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ELEN E4810: Digital Signal Processing
Topic 2: Time domain

1. Discrete-time systems
2. Convolution
3. Linear Constant-Coefficient Difference 

Equations (LCCDEs)
4. Correlation
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1. Discrete-time systems
 A system converts input to output:

 E.g. Moving Average (MA):

x[n] DT System y[n]

(M = 3)

x[n]

y[n]+
z-1

z-1

1/M

1/M

1/M
x[n-1]

x[n-2]

� 

y[n] = 1
M

x[n  k]
k=0

M 1

{y[n]} = f ({x[n]}) n

A
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Moving Average (MA)

x[n]

y[n]+
z-1
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1/M
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x[n-1]
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y[n]
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� 

y[n] = 1
M

x[n  k]
k=0

M 1
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MA Smoother
 MA smoothes out rapid variations 

(e.g. “12 month moving average”)
 e.g. signal   noise

� 

y[n] = 1
5

x[n  k]
k=0

4
5-pt
moving
average

x[n] = s[n] + d[n]
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Accumulator
 Output accumulates all past inputs:

x[n] y[n]+
z-1

y[n-1]

  

� 

y[n] = x[]
=

n



= x[]
=

n1

 + x[n]

= y[n 1]+ x[n]
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Accumulator

n

x[n]

-1 1 2 3 4 5 6 7 8 9

A

n

y[n-1]
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n

y[n]
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x[n] y[n]+
z-1

y[n-1]

M
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Classes of DT systems
 Linear systems obey superposition:

 if input x1[n] → output y1[n], x2 → y2 ...
 given a linear combination 

of inputs:
 then output 

for all Æ, Ø, x1, x2

i.e. same linear combination of outputs

x[n] DT system y[n]
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Linearity: Example 1
 Accumulator:

Linear

  

� 

y[n] = x[]
=

n



  

� 

y[n] = x1[]+ x2[]( )
=

n


= x1[]( ) + x2[]( )
= x1[] +  x2[]
=  y1[n]+   y2[n]

� 

x[n] =  x1[n]+   x2[n]



2013-09-11Dan Ellis 9

Linearity Example 2:
 “Teager Energy operator”:

Nonlinear

� 

y[n] = x2[n] x[n 1]  x[n +1]

� 

x[n] =  x1[n]+   x2[n]

� 

y[n] = x1[n]+x2[n]( )2

� 

 x1[n 1]+x2[n 1]( )

� 

 x1[n +1]+x2[n +1]( )

� 

   y1[n]+  y2[n]
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Linearity Example 3:
 ‘Offset’ accumulator:

but

Nonlinear

.. unless C = 0

  

� 

y[n] =C + x[]
=

n



  

� 

 y1[n] =C + x1[]
=

n



  

� 

y[n] =C + x1[]+x2[]( )
=

n


y1[n]+y2[n]
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Property: Shift (time) invariance
 Time-shift of input 

causes same shift in output
 i.e. if x1[n] → y1[n]

 then

 i.e. process doesn’t depend on absolute 
value of n � 

x[n] = x1[n  n0 ]

� 

 y[n] = y1[n  n0 ]
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Shift-invariance counterexample
 Upsampler: L

Not shift invariant

y[n] =

�
x[n/L] n = 0,±L,±2L, . . .

0 otherwise

y1[n] = x1[n/L] (n = r · L)
x[n] = x1[n� n0]

� y[n] = x[n/L] = x1[n/L� n0]

= x1

�
n� L · n0

L

�
= y1[n� L · n0] �= y1[n� n0]

x[n] y[n]
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Another counterexample

 Hence
 If 

then

 Not shift invariant 
- parameters depend on n

≠� 

y[n] = n  x[n] scaling by time index

� 

y1[n  n0 ] = n  n0( )  x1[n  n0 ]
x[n] = x1[n  n0 ]

y[n] = n  x1[n  n0 ]
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Linear Shift Invariant (LSI)
 Systems which are both linear and 

shift invariant are easily manipulated 
mathematically

 This is still a wide and useful class of 
systems

 If discrete index corresponds to time, 
called Linear Time Invariant (LTI)
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Causality
 If output depends only on past and 

current inputs (not future), system is 
called causal

 Formally, if x1[n] → y1[n] & x2[n] → y2[n]
    Causal 

� 

x1[n] = x2[n] n < N
 y1[n] = y2[n] n < N
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Causality example
 Moving average:

y[n] depends on x[n-k], k ≥ 0 → causal
 ‘Centered’ moving average

 .. looks forward in time → noncausal
 .. Can make causal by delaying

� 

y[n] = 1
M

x[n  k]
k=0

M 1

  

� 

yc n[ ] = y n + M 1( ) /2[ ]

=
1
M

x[n] + x[n  k] + x[n + k]k=1
(M 1) /2( )
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Impulse response (IR)
 Impulse

(unit sample sequence)
 Given a system:

if x[n] = ±[n] then y[n] = h[n]

 LSI system completely specified by h[n]

n

±[n]
-1 1 2 3 4 5 6 7

1

-2-3

x[n] DT system y[n]

∆

“impulse response”
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Impulse response example
 Simple system: α1x[n]

y[n]+
z-1

z-1

α2

α3

n

x[n]
-1 1 2 3 4 5 6 7

1

-2-3

n

y[n]
-1 1 2 3 4 5 6 7

α1

-2-3

α2
α3

x[n] = ±[n]  impulse

y[n] = h[n]  impulse response
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2. Convolution
 Impulse response:

 Shift invariance:

 + Linearity:

 Can express any sequence with ±s:
 x[n] = x[0]±[n] + x[1]±[n-1] + x[2]±[n-2]..

±[n] LSI h[n]

±[n-n0] LSI h[n-n0]

α·±[n-k]
 + β·±[n-l]

LSI α·h[n-k]
  + β·h[n-l]
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Convolution sum
 Hence, since

 For LSI,

written as
 Summation is symmetric in x and h

i.e. l = n – k → 

Convolution
sum

� 

x[n] = x[k][n  k]
k=





� 

y[n] = x[k]h[n  k]
k=





*

� 

y[n] = x[n] h[n]

*

� 

x[n] h[n] = x[n  l]h[l]
l=



 = h[n] x[n]*
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Convolution properties
 LSI System output y[n] = input x[n] 

convolved with impulse response h[n] 
→ h[n] completely describes system

 Commutative:
 Associative:

 Distributive:

x[n]     h[n] = h[n]     x[n]* *

(x[n]    h[n])    y[n] = x[n]    (h[n]    y[n])****

h[n]    (x[n] + y[n]) = h[n]    x[n] + h[n]    y[n]** *
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Interpreting convolution
 Passing a signal through a (LSI) system 

is equivalent to convolving it with the 
system’s impulse response

x[n] h[n] y[n] = x[n]   h[n]∗

x[n]={0 3 1 2 -1} h[n] = {3 2 1}

n-1 1 2 3 4 5 6 7-2-3n-1 1 2 3 5 6 7-2-3

� 

y[n] = x[k]h[n  k]
k=



 = h[k]x[n  k]
k=





→ →
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Convolution interpretation 1

 Time-reverse h, 
shift by n, take inner 
product against 
fixed x

k-1 1 2 3 5 6 7-2-3

x[k]

k-1 1 2 3 4 5 6 7-2-3

h[0-k]

k-1 1 2 3 4 5 6 7-2-3

h[1-k]

k-1 1 2 3 4 5 6 7-2-3

h[2-k]

n-1 1 2 3 5 7-2-3

y[n]
0

9 9 11

2
-1

� 

y[n] = x[k]h[n  k]
k=





=g[k]

=g[k-1]

call h[-n] = g[n]
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Convolution interpretation 2

 Shifted x’s
weighted by
points in h

 Conversely, 
weighted, 
delayed
versions of h ... n-1 1 2 3 5 7-2-3

y[n]
0

9 9 11

2
-1

n-1 1 2 3 5 6 7-2-3

x[n]

n-1 1 2 3 4 6 7-2-3

x[n-1]

n-1 1 2 3 4 5 7-2-3

x[n-2]
k

-1
1

2
3

4
5

6
7

-2
-3

h[k]
� 

y[n] = h[k]x[n  k]
k=




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Matrix interpretation

 Diagonals in X matrix are equal

�

���

y[0]
y[1]
y[2]
. . .

�

��� =

�

���

x[0] x[�1] x[�2]
x[1] x[0] x[�1]
x[2] x[1] x[0]
. . . . . . . . .

�

���

�

�
h[0]
h[1]
h[2]

�

�

y[n] =
��

k=��
x[n� k]h[k]
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Convolution notes
 Total nonzero length of convolving N 

and M point sequences is N+M-1
 Adding the indices of the terms within 

the summation gives n :

i.e. summation indices move in opposite 
senses

� 

y[n] = h[k]x[n  k]
k=





� 

k + n  k( ) = n
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Convolution in MATLAB
 The M-file conv implements the 

convolution sum of two finite-length 
sequences

 If

 then conv(a,b) yields 

  

� 

a = [0 3 1 2 -1]

  

� 

b = [3 2 1]

  

� 

[0 9 9 11 2 0 -1]

M
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Connected systems
 Cascade connection:

 Impulse response h[n] of the cascade of 
two systems with impulse responses 
h1[n] and h2[n] is 

 By commutativity,

*

*

� 

h[n] = h1[n]
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Inverse systems
 ±[n] is identity for convolution

i.e. 
 Consider

 h2[n] is the inverse system of h1[n]

x[n] ±[n] = x[n]*

x[n] y[n] z[n]

= x[n]
z[n] = h2[n] y[n] = h2[n] h1[n] x[n]* **

if *

� 

h2[n] h1[n] = [n]
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Inverse systems
 Use inverse system to recover input x[n] 

from output y[n] (e.g. to undo effects of 
transmission channel)

 Only sometimes possible - e.g. cannot 
‘invert’ h1[n] = 0

 In general, attempt to solve 
*

� 

h2[n] h1[n] = [n]
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Inverse system example
 Accumulator: 

Impulse response h1[n] = μ[n]
 ‘Backwards difference’

.. has desired property:

 Thus, ‘backwards difference’ is inverse 
system of accumulator.

� 

µ[n]µ[n 1] = [n]

n-1 1 2 3 5 6 7-2-3 4

n-1 1 2 3 5 6 7-2-3 4
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Parallel connection

 Impulse response of two parallel 
systems added together is:
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3. Linear Constant-Coefficient 
Difference Equation (LCCDE)
 General spec. of DT, LSI, finite-dim sys:

 Rearrange for y[n] in causal form:

 WLOG, always have d0 = 1

  defined by {dk},{pk}

  order = max(N,M)

� 

dk y[n  k]
k=0

N

 = pk x[n  k]
k=0

M



� 

y[n] =  dk
d0
y[n  k]

k=1

N

 + pk
d0
x[n  k]

k=0

M


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Solving LCCDEs
 “Total solution”

Complementary Solution

satisfies

Particular Solution
for given forcing function
               x[n]� 

y[n] = yc[n]+ yp[n]

� 

dk y[n  k]
k=0

N

 = 0
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Complementary Solution
 General form of unforced oscillation

i.e. system’s ‘natural modes’
 Assume yc has form

Characteristic polynomial
of system - depends only on {dk}

� 

yc[n] = n

  

� 

 dk
nk

k=0

N

 = 0

nN d0
N + d1

N1 +…+ dN1 + dN( ) = 0

 dk
Nk

k=0

N

 = 0



2013-09-11Dan Ellis 36

Complementary Solution
                       factors into roots λi , i.e.

 Each/any λi satisfies eqn.
 Thus, complementary solution:

Any linear combination will work
→ αis are free to match initial conditions

� 

dk
Nk

k=0

N

 = 0

� 

(  1)(  2 )...= 0

� 

yc[n] =11
n +22

n +33
n + ...
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Complementary Solution
 Repeated roots in chr. poly:

 Complex λis → sinusoidal
� 

 yc[n] =11
n +2n1

n +3n
21

n

+...+Ln
L11

n + ...
� 

(  1)
L (  2 )...= 0

� 

yc[n] = ii
n
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Particular Solution
 Recall: Total solution
 Particular solution reflects input
 ‘Modes’ usually decay away for large n 

leaving just yp[n]
 Assume ‘form’ of x[n], scaled by β:

e.g. x[n] constant → yp[n] = β        
       x[n] = λ0

n → yp[n] = β · λ0
n   (λ0 ∉ λi)

                                    or = β nL λ0
n   (λ0 ∈ λi)

� 

y[n] = yc[n]+ yp[n]
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LCCDE example

 Need input:  x[n] = 8μ[n]
 Need initial conditions:

 y[-1] = 1, y[-2] = -1 

x[n] y[n]+

� 

y[n]+ y[n 1] 6y[n  2] = x[n]
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LCCDE example
 Complementary solution:

  α1, α2 are unknown at this point

→roots λ1 = -3, λ2 = 2

� 

y[n]+ y[n 1] 6y[n  2] = 0; y[n] =n

n2 2 +   6( ) = 0
  + 3( )   2( ) = 0

� 

 yc[n] =1 3( )n +2 2( )n
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LCCDE example
 Particular solution:
 Input x[n] is constant = 8μ[n] 
 assume yp[n] = β, substitute in:

(‘large’ n)

� 

y[n]+ y[n 1] 6y[n  2] = x[n]
 +   6 = 8µ[n]
4 = 8 = 2
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 Total solution

 Solve for unknown αis by substituting 
initial conditions into DE at n = 0, 1, ...

 n = 0

LCCDE example

from ICs� 

=1 3( )n +2 2( )n + 

� 

y[n] = yc[n]+ yp[n]

� 

y[n]+ y[n 1] 6y[n  2] = x[n]

� 

y[0]+ y[1] 6y[2] = x[0]

� 

1 +2 +  +1+ 6 = 8
1 +2 = 3
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LCCDE example
 n = 1

 solve: α1 = -1.8, α2 = 4.8 
 Hence, system output:

 Don’t find αis by solving with ICs at 
n = -1,-2 (ICs may not reflect natural modes;

Mitra3 ex 2.37-8 (4.22-3) is wrong)

� 

y[1]+ y[0] 6y[1] = x[1]

� 

1(3)+2 (2)+  +1 +2 +   6 = 8
21 + 32 =18

� 

y[n] = 1.8(3)n + 4.8(2)n  2 n  0

M
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LCCDE solving summary
 Difference Equation (DE): 

Ay[n] + By[n-1] + ... = Cx[n] + Dx[n-1] + ...
Initial Conditions (ICs): y[-1] = ...

 DE RHS = 0 with y[n]=λn → roots {λi}
gives complementary soln

 Particular soln: yp[n] ~ x[n]
solve for βλ0

n  “at large n”
  αis by substituting DE at n = 0, 1, ...

ICs for y[-1], y[-2]; yt=yc+yp for y[0], y[1]
� 

yc[n] =  ii
n
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LCCDEs: zero input/zero state
 Alternative approach to solving 

LCCDEs is to solve two subproblems:
 yzi[n], response with zero input (just ICs)
 yzs[n], response with zero state (just x[n])

 Because of linearity, y[n] = yzi[n]+yzs[n]
 Both subproblems are ‘fully realized’
 But, have to solve for αis twice

(then sum them)
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Impulse response of LCCDEs

 Impulse response:

i.e. solve with x[n] = δ[n] → y[n] = h[n]
(zero ICs)

 With x[n] = δ[n], ‘form’ of yp[n] = βδ[n]

 → solve y[n] for n = 0,1, 2... to find αis

δ[n] LCCDE h[n]
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� 

y[0]+ y[1] 6y[2] = x[0]

LCCDE IR example
 e.g.

(from before); x[n] = δ[n]; y[n] = 0 for n<0
  
 n = 0: 

 n = 1:
 n = 2:

 thus  

1

n ≥ 0
Infinite length

� 

y[n]+ y[n 1] 6y[n  2] = x[n]

� 

yc[n] =1 3( )n +2 2( )n

� 

h[n] = 0.6 3( )n + 0.4 2( )n
M

yp[n] = βδ[n]

⇒ α1 + α2 + β = 1

⇒ α1 = 0.6, α2 = 0.4, β = 0

α1(–3) + α2(2) + 1 = 0
α1(9) + α2(4) – 1 – 6 = 0
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System property: Stability
 Certain systems can be unstable e.g.

Output grows without limit in some 
conditions

x[n] y[n]+
z-12

n

y[n]

-1 1 2 3 4

...
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Stability
 Several definitions for stability; we use

Bounded-input, bounded-output 
(BIBO) stable

 For every bounded input
 output is also subject to a finite bound, 

� 

x[n] < Bx n

� 

y[n] < By n



2013-09-11Dan Ellis 50

Stability example
 MA filter:

→ BIBO Stable

� 

y[n] = 1
M

x[n  k]
k=0

M 1

� 

y[n] = 1
M

x[n  k]
k=0

M 1

 1
M

x[n  k]
k=0

M 1

 1
M
M  Bx  By
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Stability & LCCDEs
 LCCDE output is of form:

 αs and βs depend on input & ICs,
but to be bounded for any input 
we need |λ| < 1� 

y[n] =11
n +22

n + ...+ 0
n + ...
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4. Correlation
 Correlation ~ identifies similarity 

between sequences:

 Note:

Cross
correlation

of x against y “lag”

call m = n – ℓ

M

rxy[�] =
��

n=��
x[n]y[n� �]

ryx[�] =
��

n=��
y[n]x[n� �]

=
��

m=��
y[m + �]x[m] = rxy[��]
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Correlation and convolution
 Correlation:

 Convolution:

 Hence:

Correlation may be calculated by 
convolving with time-reversed sequence

rxy[n] =
��

k=��
x[k]y[k � n]

x[n] � y[n] =
��

k=��
x[k]y[n� k]

rxy[n] = x[n] � y[�n]



2013-09-11Dan Ellis 54

Autocorrelation
 Autocorrelation (AC) is correlation of 

signal with itself:

 Note: Energy of 
sequence x[n]

  

� 

rxx[] = x[n]x[n  ]
n=



 = rxx[]

� 

rxx[0] = x 2[n]
n=



 =  x
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Correlation maxima
 Note:

 Similarly:

 From geometry,

 when x//y, cosθ = 1, else cosθ < 1 

angle 
between
x and y

    

� 

rxx[]  rxx[0]
rxx[]
rxx[0]

1

  

� 

rxy[]   xy 
rxy[]

rxx[0]ryy[0]
1

� 

xy = xi yii = x y cos
� 

xi
2
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AC of a periodic sequence
 Sequence of period N:
 Calculate AC over a finite window:

if M >> N

� 

˜ x [n] = ˜ x [n + N]

  

� 

r˜ x ̃  x [] = 1
2M +1

˜ x [n] ˜ x [n  ]
n=M

M



= 1
N

˜ x [n] ˜ x [n  ]
n=0

N1


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AC of a periodic sequence

 i.e AC of periodic sequence is periodic

Average energy per
sample or Power of x

� 

r˜ x ̃  x [0] = 1
N

˜ x 2[n]
n=0

N1

 = P˜ x 

  

� 

r˜ x ̃  x [+ N] = 1
N

˜ x [n] ˜ x [n    N ]
n=0

N1

 = r˜ x ̃  x []
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What correlations look like
 AC of any x[n]

 AC of periodic

 Cross correlation

  r˜ x ̃  x []

  rxx[]

  rxy[]

  

  


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What correlation looks like
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Correlation in action
 Close mic vs. 

video camera 
mic

60

 Short-time
cross-correlation


