EE E6820: Speech \& Audio Processing \& Recognition

Lecture 3:
 Machine learning, classification, and generative models

Michael Mandel mim@ee.columbia.edu
Columbia University Dept. of Electrical Engineering http://www.ee.columbia.edu/~dpwe/e6820

February 7, 2008
(1) Classification
(2) Generative models
(3) Gaussian models

4 Hidden Markov models

Outline

(1) Classification

(2) Generative models

(3) Gaussian models

4 Hidden Markov models

Classification and generative models

- Classification
- discriminative models
- discrete, categorical random variable of interest
- fixed set of categories
- Generative models
- descriptive models
- continuous or discrete random variable(s) of interest
- can estimate parameters
- Bayes' rule makes them useful for classification

Building a classifier

- Define classes/attributes
- could state explicit rules
- better to define through 'training' examples
- Define feature space
- Define decision algorithm
- set parameters from examples
- Measure performance
- calculated (weighted) error rate

Classification system parts

Feature extraction

- Right features are critical
- waveform vs formants vs cepstra
- invariance under irrelevant modifications
- Theoretically equivalent features may act very differently in a particular classifier
- representations make important aspects explicit
- remove irrelevant information
- Feature design incorporates 'domain knowledge'
- although more data \Rightarrow less need for 'cleverness'
- Smaller 'feature space' (fewer dimensions)
\rightarrow simpler models (fewer parameters)
\rightarrow less training data needed
\rightarrow faster training

[inverting MFCCs]

0
0

Optimal classification

- Minimize probability of error with Bayes optimal decision

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta_{i}}{\operatorname{argmax}} p\left(\theta_{i} \mid x\right) \\
p(\text { error }) & =\int p(\operatorname{error} \mid x) p(x) d x \\
& =\sum_{i} \int_{\Lambda_{i}}\left(1-p\left(\theta_{i} \mid x\right)\right) p(x) d x
\end{aligned}
$$

- where Λ_{i} is the region of x where θ_{i} is chosen
\ldots but $p\left(\theta_{i} \mid x\right)$ is largest in that region
- so p (error) is minimized

Sources of error

- Suboptimal threshold / regions (bias error)
- use a Bayes classifier
- Incorrect distributions (model error)
- better distribution models / more training data
- Misleading features ('Bayes error')
- irreducible for given feature set
- regardless of classification scheme

Two roads to classification

Optimal classifier is

$$
\hat{\theta}=\underset{\theta_{i}}{\operatorname{argmax}} p\left(\theta_{i} \mid x\right)
$$

but we don't know $p\left(\theta_{i} \mid x\right)$

- Can model distribution directly
e.g. Nearest neighbor, SVM, AdaBoost, neural net
- maps from inputs x to outputs θ_{i}
- a discriminative model
- Often easier to model data likelihood $p\left(x \mid \theta_{i}\right)$
- use Bayes' rule to convert to $p\left(\theta_{i} \mid x\right)$
- a generative (descriptive) model

Nearest neighbor classification

Find closest match (Nearest Neighbor)

- Naïve implementation takes $O(N)$ time for N training points
- As $N \rightarrow \infty$, error rate approaches twice the Bayes error rate
- With K summarized classes, takes $O(K)$ time
- Locality sensitive hashing gives approximate nearest neighbors in $O\left(d n^{1 / c^{2}}\right)$ time (Andoni and Indyk, 2006)

Support vector machines

- "Large margin" linear classifier for separable data
- regularization of margin avoids over-fitting
- can be adapted to non-separable data (C parameter)
- made nonlinear using kernels $k\left(x_{1}, x_{2}\right)=\Phi\left(x_{1}\right) \cdot \Phi\left(x_{2}\right)$

- Depends only on training points near the decision boundary, the support vectors
- Unique, optimal solution for given Φ and C

Outline

(1) Classification

(2) Generative models
(3) Gaussian models

4 Hidden Markov models

Generative models

- Describe the data using structured probabilistic models
- Observations are random variables whose distribution depends on model parameters
- Source distributions $p\left(x \mid \theta_{i}\right)$
- reflect variability in features
- reflect noise in observation
- generally have to be estimated from data (rather than known in advance)

Generative models (2)

Three things to do with generative models

- Evaluate the probability of an observation, possibly under multiple parameter settings

$$
p(x), \quad p\left(x \mid \theta_{1}\right), \quad p\left(x \mid \theta_{2}\right), \quad \ldots
$$

- Estimate model parameters from observed data

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmin}} C\left(\theta^{*}, \theta \mid x\right)
$$

- Run the model forward to generate new data

$$
\tilde{x} \sim p(x \mid \hat{\theta})
$$

Random variables review

- Random variables have joint distributions, $p(x, y)$
- Marginal distribution of y

$$
p(y)=\int p(x, y) d x
$$

- Knowing one value in a joint distribution constrains the remainder
- Conditional distribution of x given y

$$
p(x \mid y) \equiv \frac{p(x, y)}{p(y)}=\frac{p(x, y)}{\int p(x, y) d y}
$$

Bayes' rule

$$
\begin{gathered}
p(x \mid y) p(y)=p(x, y)=p(y \mid x) p(x) \\
\therefore \quad p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}
\end{gathered}
$$

\Rightarrow can reverse conditioning given priors/marginals

- terms can be discrete or continuous
- generalizes to more variables

$$
p(x, y, z)=p(x \mid y, z) p(y, z)=p(x \mid y, z) p(y \mid z) p(z)
$$

- allows conversion between joint, marginals, conditionals

Bayes' rule for generative models

- Run generative models backwards to compare them

$$
\begin{aligned}
p(\theta \mid x) & =\frac{\begin{array}{l}
\text { Likelihood } \\
\int p(x \mid \theta) \\
\text { Evidence }=p(x)
\end{array}}{\text { Posterior prob }} \quad
\end{aligned} \quad \begin{aligned}
& \text { Prior prob }
\end{aligned}
$$

- Posterior is the classification we're looking for
- combination of prior belief in each class
- with likelihood under our model
- normalized by evidence (so \int posteriors $=1$)
- Objection: priors are often unknown
... but omitting them amounts to assuming they are all equal

Computing probabilities and estimating parameters

- Want probability of the observation under a model, $p(x)$
- regardless of parameter settings
- Full Bayesian integral

$$
p(x)=\int p(x \mid \theta) p(\theta) d \theta
$$

- Difficult to compute in general, approximate as $p(x \mid \hat{\theta})$
- Maximum likelihood (ML)

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(x \mid \theta)
$$

- Maximum a posteriori (MAP): ML + prior

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(\theta \mid x)=\underset{\theta}{\operatorname{argmax}} p(x \mid \theta) p(\theta)
$$

Model checking

- After estimating parameters, run the model forward
- Check that
- model is rich enough to capture variation in data
- parameters are estimated correctly
- there aren't any bugs in your code
- Generate data from the model and compare it to observations

$$
\tilde{x} \sim p(x \mid \theta)
$$

- are they similar under some statistics $T(x): \mathbb{R}^{d} \mapsto \mathbb{R}$?
- can you find the real data set in a group of synthetic data sets?
- Then go back and update your model accordingly
- Gelman et al. (2003, ch. 6)

Outline

(1) Classification

(2) Generative models
(3) Gaussian models

4 Hidden Markov models

Gaussian models

- Easiest way to model distributions is via parametric model
- assume known form, estimate a few parameters
- Gaussian model is simple and useful. In 1D

$$
p\left(x \mid \theta_{i}\right)=\frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu_{i}}{\sigma_{i}}\right)^{2}\right]
$$

- Parameters mean μ_{i} and variance $\sigma_{i} \rightarrow$ fit

Gaussians in d dimensions

$$
p\left(\mathbf{x} \mid \theta_{i}\right)=\frac{1}{(2 \pi)^{d^{d / 2}\left|\Sigma_{i}\right|^{1 / 2}}} \exp \left[-\frac{1}{2}\left(\mathbf{x}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(\mathbf{x}-\mu_{i}\right)\right]
$$

Described by a d-dimensional mean μ_{i} and a $d \times d$ covariance matrix Σ_{i}

Gaussian mixture models

- Single Gaussians cannot model
- distributions with multiple modes
- distributions with nonlinear correlations
- What about a weighted sum?

$$
p(x) \approx \sum_{k} c_{k} p\left(x \mid \theta_{k}\right)
$$

- where $\left\{c_{k}\right\}$ is a set of weights and $\left\{p\left(x \mid \theta_{k}\right)\right\}$ is a set of Gaussian components
- can fit anything given enough components
- Interpretation: each observation is generated by one of the Gaussians, chosen with probability $c_{k}=p\left(\theta_{k}\right)$

Gaussian mixtures (2)

e.g. nonlinear correlation

Problem: finding c_{k} and θ_{k} parameters

- easy if we knew which θ_{k} generated each x

Expectation-maximization (EM)

- General procedure for estimating model parameters when some are unknown
e.g. which GMM component generated a point
- Iteratively updated model parameters θ to maximize Q, the expected log-probability of observed data x and hidden data z

$$
Q\left(\theta, \theta_{t}\right)=\int_{z} p\left(z \mid x, \theta_{t}\right) \log p(z, x \mid \theta)
$$

- E step: calculate $p\left(z \mid x, \theta_{t}\right)$ using θ_{t}
- M step: find θ that maximizes Q using $p\left(z \mid x, \theta_{t}\right)$
- can prove $p(x \mid \theta)$ non-decreasing
- hence maximum likelihood model
- local optimum-depends on initialization

Fitting GMMs with EM

- Want to find
- parameters of the Gaussians $\theta_{k}=\left\{\mu_{k}, \Sigma_{k}\right\}$
- weights/priors on Gaussians $c_{k}=p\left(\theta_{k}\right)$
... that maximize likelihood of training data x
- If we could assign each x to a particular θ_{k}, estimation would be direct
- Hence treat mixture indices, z, as hidden
- form $Q=\mathrm{E}[p(x, z \mid \theta)]$
- differentiate wrt model parameters
\rightarrow equations for $\mu_{k}, \Sigma_{k}, c_{k}$ to maximize Q

GMM EM updated equations

Parameters that maximize Q

$$
\begin{aligned}
\nu_{n k} & \equiv p\left(z_{k} \mid x_{n}, \theta_{t}\right) \\
\mu_{k} & =\frac{\sum_{n} \nu_{n k} x_{n}}{\sum_{n} \nu_{n k}} \\
\Sigma_{k} & =\frac{\sum_{n} \nu_{n k}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T}}{\sum_{n} \nu_{n k}} \\
c_{k} & =\frac{1}{N} \sum_{n} \nu_{n k}
\end{aligned}
$$

- Each involves $\nu_{n k}$, 'fuzzy membership' of x_{n} in Gaussian k
- Updated parameter is just sample average, weighted by fuzzy membership

GMM examples

Vowel data fit with different mixture counts

[Example...]

Outline

(1) Classification

(2) Generative models
(3) Gaussian models

4 Hidden Markov models

Markov models

- A (first order) Markov model is a finite-state system whose behavior depends only on the current state
- "The future is independent of the past, conditioned on the present"
e.g. generative Markov model

SAAAAAAAABBBBBBBBBCCCCBBBBBBCE

Hidden Markov models

- Markov model where state sequence $Q=\left\{q_{n}\right\}$ is not directly observable ('hidden')
- But, observations X do depend on Q
- x_{n} is RV that depends only on current state $p\left(x_{n} \mid q_{n}\right)$

- can still tell something about state sequence...

(Generative) Markov models

HMM is specified by parameters Θ :

- states q^{i}
- transition probabilities $a_{i j}$

- emission distributions $b_{i}(x)$

(+ initial state probabilities π_{i})

$$
a_{i j} \equiv p\left(q_{n}^{j} \mid q_{n-1}^{i}\right) \quad b_{i}(x) \equiv p\left(x \mid q_{i}\right) \quad \pi_{i} \equiv p\left(q_{1}^{i}\right)
$$

Markov models for sequence recognition

- Independence of observations
- observation x_{n} depends only on current state q_{n}

$$
\begin{aligned}
p(X \mid Q) & =p\left(x_{1}, x_{2}, \ldots x_{N} \mid q_{1}, q_{2}, \ldots q_{N}\right) \\
& =p\left(x_{1} \mid q_{1}\right) p\left(x_{2} \mid q_{2}\right) \cdots p\left(x_{N} \mid q_{N}\right) \\
& =\prod_{n=1}^{N} p\left(x_{n} \mid q_{n}\right)=\prod_{n=1}^{N} b_{q_{n}}\left(x_{n}\right)
\end{aligned}
$$

- Markov transitions
- transition to next state q_{i+1} depends only on q_{i}

$$
\begin{aligned}
p(Q \mid M) & =p\left(q_{1}, q_{2}, \ldots \mid M\right) \\
& =p\left(q_{N} \mid q_{N-1} \ldots q_{1}\right) p\left(q_{N-1} \mid q_{N-2} \ldots q_{1}\right) p\left(q_{2} \mid q_{1}\right) p\left(q_{1}\right) \\
& =p\left(q_{N} \mid q_{N-1}\right) p\left(q_{N-1} \mid q_{N-2}\right) p\left(q_{2} \mid q_{1}\right) p\left(q_{1}\right) \\
& =p\left(q_{1}\right) \prod_{n=2}^{N} p\left(q_{n} \mid q_{n-1}\right)=\pi_{q_{1}} \prod_{n=2}^{N} a_{q_{n-1} q_{n}}
\end{aligned}
$$

Model-fit calculations

- From 'state-based modeling':

$$
p\left(X \mid \Theta_{j}\right)=\sum_{\text {all } Q} p\left(X \mid Q, \Theta_{j}\right) p\left(Q \mid \Theta_{j}\right)
$$

- For HMMs

$$
\begin{aligned}
& p(X \mid Q)=\prod_{n=1}^{N} b_{q_{n}}\left(x_{n}\right) \\
& p(Q \mid M)=\pi_{q_{1}} \prod_{n=2}^{N} a_{q_{n-1} q_{n}}
\end{aligned}
$$

- Hence, solve for $\hat{\Theta}=\operatorname{argmax}_{\Theta_{j}} p\left(\Theta_{j} \mid X\right)$
- Using Bayes' rule to convert from $p\left(X \mid \Theta_{j}\right)$
- Sum over all Q???

Summing over all paths

	S	A	B	E
S	\bullet	0.9	0.1	\bullet
A	\bullet	0.7	0.2	0.1
B	\bullet	\bullet	0.8	0.2
E	\cdot	\bullet	\bullet	1

All possible 3-emission paths Q_{k} from \mathbf{S} to E

q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	$p(Q \mid M)=\prod_{n} p\left(q_{n} \mid q_{n-1}\right)$	$p(X \mid Q, M)=\prod_{n} p\left(x_{n} \mid q_{n}\right)$	$p(X, Q \mid M)$
S	A	A	A	E	$.9 \times .7 \times .7 \times .1=\mathbf{0 . 0 4 4 1}$	$2.5 \times 0.2 \times 0.1=0.05$	0.0022
S	A	A	B	E	$.9 \times .7 \times .2 \times .2=0.0252$	$2.5 \times 0.2 \times 2.3=1.15$	0.0290
S	A	B	B	E	$.9 \times .2 \times .8 \times .2=0.0288$	$2.5 \times 2.2 \times 2.3=12.65$	0.3643
S	B	B	B	E	$.1 \times .8 \times .8 \times .2=0.0128$	$0.1 \times 2.2 \times 2.3=0.506$	0.0065
			$\Sigma=0.1109$	$\Sigma=p(X \mid M)=\mathbf{0 . 4 0 2 0}$			

The 'forward recursion'

- Dynamic-programming-like technique to sum over all Q
- Define $\alpha_{n}(i)$ as the probability of getting to state q^{i} at time step n (by any path):

$$
\alpha_{n}(i)=p\left(x_{1}, x_{2}, \ldots x_{n}, q_{n}=q^{i}\right) \equiv p\left(X_{1}^{n}, q_{n}^{i}\right)
$$

- $\alpha_{n+1}(j)$ can be calculated recursively:

Forward recursion (2)

- Initialize $\alpha_{1}(i)=\pi_{i} b_{i}\left(x_{1}\right)$
- Then total probability $p\left(X_{1}^{N} \mid \Theta\right)=\sum_{i=1}^{S} \alpha_{N}(i)$
\rightarrow Practical way to solve for $p\left(X \mid \Theta_{j}\right)$ and hence select the most probable model (recognition)

Optimal path

- May be interested in actual q_{n} assignments
- which state was 'active' at each time frame
e.g. phone labeling (for training?)
- Total probability is over all paths
... but can also solve for single best path, "Viterbi" state sequence
- Probability along best path to state q_{n+1}^{j} :

$$
\hat{\alpha}_{n+1}(j)=\left[\max _{i}\left\{\hat{\alpha}_{n}(i) a_{i j}\right\}\right] b_{j}\left(x_{n+1}\right)
$$

- backtrack from final state to get best path
- final probability is product only (no sum)
\rightarrow log-domain calculation is just summation
- Best path often dominates total probability

$$
p(X \mid \Theta) \approx p(X, \hat{Q} \mid \Theta)
$$

Interpreting the Viterbi path

- Viterbi path assigns each x_{n} to a state q^{i}
- performing classification based on $b_{i}(x)$
\ldots at the same time applying transition constraints $a_{i j}$

Viterbi labels: AAAAAAAABBBBBBBBBBBCCCCBBBBBBBC

- Can be used for segmentation
- train an HMM with 'garbage' and 'target' states
- decode on new data to find 'targets', boundaries
- Can use for (heuristic) training
e.g. forced alignment to bootstrap speech recognizer e.g. train classifiers based on labels...

Aside: Training and test data

- A rich model can learn every training example (overtraining)

- But the goal is to classify new, unseen data
- sometimes use 'cross validation' set to decide when to stop training
- For evaluation results to be meaningful:
- don't test with training data!
- don't train on test data (even indirectly...)

Aside (2): Model complexity

- More training data allows the use of larger models

- More model parameters create a better fit to the training data
- more Gaussian mixture components
- more HMM states
- For fixed training set size, there will be some optimal model size that avoids overtraining

Summary

- Classification is making discrete (hard) decisions
- Basis is comparison with known examples
- explicitly or via a model
- Classification models
- discriminative models, like SVMs, neural nets, boosters, directly learn posteriors $p\left(\theta_{i} \mid x\right)$
- generative models, like Gaussians, GMMs, HMMs, model likelihoods $p(x \mid \theta)$
- Bayes' rule lets us use generative models for classification
- EM allows parameter estimation even with some data missing

Parting thought

Is it wise to use generative models for discrimination or vice versa?

References

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In Proc. IEEE Symposium on Foundations of Computer Science, pages 459-468, Washington, DC, USA, 2006. IEEE Computer Society.
Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis. Chapman \& Hall/CRC, second edition, July 2003. ISBN 158488388X.
Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.
Jeff A. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models, 1997.
Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121-167, June 1998.

