1 Music and nonspeech

- What is ‘nonspeech’?
 - according to research effort: a little music
 - in the world: most everything

<table>
<thead>
<tr>
<th>high</th>
<th>music</th>
</tr>
</thead>
<tbody>
<tr>
<td>speech</td>
<td></td>
</tr>
<tr>
<td>animal</td>
<td></td>
</tr>
<tr>
<td>sounds</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>low</th>
<th>contact/collision</th>
</tr>
</thead>
<tbody>
<tr>
<td>wind & water</td>
<td></td>
</tr>
<tr>
<td>natural</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>man-made</th>
<th>machines & engines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sound attributes

- **Attributes suggest model parameters**
- **What do we notice about ‘general’ sound?**
 - psychophysics: pitch, loudness, ‘timbre’
 - bright/dull; sharp/soft; grating/soothing
 - sound is not ‘abstract’:
 - tendency is to describe by source-events

- **Ecological perspective**
 - what matters about sound is ‘what happened’
 - our percepts express this more-or-less directly

Motivations for modeling

- **Describe/classify**
 - cast sound into model because want to use the resulting parameters
- **Store/transmit**
 - model implicitly exploits limited structure of signal
- **Resynthesize/modify**
 - model separates out interesting parameters
Analysis and synthesis

- **Analysis** is the converse of **synthesis**:

 ![Diagram](image)

 - Model / representation
 - Sound
 - Synthesis
 - Analysis

- **Can exist apart:**
 - analysis for classification
 - synthesis of artificial sounds

- **Often used together:**
 - encoding/decoding of compressed formats
 - resynthesis based on analyses
 - analysis-by-synthesis

Outline

1. Music and nonspeech
2. **Environmental sounds**
 - Collision sounds
 - Sound textures
3. Music synthesis techniques
4. Sinewave synthesis
5. Music analysis
Environmental Sounds

- Where sound comes from: **mechanical interactions**
 - contact / collisions
 - rubbing / scraping
 - ringing / vibrating

- **Interest in environmental sounds**
 - carry information about events around us
 - including indirect hints
 - need to create them in virtual environments
 - including soundtracks

- **Approaches to synthesis**
 - recording / sampling
 - synthesis algorithms

Collision sounds

- **Factors influencing:**
 - colliding **bodies**: size, material, damping
 - local properties at **contact** point (hardness)
 - **energy** of collision

- **Source-filter model**
 - “**source**” = excitation of collision event
 (energy, local properties at contact)
 - “**filter**” = resonance and radiation of energy
 (body properties)

- **Variety of strike/scraping sounds**
 - resonant freqs ~ size/shape
 - damping ~ material
 - HF content in excitation/strike ~ mallet, force

(from Gaver 1993)
Sound textures

- **What do we hear in:**
 - a city street
 - a symphony orchestra

- **How do we distinguish:**
 - waterfall
 - rainfall
 - applause
 - static

- **Levels of ecological description...**

Sound texture modeling (Athineos)

- **Model broad spectral structure with LPC**
 - could just resynthesize with noise

- **Model fine temporal structure in residual with linear prediction in time domain**
 - precise dual of LPC in frequency
 - ‘poles’ model temporal events

- **Allows modification / synthesis?**
Outline

1. Music and nonspeech
2. Environmental sounds
3. Music synthesis techniques
 - Framework
 - Historical development
4. Sinewave synthesis
5. Music analysis

Music synthesis techniques

- **What is music?**
 - could be anything → flexible synthesis needed!

- **Key elements of conventional music**
 - instruments
 → note-events (time, pitch, accent level)
 → melody, harmony, rhythm
 - patterns of repetition & variation

- **Synthesis framework:**
 instruments: common framework for many notes
 score: sequence of (time, pitch, level) note events
The nature of musical instrument notes

- Characterized by instrument (register), note, loudness/emphasis, articulation...

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Time</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piano</td>
<td>0-1</td>
<td>0-4000</td>
</tr>
<tr>
<td>Violin</td>
<td>0-1</td>
<td>0-4000</td>
</tr>
<tr>
<td>Clarinet</td>
<td>0-1</td>
<td>0-4000</td>
</tr>
<tr>
<td>Trumpet</td>
<td>0-1</td>
<td>0-4000</td>
</tr>
</tbody>
</table>

distinguish how?

Development of music synthesis

- **Goals of music synthesis:**
 - generate realistic / pleasant new notes
 - control / explore timbre (quality)
- **Earliest computer systems in 1960s**
 (voice synthesis, algorithmic)
- **Pure synthesis approaches:**
 - 1970s: Analog synths
 - 1980s: FM (Stanford/Yamaha)
 - 1990s: Physical modeling, hybrids
- **Analysis-synthesis methods:**
 - sampling / wavetables
 - sinusoid modeling
 - harmonics + noise (+ transients)
 others?
Analog synthesis

- The minimum to make an 'interesting' sound

 ![Analog synthesis diagram]

 Elements:
 - harmonics-rich oscillators
 - time-varying filters
 - time-varying envelope
 - modulation: low frequency + envelope-based

 Result:
 - time-varying spectrum, independent pitch

FM synthesis

- Fast frequency modulation → sidebands:

 \[
 \cos(\omega_c t + \beta \sin(\omega_m t)) = \sum_{n=-\infty}^{\infty} J_n(\beta) \cos((\omega_c + n\omega_m)t)
 \]

 - a harmonic series if \(\omega_c = r\omega_m \)

- \(J_n(\beta) \) is a Bessel function:

 ![Bessel function graph]

 \(J_n(\beta) \approx 0 \)

 for \(\beta < n - 2 \)

 \(\omega_c = 2000Hz \)

 \(\omega_m = 200Hz \)

 ![Complex harmonic spectra by varying \(\beta \)]
Sampling synthesis

- **Resynthesis from real notes**
 → vary pitch, duration, level

- **Pitch**: stretch (resample) waveform

- **Duration**: loop a ‘sustain’ section

- **Level**: cross-fade different examples

- need to ‘line up’ source samples

Outline

1. Music and nonspeech
2. Environmental sounds
3. Music synthesis techniques
4. **Sinewave synthesis** (detail)
 - Sinewave modeling
 - Sines + residual ...
5. Music analysis
Sinewave synthesis

- If patterns of harmonics are what matter, why not generate them all explicitly:
 \[s[n] = \sum_k A_k[n] \cos(k \cdot \omega_0[n] \cdot n) \]
 - particularly powerful model for pitched signals

- Analysis (as with speech):
 - find peaks in STFT \(|S[\omega,n]|\) & track
 - or track fundamental \(\omega_0\) (harmonics / autoco)
 & sample STFT at \(k \cdot \omega_0\)
 \(\rightarrow\) set of \(A_k[n]\) to duplicate tone:

- Synthesis via bank of oscillators

Steps to sinewave modeling - 1

- The underlying STFT:
 \[X[k, n_0] = \sum_{n=0}^{N-1} x[n + n_0] \cdot w[n] \cdot \exp\left(-j \frac{2\pi k n}{N}\right) \]

 What value for \(N\) (FFT length & window size)?
 What value for \(H\) (hop size: \(n_0 = rH, r = 0, 1, 2...\))?

- STFT window length determines freq. resol’n:
 \[X_w(e^{j\omega}) = X(e^{j\omega}) \ast W(e^{j\omega}) \]

- Choose \(N\) long enough to resolve harmonics
 \(\rightarrow\) 2-3x longest (lowest) fundamental period
 - e.g. 30-60 ms = 480-960 samples @ 16 kHz
 - choose \(H \leq N/2\)

- \(N\) too long \(\rightarrow\) lost time resolution
 - limits sinusoid amplitude rate of change
Steps to sinewave modeling - 2

- Choose candidate sinusoids at each time by picking peaks in each STFT frame:

- Quadratic fit for peak:

 \[y = ax(x-b) \]

 \[+ \text{linear interpolation of unwrapped phase} \]

Steps to sinewave modeling - 3

- Which peaks to pick?
 Want ‘true’ sinusoids, not noise fluctuations
 - ‘prominence’ threshold above smoothed spec.

- Sinusoids exhibit stability...
 - of amplitude in time
 - of phase derivative in time
 \[\rightarrow \text{compare with adjacent time frames to test?} \]
Steps to sinewave modeling - 4

- 'Grow' tracks by appending newly-found peaks to existing tracks:
 - ambiguous assignments possible
 - Unclaimed new peak
 - 'birth' of new track
 - backtrack to find earliest trace?
 - No continuation peak for existing track
 - 'death' of track
 - or: reduce peak threshold for hysteresis

Resynthesis of sinewave models

- After analysis, each track defines contours in frequency, amplitude $f_k[n]$, $A_k[n]$ (+ phase?)
 - use to drive a sinewave oscillators & sum up

- 'Regularize' to exactly harmonic $f_k[n] = k \cdot f_0[n]$
Modification in sinewave resynthesis

- Change duration by warping timebase
 - may want to keep onset unwarped

- Change pitch by scaling frequencies
 - either stretching or resampling envelope

- Change timbre by interpolating params

Sinusoids + residual

- Only ‘prominent peaks’ became tracks
 - remainder of spectral energy was noisy?
 → model residual energy with noise

- How to obtain ‘non-harmonic’ spectrum?
 - zero-out spectrum near extracted peaks?
 - or: resynthesize (exactly) & subtract waveforms
 \[e_s[n] = s[n] - \sum_k A_k[n] \cos(2\pi n \cdot f_k[n]) \]
 .. must preserve phase!

- Can model residual signal with LPC
 → flexible representation of noisy residual
Sinusoids + noise + transients

- Sound represented as sinusoids and noise:

\[s[n] = \sum_k A_k[n] \cos(2\pi n \cdot f_k[n]) + h_n[n] \ast b[n] \]

Sinusoids

Residual \(e_s[n] \)

Parameters are \(\{A_k[n], f_k[n]\}, h_n[n] \)

- Separate out abrupt transients in residual?

\[e_s[n] = \sum_k t_k[n] + h_n[n] \ast b'[n] \]

 - more specific \(\rightarrow \) more flexible

Outline

1. Music and nonspeech
2. Environmental sounds
3. Music synthesis techniques
4. Sinewave synthesis
5. Music analysis
 - Instrument identification
 - Pitch tracking
Music analysis

- What might we want to get out of music?

 - Instrument identification
 - different levels of specificity
 - ‘registers’ within instruments

 - Score recovery
 - transcribe the note sequence
 - extract the ‘performance’

 - Ensemble performance
 - ‘gestalts’: chords, tone colors

 - Broader timescales
 - phrasing & musical structure
 - artist / genre clustering and classification

Instrument identification

- Research looks for perceptual ‘timbre space’

- Cues to instrument identification
 - onset (rise time), sustain (brightness)

- Hierarchy of instrument families
 - strings / reeds / brass
 - optimize features at each level
Pitch tracking

- Fundamental frequency (→ pitch) is a key attribute of musical sounds
 → pitch tracking as a key technology

- Pitch tracking for speech
 - voice pitch & spectrum highly dynamic
 - speech is voiced and unvoiced

Applications
- voice coders (excitation description)
- harmonic modeling

Pitch tracking for music

- Pitch in music
 - pitch is more stable (although vibrato)
 - but: multiple pitches

Applications
- harmonic modeling
- music transcription (→ storage, resynthesis)
- source separation

Approaches: “place” & “time”
Meddis & Hewitt pitch model

- Autocorrelation (time) based pitch extraction
 - fundamental period \rightarrow peak(s) in autocorrelation
 $$x(t) \approx x(t + T) \quad \rightarrow \quad r_{xx}(T) = \int x(t)x(t + T) \approx \text{max}$$

- Compute separately in each frequency band & ‘summarize’ across (perceptual) channels

Tolonen & Karjalainen simplification

- Multiple frequency channels can have different dominant pitches ...

- But equalizing (flattening) the spectrum works:

 - Summary AC as a function of time:

 - ‘Enhancement’ = cancel subharmonics
Post-processing of pitch tracks

- Remove outliers with median filtering

![Median Filtering Diagram]

- Octave errors are common:
 - if $x(t) \approx x(t + T)$ then $x(t) \approx x(t + 2T)$ etc.

 \rightarrow dynamic programming/HMM

- Validity
 - “is there a pitch at this time?”
 - voiced/unvoiced decision for speech

- Event detection
 - when does a pitch slide indicate a new note?

Summary

- ‘Nonspeech audio’
 - i.e. sound in general
 - characteristics: ecological

- Music synthesis
 - control of pitch, duration, loudness, articulation
 - evolution of techniques
 - sinusoids + noise + transients

- Music analysis
 - different aspects: instruments, pitches, performance

 and beyond?