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ELEN E4810: Digital Signal Processing
Topic 11: 

Continuous Signals
1. Sampling and Reconstruction
2. Quantization
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1. Sampling & Reconstruction
 DSP must interact with an analog world:

DSP
Anti-
alias
filter

Sample
and
hold

A to D

Reconstruction
filter

D to A

Sensor ActuatorWORLD

x(t) x[n] y[n] y(t)
ADC DAC
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Sampling: Frequency Domain
 Sampling: CT signal → DT signal by 

recording values at ‘sampling instants’:

 What is the relationship of the spectra?

 i.e. relate

and

� 

g n[ ] = ga nT( )Discrete Continuous
Sampling period T

→ samp.freq. ≠samp = 2º/T rad/sec

� 

Ga j( ) = ga t( )e jtdt


G(e j ) = g n[ ]e jn




CTFT

DTFT

≠ in rad/second

! in rad/sample
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Sampling
 DT signals have same ‘content’ as 

CT signals gated by an impulse train:

 gp(t) = ga(t)·p(t) is a CT signal with the 
same information as DT sequence g[n]

p(t)

t

ga(t)

t

gp(t)

‘sampled’ signal:
still continuous
- but discrete

values
tT

� 

=  t  nT( )n=



CT delta fn

×
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Spectra of sampled signals
 Given CT 
 CTFT Spectrum

 Compare to DTFT

 i.e.

by linearity

gp(t) =
⇥�

n=�⇥
ga(nT ) · �(t� nT )

Gp(j�) = F{gp(t)} =
�

�n

ga(nT )F{�(t� nT )}

� Gp(j�) =
�

⇥n

ga(nT )e�j�nT

G(ej�) =
�

⇥n

g[n]e�j�n

G(ej�) = Gp(j�)|�T=�

! ~ ≠T 

≠ ~ !/T

º

º/T = ≠samp/2
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Spectra of sampled signals
 Also, note that

is periodic, thus has Fourier Series:

 But 
 so

� 

p t( ) =  t  nT( )
n

� 

p t( ) = 1
T

e j
2
T( )kt

k=




  

� 

ck = 1
T

p t( )e j2kt /T dtT /2

T /2
= 1
T

� 

F e j0t x t( ){ } = X j 0( )( ) shift in
frequency

  

� 

Gp j( ) = 1
T Ga j   k samp( )( )k

- scaled sum of replicas of Ga(j≠)
shifted by multiples of sampling frequency ≠samp
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CT and DT Spectra

� 

G e j( ) =Gp j( )T=
= 1
T Ga j 

T  k 2T( )( )k
  

� 

G e jT( ) = 1
T Ga j   k samp( )( )kDTFT CTFT

� 

ga t( )Ga j( )

� 

p t( ) P j( )

� 

gp t( )Gp j( )

� 

g n[ ]G e j( )

×

=

↓

 So:

≠
≠M−≠M

ga(t) is bandlimited 
@ ≠Μ

≠
≠samp−≠samp

≠

!

M

2≠samp−2≠samp

M/T shifted/scaled copies

2º 4º−2º−4º At � = �samp =
2�

T
have � = �T = 2�
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Avoiding aliasing
 Sampled analog signal has spectrum:

 ga(t) is bandlimited to ± ≠M rad/sec
 When sampling frequency ≠samp is large...
→ no overlap between aliases
→ can recover ga(t) from gp(t) 

  by low-pass filtering

≠
≠M

−≠samp ≠samp−≠M
≠samp− ≠M−≠samp + ≠M

Gp(j≠) Ga(j≠) “alias” of “baseband” 
signal
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Aliasing & The Nyquist Limit
 If bandlimit ≠M is too large, or sampling 

rate ≠samp is too small, aliases will overlap:

 Spectral effect cannot be filtered out
→ cannot recover ga(t)

 Avoid by:
 i.e. bandlimit ga(t) at  ≤ 

≠
≠M−≠samp ≠samp 

−≠M
≠samp− ≠M

Gp(j≠)

  

� 

 samp M  M  samp  2M

Sampling theorum

Nyquist
frequency  

� 

 samp

2
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Anti-Alias Filter
 To understand speech, need ~ 3.4 kHz
   → 8 kHz sampling rate (i.e. up to 4 kHz)
 Limit of hearing ~20 kHz
   → 44.1 kHz sampling rate for CDs
 Must remove energy above Nyquist with 

LPF before sampling: “Anti-alias” filter

M

ADC
Anti-alias

filter
Sample
& hold

A to D

‘space’ for
filter rolloff
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Sampling Bandpass Signals
 Signal is not always in ‘baseband’ 

around ≠ = 0 ... may be at higher ≠:

 If aliases from sampling don’t overlap, 
no aliasing distortion; can still recover:

 Basic limit: ≠samp/2 ≥ bandwidth ¢≠ 

≠−≠H ≠L −≠L ≠H 

A

Bandwidth ¢≠ = ≠H − ≠L

≠
≠samp −≠samp 2≠samp 

A/T

≠samp/2 
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 make a continuous 
impulse train gp(t)

 lowpass filter to 
extract baseband
→ ga(t)

Reconstruction
 To turn g[n] 

back to ga(t):

 Ideal reconstruction filter is brickwall
 i.e. sinc - not realizable (especially analog!)
 use something with finite transition band...

^ t
gp(t)

n
g[n]

t
ga(t)

≠

≠

!

G(ej!)

Gp(j≠)

Ga(j≠)

º

≠samp/2

^

^ ^

^
^

^
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2. Quantization
 Course so far has been about 

discrete-time i.e. quantization of time
 Computer representation of signals also 

quantizes level (e.g. 16 bit integer word)
 Level quantization introduces an error 

between ideal & actual signal → noise
 Resolution (# bits) affects data size 
→ quantization critical for compression
 smallest data ↔ coarsest quantization
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Quantization
 Quantization is performed in A-to-D:

 Quantization has simple transfer curve:
Quantized signal

� 

ˆ x = Q x{ }
Quantization error

� 

e = x  ˆ x 

t

x

n

x

T
�

A/D

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5
-4
-3
-2
-1
0
1
2
3
4
5

x

Q{x}

e = x - Q{x}
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Quantization noise
 Can usually model quantization as 

additive white noise: i.e. uncorrelated 
with self or signal x

+x[n] x[n]^

e[n]

-

bits ‘cut off’ by 
quantization; 

hard amplitude limit
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Quantization SNR
 Common measure of noise is 

Signal-to-Noise ratio (SNR) in dB:

 When |x| >> 1 LSB, quantization noise 
has ~ uniform distribution:

� 

SNR =10  log10
 x

2

 e
2  dB

signal power

noise power

(quantizer step = ")

� 

 e
2 = 

2

12
-�/2 +�/2

P(e[n])
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Quantization SNR
 Now, σx

2 is limited by dynamic range of 
converter (to avoid clipping)

 e.g. b+1 bit resolution (including sign)
output levels vary -2b·" .. (2b-1)"

! ! ! !        where full-scale range

i.e. ~ 6 dB 
SNR per bit

depends 
on signal

= –RFS
2
... RFS

2 RFS = 2
b+1

� SNR = 10 log10
�2

x�
R2

FS

22(b+1)·12

� � 6b + 16.8� 20 log10
RFS

�x



2013-12-04Dan Ellis 18

Coefficient Quantization
 Quantization affects not just signal

but filter constants too
 .. depending on implementation
 .. may have different resolution

 Some coefficients 
are very sensitive 
to small changes
 e.g. poles near 

unit circle

high-Q pole
becomes
unstable

z-plane
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12/9 Project Presentations
10:15 Arthur Argall: Genomic Signal Processing
10:25 Yue Hou, Dongxue Liu: 

Blind Signal Separation
10:35 Nathan Lin: 

Spectral Domain Phase Microscopy
10:45 Minda Yang, Yitong Li: 

Reconstruction from Neural Measurements
10:55 Yinan Wu: Mixed Channel Music
11:05 Maja Rudolph, Preston Conley: 

Walking Pace Extraction from Video
11:15 Alan Zambeli-Ljepović, Tanya Shah, Sophie Wang:

Lung Sounds Analysis


