2 \dots$)?
- STFT window length determines freq. resolution:

$$X_w(e^{j\omega}) = X(e^{j\omega}) * W(e^{j\omega})$$

- Choose N long enough to resolve harmonics
 - → 2-3x longest (lowest) fundamental period
 - ► e.g. 30-60 ms = 480-960 samples @ 16 kHz
 - ▶ choose $H \le N/2$
- N too long → lost time resolution
 - limits sinusoid amplitude rate of change

 Choose candidate sinusoids at each time by picking peaks in each STFT frame:

• Quadratic fit for peak:

linear interpolation of unwrapped phase

- Which peaks to pick?
 Want 'true' sinusoids, not noise fluctuations
 - 'prominence' threshold above smoothed spectrum

- Sinusoids exhibit stability...
 - ▶ of amplitude in time
 - ▶ of phase derivative in time
 - → compare with adjacent time frames to test?

 'Grow' tracks by appending newly-found peaks to existing tracks:

- ambiguous assignments possible
- Unclaimed new peak
 - 'birth' of new track
 - backtrack to find earliest trace?
- No continuation peak for existing track
 - 'death' of track
 - or: reduce peak threshold for hysteresis

Resynthesis of sinewave models

- After analysis, each track defines contours in frequency, amplitude $f_k[n]$, $A_k[n]$ (+ phase?)
 - use to drive a sinewave oscillators & sum up

• 'Regularize' to exactly harmonic $f_k[n] = k \cdot f_0[n]$

Modification in sinewave resynthesis

- Change duration by warping timebase
 - may want to keep onset unwarped

- Change pitch by scaling frequencies
 - either stretching or resampling envelope

• Change timbre by interpolating parameters

Sinusoids + residual

- Only 'prominent peaks' became tracks
 - remainder of spectral energy was noisy?
 - → model residual energy with noise
- How to obtain 'non-harmonic' spectrum?
 - zero-out spectrum near extracted peaks?
 - or: resynthesize (exactly) & subtract waveforms

$$e_s[n] = s[n] - \sum_k A_k[n] \cos(2\pi n \cdot f_k[n])$$

.. must preserve phase!

- Can model residual signal with LPC
 - ightarrow flexible representation of noisy residual

Sinusoids + noise + transients

• Sound represented as sinusoids and noise:

$$s[n] = \sum_{k} \underline{A_k[n] \cos(2\pi n \cdot f_k[n])} + \underline{h_n[n] * b[n]}$$
Sinusoids Residual $e_s[n]$

• Parameters are $A_k[n], f_k[n], h_n[n]$

- Separate out abrupt transients in residual? $e_s[n] = \sum_k t_k[n] + h_n[n] * b'[n]$
 - ▶ more specific → more flexible

Summary

- 'Nonspeech audio'
 - ▶ i.e. sound in general
 - characteristics: ecological
- Music synthesis
 - control of pitch, duration, loudness, articulation
 - evolution of techniques
 - sinusoids + noise + transients
- Music analysis...
 - and beyond?

References

- W.W. Gaver. Synthesizing auditory icons. In *Proc. Conference on Human factors in computing systems INTERCHI-93*, pages 228–235. Addison-Wesley, 1993.
- M. Athineos and D. P. W. Ellis. Autoregressive modeling of temporal envelopes. *IEEE Tr. Signal Proc.*, 15(11):5237-5245, 2007. URL http://www.ee.columbia.edu/~dpwe/pubs/AthinE07-fdlp.pdf.
- X. Serra and J. Smith III. Spectral Modeling Synthesis: A Sound Analysis/Synthesis System Based on a Deterministic Plus Stochastic Decomposition. *Computer Music Journal*, 14(4):12–24, 1990.
- T. S. Verma and T. H. Y. Meng. An analysis/synthesis tool for transient signals that allows aflexible sines+ transients+ noise model for audio. In *Proc. ICASSP*, pages VI–3573–3576, Seattle, 1998.