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@ The speech signal

» Speech sounds in the spectrogram
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» Elements of the speech signal:
- spectral resonances (formants, moving)
- periodic excitation (voicing, pitched)
+ pitch contour
- noise excitation (fricatives, unvoiced, no pitch)
- (stop-release bursts)
- amplitude modulation (nasals, approximants)

- timing!
%
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The source-filter model

Notional separation of:

source: excitation, fine time-frequency structure

& filter: resonance, broad spectral structure

NNN : X Formants
. Glottal pulse i
Pitch — i ! l
I Vocal tract o
Voiced/ __| ' resonances hRadlathn_ _%peech
unvoiced characteristic
Frication ! ‘
noise |
.
I

Source Filter

* More a modeling approach than a single model
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Signal modeling

» Signal models are a kind of representation
- to make some aspect explicit
- for efficiency
- for flexibility

* Nature of model depends on goal
- classification: remove irrelevant details

- coding/transmission: remove perceptual
irrelevance

- modification: isolate control parameters

* But commonalities emerge

- perceptually irrelevant detail (coding)
will also be irrelevant for classification

- modification domain will usually reflect
‘independent’ perceptual attributes

- getting at the abstract information in the signal

*
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Different influences for signal models

* Receiver:
- see how signal is treated by listeners
— cochlea-style filterbank models ...

* Transmitter (source)

- physical vocal apparatus can generate only a
limited range of signals...

— LPC models of vocal tract resonances

* Making explicit particular aspects
- compact, separable correlates of resonances
—  cepstrum
- modeling prominent features of NB spectrogram
— sinusoid models
- addressing unnaturalness in synthesis
— Harmonic+Noise model
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Applications of (speech) signal models

e Classification / matching
Goal: highlight important information

- speech recognition (lexical content)

- speaker recognition (identity or class)
- other signal classification

- content-based retrieval

e Coding /transmission / storage
Goal: represent just enough information

- real-time transmission e.g. mobile phones
- archive storage e.g. voicemail

* Modification/synthesis
Goal: change certain parts independently
- speech synthesis / text-to-speech
(change the words)
- speech transformation / disguise
(change the speaker)
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Qutline

0 Modeling speech signals

9 Spectral and cepstral models
- Auditorily-inspired spectra
- The cepstrum
- Feature correlation

e Linear predictive models (LPC)
e Other models

e Speech synthesis
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(2] Spectral and cepstral models

* Spectrogram seems like a good representation
- long history
- satisfying in use
- experts can ‘read’ the speech

* What is the information?

- intensity in time-frequency cells;
typically 5ms x 200 Hz x 50 dB

— Discarded detail:
- phase
- fine-scale timing

* The starting point for other representations
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Thefilterbank interpretation of the
short-time Fourier transform (STFT)

* View spectrogram rows
as coming from separate bandpass filters:

sound >

HAPP

* Mathematically:

X[k nol = 3 x{n]-w{n-ng]" exp—j(W)

Enx[n] -hy [ng—n]

where h,[n] = w{-n]- exp J(%s

hydrl HA®?) (o - i),

27kIN -
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Spectral models:
Which bandpass filters?

e Constant bandwidth? (analog / FFT)

* But: cochlea physiology & critical bandwidths

— implement ear models with bandpass filters
& choose bandwidths by e.g. CB estimates

* Auditory frequency scales
- constant ‘Q’ (center freg/bandwidth), mel, Bark...

1000

=w= 1/3-octave

Filter bandwidth (Hz)

200 500 1000 2000
Center frequency (Hz) +
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Gammatone filterbank

* Given bandwidths, which filter shapes?
- match inferred temporal integration window
- match inferred spectral shape (sharp hi-F slope)
- keep it simple (since it's only approximate)

— Gammatone filters

N-1
h[n] = n" " - exp—bn - cos(w;n)

z plane 0

2 2 o 10
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2N poles, 2 zeros, low complexity
reasonable linear match to cochlea
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log
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*

Constant-BW vs. cochlea model

» Frequency responses:

Effective FFT filterbank

e Spectrograms:

FFT-based WB spectrogram (N=128)
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* Magnitude smoothed over 5-20 ms time window
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Limitations of spectral models

* Not much data thrown away
- just fine phase/time structure (smoothing)
- little actual ‘modeling’
- still a large representation!

» Little separation of features
- e.g. formants and pitch

» Highly correlated features
- modifications affect multiple parameters

* But, quite easy to reconstruct
- iterative reconstruction of lost phase
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The cepstrum

Original motivation: Assume a source-filter model:

Excitation Resonance MJVJW n
source g[n] filter H(e/®)

n w

Define ‘Homomorphic deconvolution’:
- source-filter convolution:  g[n]*h[n]

- FT — product G(d®)-H(d?)
- log — sum: logG(e®) + logH(e®)
- IFT

— separate fine structure:  cg[n] + cy[Nn]

= deconvolution
Definition:
Real cepstrum ¢, = idft(log|dft(x[n])[)
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Stages in cepstral deconvolution

* Original waveform has
excitation fine structure

convolved with resonances | | |

* DFT shows harmonics
modulated by resonances

* Log DFT is sum of
harmonic ‘comb’ and
resonant bumps

* IDFT separates out
resonant bumps (low
guefrency) and regular,

fine structure (‘pitch pulse’)

» Selecting low-n cepstrum
separates resonance
information
(deconvolution /‘liftering’)

Waveform and min. phase IR
: —_— —
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*
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Properties of the cepstrum

» Separate source (fine) & filter (broad structure)
- smooth the log mag. spectrum to get resonances

* Smoothing spectrum is filtering along freq.

- i.e. convolution applied in Fourier domain
— multiplication in IFT (‘liftering’)

» Periodicity in time — harmonics in spectrum
— ‘pitch pulse’in high-n cepstrum

* Low-n cepstral coefficients are
DCT of broad filter / resonance shape:

Cy = flog‘X(ejm)‘ - (cosnw

+ J8a) do

Cepstral coefs O..
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5th order Cepstral reconstruction -
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Aside: Correlation of elements

» Cepstrum is a popular in speech recognition
- feature vector elements are decorrelated:

Features Covariance matrix Example joint distrib (10,15)
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- Cp ‘normalizes out’ average log energy

o

* Decorrelated pdfs fit diagonal Gaussians
- simple correlation is a waste of parameters

 DCTis close to PCA for (mel) spectra? o
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Qutline

0 Modeling speech signals
9 Spectral and cepstral modes

€ Linear Predictive models (LPC)
- The LPC model
- Interpretation & application
- Formant tracking

0 Other models

e Speech synthesis
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6 Linear predictive modeling (LPC)

» LPCis avery successful speech model
- itis mathematically efficient (lIR filters)

- itis remarkably accurate for voice
(fits source-filter distinction)

- it has a satisfying physical interpretation
(resonances)

* Basic math
- model output as linear function of prior outputs:

— (P _
s[n] = (37 _ a-sin-K]) +e[n]
... hence “linear prediction” (pth order)
- €[n] is excitation (input), a/k/a prediction error
2 _ 1 _ 1
E(z) (1-%" 75 Az
@ (1-3°_a, 29 A®
... all-pole modeling,
‘autoregression’ (AR) model *
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Vocal tract motivation for LPC

» Direct expression of source-filter model:

sn] = (3, _ 3 sln—k]) +e[n]

Pulse/npise Vocal tract
excitation el H@Z) =l A@ | Sl

eioo
AT '“(|;'/»\

z-plane

H(z

f

* Acoustic tube models suggest all-pole model
for vocal tract

* Relatively slowly-changing
- update A(2) every 10-20 ms

* Not perfect: Nasals introduce zeros +
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Estimating LPC parameters
* Minimize short-time squared prediction error:

2

E = Enm: 1ez[n] = En{s[n]—zizlaks[n—k]}

Differentiate w.r.t. 8 to get eqns for each k:

S 2Asln]=3" asin—j])- (~s[n-k]) = 0
Ens[n]s[n—k] = Ejaj-zns[n—j]s[n—k]

where (j, k) = Enm:  Sin—jlsin—K]

are correlation coefficients

* Plinear equations to solve for all &s... >
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Evaluating parameters

« Linear equations ¢(0, k) = E;O: IR o(], k)

* If gn]is assumed zero outside some window
o(J, k) = ¥ s[n—jls[n—k] = re(lj—K)
- r(T) is autocorrelation

Hence equations become:

(1) r0)  r(1) ...r(p-1) %
r2)) | r() (2 ..r(p-2)|%

r(p)) [r(p=1)r(p-2)... r(0) J|a
* Toeplitz matrix (equal antidiagonals)
— can use Durbin recursion to solve

« (Solve full ¢(j, k) via Cholesky) +
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Interpreting LPC

Picking out resonances
- if signal really was source + all-pole resonances,
LPC should find the resonances

Least-squares fit to spectrum

- minimizing e2[n] in time domain is the same as
minimizing EX€®) (by Parseval)

—close fit to spectral peaks; valleys don’t matter

Removing smooth variation in spectrum

- 1/A(2) is low-order approximation to §2)
S _ 1

E@ A

hence, residual E(2) = A(2S2) is ‘flat’ version of S

Signal whitening:
- white noise (independent x[n]s) has flat spectrum
—Wwhitening removes temporal correlation +
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Alternative LPC representations

* Many alternate p-dimensional representations:
- coefficients {g;}

-1 -1
roots {\;} : H(l—kiz ) = 1—Eaiz
line spectrum frequencies...
reflection coefficients {ki} from lattice form

1-k;
tube model log area ratios @; = Iog(l " kl)
[

* Choice depends on:
- mathematical convenience/complexity
- quantization sensitivity
- ease of guaranteeing stability
- what is made explicit
- distributions as statistics
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LPC Applications

* Analysis-synthesis (coding, transmission):
E(2)
- Z) = —==
(2) NG
hence can reconstruct by filtering €[n] with {a}s

- whitened, decorrelated, minimized gn]s
are easy to quantize

- ..or can model €n] e.g. as simple pulse train

* Recognition/classification
- LPC fit responds to spectral peaks (formants)
- can use for recognition (convert to cepstra?)

* Modification
- separating source and filter supports cross-
synthesis
- pole / resonance model supports ‘warping’
(e.g. male — female)
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Aside: Formant tracking

* Formants carry (most?) linguistic information

* Why not classify — speech recognition ?
- e.g. local maxima in cepstral-liftered spectrum
pole frequencies in LPC fit

* But: recognition needs to work in all
circumstances

- formants can be obscure or undefined
Orlglnal (mpgrl sx419)

: 'I1" .|m"'| T A ,”Ihh‘"u--l bl I':' :r'":’:' i

Ay "T il HII'"'*"ﬂl by nufl' o [t

.......

14

time / <

— Need more graceful, robust parameters o
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Outline

€@ Modeling speech signals
9 Spectral and cepstral modes
@ Linear predictive models (LPC)

@ other models
- Sinewave modeling
- Harmonic+Noise model (HNM)

e Speech synthesis
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@ Other models:
Sinusoid modeling

» Early signal models required low complexity
- e.g.LPC

* Advances in hardware open new possibilities...

« NB spectrogram suggests harmonics model:

i
el i ('
i
;1‘1

o
e

il

Lt
Won
WUW

Il
i

. 15
time/s

- ‘important’ info in 2-D surface is set of tracks?
- harmonic tracks have ~ smooth properties
- straightforward resynthesis o+
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Sine wave models

* Model sound as sum of AM/FM sinusoids:
N[n]
sinl = 3 Adnlcos(n- o [n]+¢n])
k=1
- Ay, wy, ¢k piecewise linear or constant
- can enforce harmonicity: oy = K.og

200 500 1000 2000 5000
freq

- find local maxima of |§k,n]| along frequency
- track birth/death & correspondence

*
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Finding sinusoid peaks

* Look for local maxima along DFT frame
- ie [gk-1,n] < [kn]| > [Fk+1,n]|

* Want exact frequency of implied sinusoid

- DFT is normally quantized quite coarsely
e.g. 4000 Hz / 256 bins = 15.6 Hz

- interpolate at peaks via, e.g., quadratic fit

A Quadratic fit to 3 points

N\ interpolated frequency
and magnitude

magnitude

I Spectral samples

- frequency

- may also need interpolated unwrapped phase

* Or,use differential of phase along time (pvoc):

ab—ba .
- = ——— where §knj=a+jb
a+b +
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Sinewave modeling applications

* Modification (interpolation) & synthesis
- connecting arbitrary o & ¢ requires

cubic phase interpolation (because m = q) )

* Types of modification

- time & frequency scale modification
.. with or without changing formant envelope

- concatenation/smoothing boundaries
- phase realignment (for crest reduction)

* Non-harmonic signals? OK-ish

. 5
time/s E
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Harmonics + noise model

* Motivation to improve sinusoid model because:
- problems with analysis of real (noisy) signals
- problems with synthesis quality (esp. noise)
- perceptual suspicions

* Model:
N[n]
gn] = E A [n]Jcos(n- k- wg[n]) +e[n]- (h[n]® b[n])
k=1
Harmonics Noise

- sinusoids are forced to be harmonic
- remainder is filtered & time-shaped noise

» ‘Break frequency’ F,n] between H and N:
dB ' ' ' '

Harmonics + Harmonicity limit

ey Noise

201

0 " . | N . . . [N
0 1000 2000 3000 frea / Hz
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HNM analysis and synthesis

» Dynamically adjust F[n] based on

‘harmonic test’:
4000 T

3000

freq / Hz

2000 [

1000

0

* Noise has envelopes in time €[n] and freq H,

freq/ Hz
3000

2000
1000
0

0 0.01 0.02 0.03time/s

- reconstruct bursts / synchronize to pitch pulses
%
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Qutline

0 Modeling speech signals

e Spectral and cepstral modes
e Linear predictive models (LPC)
0 Other models

e Speech synthesis
- Phone concatenation
- Diphone synthesis

*
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® Speech synthesis
* Onething you can do with models
» Synthesis easier than recognition?
- listeners do the work
- .. but listeners are very critical
* Overview of synthesis
Phoneme
generation
text Text 4 Synthesis speech
normalization v algorithm
R Prosody
generation

normalization disambiguates text (abbreviations)
phonetic realization from pronouncing dictionary
prosodic synthesis by rule (timing, pitch contour)
.. all controls waveform generation

E6820 SAPR - Dan Ellis LO5 - Speech models 2006-02-16 - 36




Source-filter synthesis

* Flexibility of source-filter model is ideal for
speech synthesis

Phoneme
%\A% info
: Glottal pulse th ax k ae t
'?;]tfcoh |~ T source 1
i t Vocal tract | SPeech
Voiced/ H .| vocad P
unvoiced _I:U:Lt q filter
Noise
source
e Excitation source issues:
- voiced / unvoiced / mixture ([th] etc.)
- pitch cycle of voiced segments
- glottal pulse shape — voice quality?
+
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Vocal tract modeling

 Simplestidea:
Store a single VT model for each phoneme

! — !

I—

— | -
|

freq

|
-

|
1 | —
[r— |

th :ax:k:ae

time

- but: discontinuities are very unnatural

* Improve by smoothing between templates

[
|

time

th  ax k ae
- trick is finding the right domain +
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Cepstrum-based synthesis

* Low-ncepstrum is compact model of target
spectrum

 Caninvertto get actual VT IR waveform:

c, = idft(logldft(x[n])|)
— h[n] = idft(exp(dft(c,)))

* All-zero (FIR) VT response
— can pre-convolve with glottal pulses

Glottal pulse . . .
inventory Pitch pulse times (from pitch contour)
—
- M \
ae | | : :
W ‘A;m;/m Y
a O\ | WY i
- cross-fading between templates is OK +
E6820 SAPR - Dan Ellis LO5 - Speech models 2006-02-16 - 39

LPC-based synthesis

* Very compact representation of target spectra
- 3 or 4 pole pairs per template

» Low-order lIR filter — very efficient synthesis

* How to interpolate?
- cannot just interpolate g; in a running filter

- but: lattice filter has better-behaved interpolation
n  enl ¥ R sn]
NS N
-1

* What to use for excitation
- residual from original analysis
- reconstructed periodic pulse train
- parameterized residual resynthesis *
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Diphone synthesis

* Problems in phone-concatenation synthesis
- phonemes are context-dependent
- coarticulation is complex
- transitions are critical to perception

— store transitions instead of just phonemes
Phones  Helzlalw| a el [0 [ih|ilz]l ]d] &

Diphone
segments

- ~40 phones — 800 diphones
- or even more context if have a larger database

* How to splice diphones together?
- TD-PSOLA: align pitch pulses and cross-fade

- MBROLA: normalized, multiband
e
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HNM synthesis

* High quality resynthesis of real diphone units
+ parametric representation for modifications

- pitch, timing modifications
- removal of discontinuities at boundaries

* Synthesis procedure:
- linguistic processing gives phones, pitch, timing
- database search gives best-matching units
- use HNM to fine-tune pitch & timing
- cross-fade A, and wg parameters at boundaries

freq

, . time

e Careful preparation of database is key
- sine models allow phase alignment of all units
- larger database improves unit match o+
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Generating prosody

* Thereal factor limiting speech synthesis?

 Waveform synthesizers have inputs for
- intensity (stress)
- duration (phrasing)
- fundamental frequency (pitch)

e Curves produced by superposition of (many)
inferred linguistic rules

- phrase final lengthening, unstressed shortening..

FREQ (H2)

,
T4 & & o iz 14 1§

i3 i | o ltldlml 2 Inl s | 2 Idelnlalel o Iklslgl & | & |

THE oD MaN SAT N A ROCKING CHAR.

e Or learn rules from transcribed examples -
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Summary

* Range of models:
- spectral, cepstral
- LPC, Sinusoid, HNM

* Range of applications:
- general spectral shape (filterbank) — ASR
- precise description (LPC+residual) — coding
- pitch, time modification (HNM) — synthesis

* |ssues:
- performance vs. computational complexity
- generality vs. accuracy
- representation size vs. quality

Parting thought:
not all parameters are created equal ...
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