ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR

- 1. Filter Design Specifications
- 2. Analog Filter Design
- 3. Digital Filters from Analog Prototypes

Filter Design Specifications The filter design process:

- Assume peak passband gain = 1 then *minimum* passband gain =
- Or, ripple $\alpha_{\rm max} = 20 \log_{10} \sqrt{1 + \varepsilon^2}$

dB

- Peak passband gain is A× larger than peak stopband gain
- Hence, minimum stopband attenuation $\alpha_s = -20 \log_{10} \frac{1}{A} = 20 \log_{10} A$ dB

Filter Type Choice: FIR vs. IIR				
FIR		IIR		
	 No feedback (just zeros) Always stable Can be linear phase 	 Feedback (poles & zeros) May be unstable Difficult to control phase 		
BUT	 High order (20-2000) Unrelated to continuous- time filtering 	 Typ. < 1/10th order of FIR (4-20) Derive from analog prototype 		

FIR vs. IIR

- If you care about computational cost
 → use low-complexity IIR
 (computation no object → linear phase FIR)
- If you care about phase response
 → use linear-phase FIR
 (phase unimportant → go with simple IIR)

IIR Filter Design

- IIR filters are directly related to analog filters (continuous time)
 - via a mapping of H(s) (CT) to H(z) (DT) that preserves many properties
- Analog filter design is sophisticated
 signal processing research since 1940s
- → Design IIR filters via *analog prototype* need to learn some CT filter design

2. Analog Filter Design

- Decades of analysis of transistor-based filters – sophisticated, well understood
- Basic choices:
 - ripples vs. flatness in stop and/or passband
 - more ripples \rightarrow narrower transition band

Family	PassBand	StopBand	
Butterworth	flat	flat	
Chebyshev I	ripples	flat	
Chebyshev II	flat	ripples	
Elliptical	ripples	ripples	

CT Transfer Functions							
Analog systems: s-transform (Laplace)							
frequency response still from a polynomial							
	Continuous-time	Discrete-	time				
Transform	$H_a(s) = \int h_a(t) e^{-st} dt$	$H_d(z) = \sum d$	$h_d[n]z^{-n}$				
Frequency response	$H_a(j\Omega)$	$H_d(e^{ja})$	<i>v</i>)				
Pole/zero diagram	<pre>Im{s} jΩ</pre>	stable poles	$i\omega$ R e{z} z -plane				
Dan E	llis 2013-11-11		11				

Butterworth Filters

Maximally flat in pass and stop bands

2013-11-11

Butterworth Filters • $|H_a(j\Omega)|^2 = \frac{1}{1 + (\frac{\Omega}{\Omega_c})^{2N}}$... but what is $H_a(s)$?

Traditionally, look it up in a table • calculate $N \rightarrow$ normalized filter with $\Omega_c = 1$ • scale all coefficients for desired Ω_c $Im\{s\}$ In fact, $H_a(s) = \frac{1}{\prod_i (s - p_i)}$ Ω_c $\underline{\mathbf{R}}\mathbf{e}\{s\}$ where $p_i = \Omega_c e^{j\pi \frac{N+2i-1}{2N}}$ i = 1..N $\frac{s}{\Omega}$ odd-indexed uniform divisions of Ω_c -radius circle s-plane

2013-11-11

Butterworth Example

- Order N = 4 will satisfy constraints; What are Ω_c and filter coefficients?
 - from a table, $\Omega_{-1dB} = 0.845$ when $\Omega_c = 1$ $\Rightarrow \Omega_c = 1000/0.845 = 1.184$ kHz
 - from a table, get normalized coefficients for N = 4, scale by 1184.2 π eg

-10

0

Or, use Matlab:

 [B,A]
 -20

 butter(N,Wc,'s');
 -40

 -50
 -60

Chebyshev

$$|H(j\Omega)|^{2} = \frac{1}{1 + \varepsilon^{2}T_{N}^{2}(\frac{\Omega}{\Omega_{p}})} \xrightarrow{\qquad \text{Websure}} I(\Omega) = \begin{cases} \cos(N\cos^{-1}\Omega) & |\Omega| \leq 1\\ \cosh(N\cosh^{-1}\Omega) & |\Omega| > 1 \end{cases}$$
Due Ellis 2013-11 18

Dan Ellis

2013-11-11

Chebyshev I Filter

- Design procedure:
 - desired passband ripple $\rightarrow \varepsilon$
 - min. stopband atten., Ω_p , $\Omega_s \rightarrow N$:

$$\frac{1}{A^2} = \frac{1}{1 + \varepsilon^2 T_N^2(\frac{\Omega_s}{\Omega_p})} = \frac{1}{1 + \varepsilon^2 \left[\cosh\left(N\cosh^{-1}\frac{\Omega_s}{\Omega_p}\right) \right]^2}$$
$$\Rightarrow N \ge \frac{\cosh^{-1}\left(\frac{\sqrt{A^2 - 1}}{\varepsilon}\right)}{\cosh^{-1}\left(\frac{\Omega_s}{\Omega_p}\right) - \frac{1/k_1}{selectivity}} \xrightarrow{\cosh^{-1} grows}{\log 10}$$

Chebyshev I Filter

- What is $H_a(s)$?
 - complicated, get from a table
 - or from Matlab cheby1(N,r,Wp,'s')
 - all-pole; can inspect them:

Chebyshev II Filter Flat in passband, equiripple in stopband

Elliptical (Cauer) Filters

Ripples in both passband and stopband

Complicated; not even closed form for N

Dan Ellis

2013-11-11

Analog Filter Transformations

 All filters types shown as lowpass; other types (highpass, bandpass..) derived via transformations

• i.e.
$$\hat{s} = F^{-1}(s)$$

lowpass
prototype $H_{LP}(s) \rightarrow H_D(\hat{s})$
Desired alternate
response; still a
rational polynomial

■ General mapping of *s*-plane BUT keep LHHP & $j\Omega \rightarrow j\hat{\Omega}$; poles OK, frequency response 'shuffled'

Lowpass-to-Highpass Example transformation: $H_{HP}(\hat{s}) = H_{LP}(s)\Big|_{s=\frac{\Omega_p\hat{\Omega}_p}{\hat{s}}}$ • take prototype $H_{IP}(s)$ polynomial • replace s with $\frac{\Omega_p \hat{\Omega}_p}{P}$ simplify and rearrange \rightarrow new polynomial $H_{HP}(s)$

Lowpass-to-Highpass

What happens to frequency response?

2013-11-11

Transformation Example
• LPF proto has
$$p_{\ell} = \Omega_c e^{j\pi \frac{N+2\ell-1}{2N}}$$

 $\Rightarrow H_{LP}(s) = \frac{\Omega_c^N}{\prod_{\ell=1}^N (s-p_{\ell})}$
• Map to HPF: $H_{HP}(\hat{s}) = H_{LP}(s)|_{s=\frac{\Omega_p \hat{\Omega}_p}{\hat{s}}}$
 $\Rightarrow H_{HP}(\hat{s}) = \frac{\Omega_c^N}{\prod_{\ell=1}^N \left(\frac{\Omega_p \hat{\Omega}_p}{\hat{s}} - p_{\ell}\right)} = \frac{\Omega_c^N \hat{s}^N \swarrow e^{i\theta} \hat{s} = 0}{\prod_{\ell=1}^N \left(\Omega_p \hat{\Omega}_p - p_{\ell} \hat{s}\right)}$
new poles @ $\hat{s} = \Omega_p \hat{\Omega}_p / p_l$
Dan Ellis 2013-11-11 29

2013-11-11

Transformation Example

In Matlab:

[N,Wc] = buttord(1, 4, 0.1, 40, 's'); [B,A] = butter(N, Wc, 's');[U,D] = lp2hp(B,A, 2*pi*4000);

3. Analog Protos → IIR Filters

Can we map high-performance CT filters to DT domain?

• Approach: transformation $H_{a}(s) \rightarrow G(z)$ i.e. $G(z) = H_a(s)|_{s=F(z)}$ where s = F(z) maps s-plane $\leftrightarrow z$ -plane: $\uparrow \operatorname{Im}\{s\} \quad s = F(z)$ $Im\{z\}$ $\overline{z} = F^{-1}(s)$ $H_a(s_0)$ o $\operatorname{Re}\{z\}$ Every value of G(z) $\underline{\mathbf{R}}\mathbf{e}\{s\}$ is a value of $H_a(s)$ somewhere on the *s*-plane z-plane s-plane & vice-versa

CT to DT Transformation

- Desired properties for s = F(z):
 - *s*-plane $j\Omega$ axis $\leftrightarrow z$ -plane unit circle
 - → preserves frequency response values
 - s-plane LHHP ↔ z-plane unit circle interior
 → preserves stability of poles

2013-11-11

Bilinear Transformation

Solution:
$$s = \frac{1-z^{-1}}{1+z^{-1}} = \frac{z-1}{z+1}$$
 Bilinear Transform

• Hence inverse: $z = \frac{1+s}{1-s}$ unique, 1:1 mapping

33

• Freq. axis? $s = j\Omega \rightarrow z = \frac{1+j\Omega}{1-j\Omega}$ on unit circle

• Poles? $s = \sigma + j\Omega \rightarrow z = \frac{(1+\sigma)+j\Omega}{(1-\sigma)-j\Omega}$ $\Rightarrow |z|^2 = \frac{1+2\sigma+\sigma^2+\Omega^2}{1-2\sigma+\sigma^2+\Omega^2} \quad \sigma < 0$ $\Leftrightarrow |z| < 1$

Bilinear Transformation

How can entire half-plane fit inside u.c.?

Highly nonuniform warping!

 "Moebius Transformations Revealed" <u>http://www.youtube.com/watch?v=G87ehdmHeac</u>

Bilinear Transformation

• What is CT \leftrightarrow DT freq. relation $\Omega \leftrightarrow \omega$?

$$z = e^{j\omega} \Rightarrow s = \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} = \frac{2j\sin\omega/2}{2\cos\omega/2} = j\tan\frac{\omega}{2}$$

i.e.
$$\Omega = \tan\left(\frac{\omega}{2}\right)$$
$$\overset{\sigma}{=} 2\tan^{-1}\Omega$$

- *infinite* range of CT frequency $-\infty < \Omega < \infty$ maps to *finite* DT freq. range $-\pi < \omega < \pi$
- nonlinear; $\frac{d}{d\omega}\Omega \rightarrow \infty$ as $\omega \rightarrow \pi$ pack it all in!

2013-11-11

Bilinear Transform Example ■ DT domain requirements: Lowpass, 1 dB ripple in PB, $\omega_p = 0.4\pi$, SB attenuation ≥ 40 dB @ $\omega_s = 0.5\pi$, attenuation increases with frequency

Bilinear Transform Example

- Warp to CT domain: $\Omega_p = \tan \frac{\omega_p}{2} = \tan 0.2\pi = 0.7265 \text{ rad/sec}$ $\Omega_s = \tan \frac{\omega_s}{2} = \tan 0.25\pi = 1.0 \text{ rad/sec}$
- Magnitude specs:
 1 dB PB ripple

 $\Rightarrow \frac{1}{\sqrt{1+\varepsilon^2}} = 10^{-1/20} = 0.8913 \Rightarrow \varepsilon = 0.5087$

40 dB SB atten.

 $\Rightarrow \frac{1}{A} = 10^{-40/20} = 0.01 \Rightarrow A = 100$

Bilinear Transform Example• Chebyshev I design criteria: $N \ge \frac{\cosh^{-1}\left(\frac{\sqrt{A^2-1}}{\varepsilon}\right)}{\cosh^{-1}\left(\frac{\Omega_s}{\Omega_p}\right)} = 7.09$ i.e. need N = 8• Design analog filter, map to DT, check:

Other Filter Shapes

- Example was IIR LPF from LP prototype
- For other shapes (HPF, bandpass,...):

■ Transform LP→X in CT or DT domain...

DT Spectral Transformations

Same idea as CT LPF→HPF mapping, but in *z*-domain:

$$G_D(\hat{z}) = G_L(z)\big|_{z=F(\hat{z})} = G_L(F(\hat{z}))$$

- To behave well, $z = F(\hat{z})$ should:
 - map u.c. → u.c. (preserve $G(e^{j\omega})$ values)
 - map u.c. interior \rightarrow u.c. interior (stability)
- i.e. $|F(\hat{z})| = 1 \leftrightarrow |\hat{z}| = 1$ $|F(\hat{z})| < 1 \leftrightarrow |\hat{z}| < 1$

• in fact, $F(\hat{z})$ matches the definition of an allpass filter ... replace delays with $F(\hat{z})^{-1}$

DT Frequency Warping

Simplest mapping $z = F(\hat{z}) = \frac{\hat{z} - \alpha}{1 - \alpha \hat{z}}$ has effect of warping frequency axis:

Another Design Example

- Spec:
 - Bandpass, from 800-1600 Hz (SR = 8kHz)
 - Ripple = 1dB, min. stopband atten. = 60 dB
 - 8th order, best transition band
 - \rightarrow Use elliptical for best performance
- Full design path:
 - prewarp spec frequencies
 - design analog LPF prototype
 - analog LPF \rightarrow BPF
 - CT BPF → DT BPF (Bilinear)

Another Design Example

- Frequency prewarping
 - 800 Hz @ SR = 8kHz
 800/8000 x 2 π rad/sample
 - $\rightarrow \omega_L = 0.2 \pi$, $\omega_U = 1600/8000 \times 2 \pi = 0.4 \pi$
 - $\Omega_L = \tan \omega_L/2 = 0.3249$, $\Omega_U = 0.7265$
- Note distinction between:
 - application's CT domain (800-1600 Hz) and
 - CT prototype domain (0.3249-0.7265 rad/s)

Another Design Example • Or, do it all in one step in Matlab: [b,a] = ellip(8,1,60, [800 1600]/(8000/2));

46

Dan Ellis

2013-11-11