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Signal template matching

 

• Framewise comparison 
of unknown word and stored templates:

 

- distance metric?
- comparison across templates?
- constraints?
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Dynamic Time Warp (DTW)

 

• Find lowest-cost constrained path:
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DTW-based recognition

 

• Reference templates for each possible word

• For isolated words:

 

- mark endpoints of input word
- calculate scores through each template (+prune)
- choose best

 

• For continuous speech

 

- one matrix of template slices;
special-case constraints at word ends

R
ef

er
en

ce

Input frames

O
N

E
T

W
O

T
H

R
E

E
F

O
U

R



 

E6820 SAPR - Dan Ellis L10 - Sequence recognition 2003-04-21 - 5

 

DTW-based recognition (2)

 

+ Successfully handles timing variation

+ Able to recognize speech at reasonable cost

- Distance metric?

 

- pseudo-Euclidean space?

 

- Warp penalties?

- How to choose templates?

 

- several templates per word?
- choose ‘most representative’?
- align and average?

 

→

 

need a rigorous foundation...
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Outline

 

Signal template matching

Statistical sequence recognition

 

- state-based modeling

 

Acoustic modeling

The Hidden Markov Model (HMM)
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Statistical sequence recognition

 

• DTW limited because it’s hard to optimize

 

- interpretation of distance, transition costs?

 

• Need a theoretical foundation: Probability

• Formulate recognition 
as MAP choice among models:

 

-

 

X

 

 = observed features
-

 

M

 

j

 

 = word-sequence models

-

 

Θ

 

 = all current parameters
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Statistical formulation (2)

 

• Can rearrange via Bayes’ rule (& drop 
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 = prior probability of model
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 = acoustics-related model parameters

-
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 = language-related model parameters

 

• Questions:

 

- what form of model to use for ?

- how to find 

 

Θ

 

A 

 

(training)?

- how to solve for 

 

M

 

j

 

 (decoding)?

M
*

p M j X Θ,( )
M j

argmax =

p X M j ΘA,( ) p M j ΘL( )
M j

argmax =

p X M j ΘA,( )
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State-based modeling

• Assume discrete-state model for the speech:
- observations are divided up into time frames
- model → states → observations:

• Probability of observations given model is:

- sum over all possible state sequences Qk

• How do observations depend on states?
How do state sequences depend on model?

q1Qk : q2 q3 q4 q5 q6 ...

x1X1 : x2 x3 x4 x5 x6 ...

time

states

N
observed feature 

vectors

Model Mj

p X M j( ) p X1
N

Qk M j,( ) p Qk M j( )⋅
all Qk

∑=



E6820 SAPR - Dan Ellis L10 - Sequence recognition 2003-04-21 - 10

The speech recognition chain

• After classification, still have problem of 
classifying the sequences of frames:

• Questions
- what to use for the acoustic classifier?
- how to represent ‘model’ sequences?
- how to score matches?

Feature
calculation

sound

Acoustic
classifier

feature vectors

Network
weights

HMM
decoder

phone probabilities

phone & word
 labeling

Word models
Language model
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Outline

Signal template matching

Statistical sequence recognition

Acoustic modeling
- defining targets
- neural networks & Gaussian models

The Hidden Markov Model (HMM)
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Acoustic Modeling

• Goal: Convert features 
into probabilities of particular labels:

i.e find  over some state set {qi}

- conventional statistical classification problem

• Classifier construction is data-driven
- assume we can get examples of known good Xs 

for each of the qis
- calculate model parameters by standard training 

scheme

• Various classifiers can be used
- GMMs model distribution under each state
- Neural Nets directly estimate posteriors

• Different classifiers have different properties
- features, labels limit ultimate performance

3

p qn
i Xn( )
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Defining classifier targets

• Choice of {qi} can make a big difference
- must support recognition task
- must be a practical classification task

• Hand-labeling is one source...
- ‘experts’ mark spectrogram boundaries

• ...Forced alignment is another
- ‘best guess’ with existing classifiers, given words

• Result is targets for each training frame:

Feature
vectors

Training
targets g

time

w eh n
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Forced alignment

• Best labeling given existing classifier
constrained by known word sequence

Feature
vectors

Phone
posterior

probabilitiesKnown word
sequence

Training
targets

time

ow th r iy n s

ow  th  r  iy ...

ow th r iy

Existing
classifier

Constrained
alignmentDictionary

Classifier
training
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Gaussian Mixture Models vs. Neural Nets

• GMMs fit distribution of features under states:

- separate ‘likelihood’ model for each state qi

- match any distribution given enough data

• Neural nets estimate posteriors directly

- parameters set to discriminate classes

• Posteriors & likelihoods related by Bayes’ rule:  

p x q
k

( )
1

2π( )
d
Σk

1 2⁄
----------------------------------- 1

2
--- x µµµµk–( )

T
Σk

1– x µk–( )–exp⋅=

p q
k x( ) F w jk F wijxij∑[ ]⋅

j∑[ ]=

p q
k x( )

p x q
k

( ) Pr q
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p x q j( ) Pr q j( )⋅
j∑

-----------------------------------------------=
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Outline

Signal template matching

Statistical sequence recognition

Acoustic classification

The Hidden Markov Model (HMM)
- generative Markov models
- hidden Markov models
- model fit likelihood
- HMM examples
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Markov models

• A (first order) Markov model 
is a finite-state system 
whose behavior depends 
only on the current state 

• E.g. generative Markov model:

3
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Hidden Markov models

• = Markov model where state sequence Q = {qn} 
is not directly observable (= ‘hidden’)

• But, observations X do depend on Q:

- xn is rv that depends on current state: 

- can still tell something about state seq...
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(Generative) Markov models (2)

• HMM is specified by:

+ (initial state probabilities  )

k a t

k a t •

k a t •

••

•

•

•
k
a
t

k a t •

0.9  0.1  0.0  0.0
1.0  0.0  0.0  0.0

0.0  0.9  0.1  0.0
0.0  0.0  0.9  0.1

p(x|q)

x

-  states qi

-  transition
   probabilities aij

-  emission 
   distributions bi(x)

p qn
j qn 1–

i( ) aij≡

p x qi( ) bi x( )≡

p q1
i( ) πi≡
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Markov models for speech

• Speech models Mj

- usually left-to-right HMMs (sequence constraint)
- observation & evolution 

are conditionally independent of rest 
given (hidden) state qn

- self-loops for time dilation

ae1S Eae2 ae3 q1

x1

q2

x2

q3

x3

q4

x4

q5

x5
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Markov models for sequence recognition

• Independence of observations:

- observation xn depends only current state qn

• Markov transitions:

- transition to next state qi+1 depends only on qi

p X Q( ) p x1 x2 …xN, , q1 q2 …qN, ,( )=

p x1 q1( ) p x2 q2( ) … p xN qN( )⋅ ⋅=

p xn qn( )
n 1=

N
∏= bqn

xn( )
n 1=

N
∏=

p Q M( ) p q1 q2 …qN, , M( )=

p qN q1…qN 1–( ) p qN 1– q1…qN 2–( )…p q2 q1( ) p q1( )=

p qN qN 1–( ) p qN 1– qN 2–( )…p q2 q1( ) p q1( )=

p q1( ) p qn qn 1–( )
n 2=

N
∏= πq1

aqn 1– qnn 2=

N
∏=
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Model-fit calculation

• From ‘state-based modeling’:

• For HMMs:

• Hence, solve for M* :

- calculate  for each available model, 

scale by prior  →  

• Sum over all Qk ???

p X M j( ) p X1
N

Qk M j,( ) p Qk M j( )⋅
all Qk

∑=

p X Q( ) bqn
xn( )

n 1=

N
∏=

p Q M( ) πq1
aqn 1– qnn 2=

N
∏⋅=

p X M j( )

p M j( ) p M j X( )
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Summing over all paths

q0 q1 q2 q3 q4

S A A A E
S A A B E
S A B B E
S B B B E

.9 x .7 x .7 x .1 = 0.0441

.9 x .7 x .2 x .2 = 0.0252

.9 x .2 x .8 x .2 = 0.0288

.1 x .8 x .8 x .2 = 0.0128
Σ = 0.1109 Σ = p(X | M) = 0.4020

2.5 x 0.2 x 0.1 = 0.05
2.5 x 0.2 x 2.3 = 1.15
2.5 x 2.2 x 2.3 = 12.65
0.1 x 2.2 x 2.3 = 0.506

0.0022
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0.3643
0.0065

S
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E
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0.9• 0.1 •
0.7• 0.2 0.1
•• 0.8 0.2
•• • 1

All possible 3-emission paths Qk from S to E
p(Q | M) = Πn p(qn|qn-1) p(X | Q,M) = Πn p(xn|qn) p(X,Q | M)

Observation
likelihoods
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B

p(x|q) 
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The ‘forward recursion’

• Dynamic-programming-like technique to 
calculate sum over all Qk

• Define  as the probability of getting to 

state qi at time step n (by any path):

• Then  can be calculated recursively:

αn i( )

αn i( ) p x1 x2 …xn qn=q
i

, , ,( ) p X1
n

qn
i

,( )≡=

αn 1+ j( )

Time steps n

M
o

d
el

 s
ta

te
s 

qi

αn(i+1)

αn(i)

ai+1j

aij

bj(xn+1)

αn+1(j) = [Σ αn(i)·aij]·bj(xn+1)
i=1

S
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Forward recursion (2)

• Initialize 

• Then total probability 

→ Practical way to solve for p(X | Mj) 
and hence perform recognition

α1 i( ) πi bi x1( )⋅=

p X1
N

M( ) αN i( )
i 1=

S

∑=

Observations
X

p(X | M1)·p(M1)

p(X | M2)·p(M2)

Choose best
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Optimal path

• May be interested in actual qn assignments

- which state was ‘active’ at each time frame
- e.g. phone labelling (for training?)

• Total probability is over all paths...

• ... but can also solve for single best path
= “Viterbi” state sequence

• Probability along best path to state :

- backtrack from final state to get best path
- final probability is product only (no sum)
→ log-domain calculation is just summation

• Total probability often dominated by best path:

qn 1+
j

αn 1+
*

j( ) αn
*

i( )aij{ }
i

max b j xn 1+( )⋅=

p X Q
*

, M( ) p X M( )≈
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Interpreting the Viterbi path

• Viterbi path assigns each xn to a state qi

- performing classification based on bi(x)

- ... at the same time as applying 
transition constraints aij

• Can be used for segmentation
- train an HMM with ‘garbage’ and ‘target’ states
- decode on new data to find ‘targets’, boundaries

• Can use for (heuristic) training
- e.g. train classifiers based on labels...

0 10 20 300

1

2

3

Viterbi labels:

Inferred classification

x n

AAAAAAAABBBBBBBBBBBCCCCBBBBBBBC
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Recognition with HMMs

• Isolated word

- choose best 

• Continuous speech
- Viterbi decoding of one large HMM gives words

p M X( ) p X M( ) p M( )∝

Model M1
p(X | M1)·p(M1) = ...

Model M2
p(X | M2)·p(M2) = ...

Model M3
p(X | M3)·p(M3) = ...

Input

w ah n

th r iy

t uw

Input
p(M1)

p(M2)

p(M3)
sil

w ah n

th r iy

t uw
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HMM examples: 
Different state sequences
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Model matching:
Emission probabilities
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Model matching:
Transition probabilities
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Validity of HMM assumptions

• Key assumption is conditional independence:

Given qi, future evolution & obs. distribution
are independent of previous events
- duration behavior: 

self-loops imply exponential distribution

- independence of successive xns

  ?

n

p(N = n)

γ 1−γ

γ(1−γ)

n

xn

p(xn|qi)

p X( ) p xn qi( )∏=
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Recap: Recognizer Structure

• We now know how to execute each stage

• .. but how to train HMMs?

• .. where to get word/language models?

Feature
calculation

sound

Acoustic
classifier

feature vectors

Network
weights

HMM
decoder

phone probabilities

phone & word
 labeling

Word models
Language model
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Summary

• Speech is modeled as a sequence of features
- need temporal aspect to recognition
- best time-alignment of templates = DTW

• Hidden Markov models are rigorous solution
- self-loops allow temporal dilation
- exact, efficient likelihood calculations

Parting thought:
How to set the HMM parameters? (training)
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