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Sound Mixture Organization

 

� Auditory Scene Analysis: describing a complex 
sound in terms of high-level sources / events

 

- ... like listeners do

 

� Hearing is ecologically grounded

 

- reflects ‘natural scene’ properties
- subjective, not absolute
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Sound, mixtures, and learning

 

� Sound

 

- carries useful information about the world
- complements vision

 

� Mixtures

 

- .. are the rule, not the exception
- medium is ‘transparent’, sources are many
- must be handled!

 

� Learning

 

- the ‘speech recognition’ lesson:
let the data do the work

- like listeners
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The problem with recognizing mixtures

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

� Received waveform is a mixture

 

- two sensors, N signals ... underconstrained

 

� Disentangling mixtures as the primary goal?

 

- perfect solution is not possible
- need experience-based constraints
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Approaches to sound mixture recognition

 

� Separate signals, then recognize

 

- e.g. Computational Auditory Scene Analysis 
(CASA), Independent Component Analysis (ICA)

- nice, if you can do it

 

� Recognize combined signal

 

- ‘multicondition training’
- combinatorics..

 

� Recognize with parallel models

 

- full joint-state space?
- divide signal into fragments, 

then use missing-data recognition
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What is the goal of CASA?

 

� Separate signals?

 

- output is unmixed waveforms
- underconstrained, very hard ... 
- too hard? not required?

 

� Source classiÞcation?

 

- output is set of event-names
- listeners do more than this...

 

� Something in-between?
Identify independent sources + characteristics

 

- standard task, results?

CASA ?
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Segregation vs. Inference

 

� Source separation 
requires attribute separation

 

- sources are characterized by attributes
(pitch, loudness, timbre + finer details)

- need to identify & gather different attributes for 
different sources ... 

 

� Need representation that segregates attributes

 

- spectral decomposition
- periodicity decomposition

 

� Sometimes values can�t be separated

 

- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

- or: just skip those values, 
infer from higher-level context

p O x y, ,( ) p x y, O( )→
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Outline

 

Sound Mixture Organization 

Computational Auditory Scene Analysis

 

- Human Auditory Scene Analysis
- Bottom-up and Top-down models
- Evaluation

 

Independent Component Analysis

Model-Based Separation
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Auditory Scene Analysis

 

 

(Bregman 1990)

� How do people analyze sound mixtures?

 

- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes

 

� Grouping �rules� (Darwin, Carlyon, ...):

 

- cues: common onset/offset/modulation, 
harmonicity, spatial location, ...
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Cues to simultaneous grouping

 

� Elements + attributes

� Common onset

 

- simultaneous energy has common source

 

� Periodicity

 

- energy in different bands with same cycle

 

� Other cues

 

- spatial (ITD/IID), familiarity, ...

time / s

fr
eq

 / 
H

z

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000



 

E6820 SAPR - Dan Ellis L11 - Signal Separation 2006-04-13 - 11

 

The effect of context

 

� Context can create an �expectation�: 
i.e. a bias towards a particular interpretation

� e.g. Bregman�s �old-plus-new� principle:

 

A change in a signal will be interpreted as an 

 

added

 

 source whenever possible

- a different division of the same energy 
depending on what preceded it
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Computational Auditory Scene Analysis
(CASA)

 

� Goal: Automatic sound organization;
Systems to �pick out� sounds in a mixture

 

- ... like people do

 

� E.g. voice against a noisy background

 

- to improve speech recognition

 

� Approach:

 

- psychoacoustics describes grouping ‘rules’
- ... just implement them?

Object 1 percept

Sound mixture

Object 2 percept
Object 3 percept
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CASA front-end processing

 

� Correlogram:
Loosely based on known/possible physiology

 

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors
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The Representational Approach

 

(Brown & Cooke 1993)

 

� Implement psychoacoustic theory

 

- ‘bottom-up’ processing
- uses common onset & periodicity cues

 

� Able to extract voiced speech:
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Problems with �bottom-up� CASA

 

� Circumscribing time-frequency elements

 

- need to have ‘regions’, but hard to find

 

� Periodicity is the primary cue

 

- how to handle aperiodic energy?

 

� Resynthesis via masked Þltering

 

- cannot separate within a single t-f element

 

� Bottom-up leaves no ambiguity or context

 

- how to model illusions?

time

freq
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Restoration in sound perception

 

� Auditory �illusions� = hearing what�s not there

� The continuity illusion

� Sinewave Speech (SWS)

 

- duplex perception

 

� What kind of model accounts for this?

 

- is it an important part of hearing?
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Adding top-down constraints:
Prediction-Driven CASA (PDCASA)

 

Perception is not direct
but a search for plausible hypotheses

� Data-driven (bottom-up)...

 

- objects irresistibly appear

 

vs. Prediction-driven (top-down)

 

- match observations with a ‘world-model’
- need world-model constraints...
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Generic sound elements for PDCASA

 

� Goal is a representational space that

 

- covers real-world perceptual sounds
- minimal parameterization (sparseness)
- separate attributes in separate parameters

 

� Object hierarchies built on top...
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PDCASA for old-plus-new

 

� Incremental analysis
t1 t2 t3

Input signal

Time t1:
initial element 
created

Time t2:
Additional 
element required

Time t3:
Second element 
finished
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PDCASA for the continuity illusion

� Subjects hear the tone as continuous
... if the noise is a plausible masker

� Data-driven analysis gives just visible portions:

� Prediction-driven can infer masking:
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Prediction-Driven CASA

� Explain a complex sound with basic elements
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Aside: Ground Truth

� What do people hear in sound mixtures?
- do interpretations match?

→ Listening tests to collect �perceived events�:
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Aside: Evaluation

� Evaluation is a big problem for CASA
- what is the goal, really?
- what is a good test domain?
- how do you measure performance?

� SNR improvement
- tricky to derive from  before/after signals:

correspondence problem
- can do with fixed filtering mask; 

but rewards removing signal as well as noise

� Speech Recognition (ASR) improvement
- recognizers typically very sensitive to artefacts

� �Real� task?
- mixture corpus with specific sound events...
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Outline

Sound Mixture Organization

Computational Auditory Scene Analysis

Independent Component Analysis
- Blind source separation
- Independence and kurtosis
- Limits of the approach

Model-Based Separation
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Independent Component Analysis (ICA)
(Bell & Sejnowski 1995 etc.)

� If mixing is like matrix multiplication, then 
separation is searching for the inverse matrix

- i.e. W ≈ A-1

- with N different versions of the mixed signals 
(microphones), we can find N different input 
contributions (sources)

- how to rate quality of outputs?
i.e. when do outputs look separate?
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Gaussianity, Kurtosis & Independence

� A signal can be characterized by its PDF p(x)
- i.e. as if successive time values are drawn from a 

random variable (RV)
- Gaussian PDF is ‘least interesting’
- Sums of independent RVs (PDFs convolved) 

tend to Gaussian PDF (Weak law of large nums)

� Measures of deviations from Gaussianity: 
4th moment is Kurtosis (�bulging�)

-kurtosis of Gaussian is zero (this def.)
-‘heavy tails’ → kurt > 0
-closer to uniform dist. → kurt < 0

�Directly related to KL divergence 
from Gaussian PDF
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Independence in Mixtures

� Scatter plots & Kurtosis values
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Finding Independent Components

� Sums of independent RVs are more Gaussian
→→→→ minimize Gaussianity to undo sums
- i.e. search over wij terms in inverse matrix

� Solve by Gradient descent or Newton-Raphson:

“Fast ICA”,  http://www.cis.hut.fi/projects/ica/fastica/
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Limitations of ICA

� Assumes instantaneous mixing
- real world mixtures have delays & reflections
- STFT domain?

Solve ω subbands separately, match up answers

� Searching for best possible inverse matrix
- cannot find more than N outputs from N inputs

but: “projection pursuit” ideas
+ time-frequency masking...

� Cancellation inherently fragile

-  to cancel out s2

- sensitive to noise in x channels
- time-varying mixtures are a problem

x1 t( ) a11 t( ) s1 t( )⊗ a12 t( ) s2 t( )⊗+=

X1 ω( ) A11 ω( )S1 ω( ) A12 ω( )S2 ω( )+=⇒

ŝ1 w11 x1⋅ w12 x2⋅+=
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Outline

Sound Mixture Organization

Computational Auditory Scene Analysis

Independent Component Analysis

Model-Based Separation
- Fitting models to mixtures
- Missing-data recognition
- Speech Fragment Decoding
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Model-Based Separation:
HMM decomposition

(e.g. Varga & Moore 1991, Gales & Young 1996)

� Independent state sequences 
for 2+ component source models

� New combined state space q' = {q1 q2}

- need pdfs for combinations 

4

model 1

model 2 

observations / time

p X q1 q2,( )
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One-channel Separation: Masked Filtering

� Multichannel →→→→ ICA: Inverse Þlter & cancel

� One channel: Þnd a time-frequency mask

� Cannot remove overlapping noise in TF cells, 
but surprisingly effective (psy. masking?):
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�One microphone source separation�
(Roweis 2000, Manuel Reyes)

� State sequences → t-f estimates →  mask

- 1000 states/model (→ 106 transition probs.)
- simplify by subbands (coupled HMM)?
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Speech Fragment Recognition
(Jon Barker & Martin Cooke, Sheffield)

� Signal separation is too hard!
Instead:
- segregate features into partially-observed 

sources
- then classify

� Made possible by missing data recognition
- integrate over uncertainty in observations 

for true posterior distribution

� Goal:
Relate clean speech models P(X|M)
to speech-plus-noise mixture observations
- .. and make it tractable
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Missing Data Recognition

� Speech models p(x|m) are multidimensional...
- i.e. means, variances for every freq. channel
- need values for all dimensions to get p(•)

� But: can evaluate over a 
subset of dimensions xk

� Hence, 
missing data recognition:

- hard part is finding the mask (segregation)
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p xk m( ) p xk xu, m( ) xud∫=

P(x1 | q) 

P(x | q) = 

· P(x2 | q) 
· P(x3 | q) 
· P(x4 | q) 
· P(x5 | q) 
· P(x6 | q) 

Present data mask

time →


di
m

en
si

on
 →




E6820 SAPR - Dan Ellis L11 - Signal Separation 2006-04-13 - 36

Missing Data Results

� Estimate static background noise level N(f)

� Cells with energy close to background are 
considered �missing�

- must use spectral features!

� But: nonstationary noise → spurious mask bits
- can we try removing parts of mask?
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Comparing different segregations

� Standard classiÞcation chooses between 
models M to match source features X

� Mixtures: observed features Y, segregation S, 
all related by 

� Joint classiÞcation of model and segregation:

- P(X) no longer constant

M∗ P M X( )
M

argmax P X M( )
P M( )
P X( )
--------------⋅

M
argmax = =

P X Y S,( )

freq

Observation
Y(f )

Segregation S

Source
X(f )

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=

E6820 SAPR - Dan Ellis L11 - Signal Separation 2006-04-13 - 38

Calculating fragment matches

� P(X|M) - the clean-signal feature model

� P(X|Y,S)/P(X) - is X �visible� given segregation?

� Integration collapses some bands...

� P(S|Y) - segregation inferred from observation
- just assume uniform, find S for most likely M 
- or: use extra information in Y to distinguish S’s...

� Result: 
- probabilistically-correct relation between 

clean-source models P(X|M)
and inferred, recognized source + segregation 
P(M,S|Y)

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Using CASA features

� P(S|Y) links acoustic information to segregation
- is this segregation worth considering?
- how likely is it?

� Opportunity for CASA-style information to 
contribute
- periodicity/harmonicity:

these different frequency bands belong together
- onset/continuity:

this time-frequency region must be whole

Frequency Proximity HarmonicityCommon Onset
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Fragment decoding

� Limiting S to whole fragments 
makes hypothesis search tractable:

- choice of fragments reflects P(S|Y) · P(X|M)
i.e. best combination of segregation
and match to speech models

� Merging hypotheses limits space demands
- .. but erases specific history

Fragments
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Speech fragment decoder results

� Simple P(S|Y) model forces contiguous regions 
to stay together
- big efficiency gain when searching S space

� Clean-models-based recognition 
rivals trained-in-noise recognition
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Multi-source decoding

� Search for more than one source

� Mutually-dependent data masks
- disjoint subsets of cells for each source
- each model match P(Mx|Sx,Y) is independent

- masks are mutually dependent: P(S1,S2|Y)

� Huge practical advantage over full search

Y(t)

S1(t)
q1(t)

S2(t)
q2(t)
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Summary

� Auditory Scene Analysis:
Hearing: partially understood, very successful

� Independent Component Analysis:
Simple and powerful, some practical limits

� Model-based separation:
Real-world constraints, implementation tricks

Mixture separation the main obstacle in many 
applications e.g. soundtrack recognition 
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