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2011-10-27 Dan Ellis <dpwe@ee.columbia.edu>

1. (a) We’ll first figure out how to sketch the magnitude response of one arbitrary zero, then we’ll
combine pairs of zeros, and then reciprocate to get the pole responses.
A single, generic zero at z = ζ = rejθ has a magnitude response |H(ejω)| that is proportional to
the length of the vector from the root to the corresponding point on the unit circle: |H(ejω)| =
|ζ − ejω|. By definition, this has a minimum at the point on the unit circle closest to the root,
and a maximum at the point diametrically opposite (which will be a difference of π radians in
ω). From the sketch below, it is geometrically obvious that the minimum occurs at ω = θ,
and corresponds to distance of 1− r. Similarly, the maximum occurs at ω = θ + π and gives a
distance of 1+r. Also marked on the sketch is |ζ−ej0| (i.e., |ζ−1|), which gives the magnitude
of this zero at d.c. (ω = 0). We’ll need to know this to achieve the overall gain normalization
specified in the question, that all systems have H(ej0) = 1.
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To get a few more points for our sketch, we can note that the (unnormalized) zero will have a
gain of 1 where the ejω unit circle intersects a unit-radius circle centered on ζ (shown thin and
dotted in the sketch). Finally, we can tell that the minimum is going to be fairly narrow: again,
by geometry, the minimum distance has grown by a factor of

√
2 approximately 1 − r radians

either side of the minimum (i.e., making a right-angle triangle bisected by the closest approach).
Now we can sketch the overall unnormalized magnitude response as a function of ω. We should
do this for a full revolution around the unit circle, to make sure we include both minimum and
maximum. For the sketch, ζ ≈ 0.5 + 0.75j, so r =

√
(1/2)2 + (3/4)2 ≈ 0.9, and θ is a little

less than π/3, so the minimum is 1− 0.9 = 0.1, the maximum is 1.9, and the d.c. value is equal
to r (by symmetry about <{z} = 0.5), i.e. also 0.9. The gain passes through 1 at ω ≈ 2π/3 and
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−π/16. Note that because |H(ejω)| is periodic in ω, the values (and slopes) at ω = 0 and 2π
must match.
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The conjugate zero will have the same effect, only reflected around ω = 0 (or equivalently
ω = 2π). The net result of the conjugate pair will then be the product of these two; its minimum
will occur at a frequency just slightly lower than for the single zero (due to the effect of the
slope of the conjugate zero at that point), and will be around 0.1 × 1.5 (estimating the value of
the sketch above around ω = 2π − π/3 = 5π/3), i.e., 0.15 (before gain normalization). By
symmetry, there will be a maximum at ω = π, that will, by considering the right-angle triangle,
be (

√
(3/4)2 + (3/2)2)2 = 45/16 ≈ 2.8. The gain at ω = 0 will be r2 = 13/16 ≈ 0.8. To

achieve the specified d.c. gain of 1, the entire curve must be divided by this value (i.e., scaled up
by 16/13 ≈ 1.23), so the complete sketch of the answer to part (ii) will have minima of around
0.15 × 1.23 ≈ 0.18 just below ω = π/3 (and another just above ω = 5π/3, but that’s outside
the range we’re asked to plot), a maximum at ω = π of around 2.8 × 1.23 ≈ 3.4, and a local
maximum of 1 at ω = 0. The sketch below shows the two unnormalized single-zero responses,
along with their product normalized to be 1 at ω = 0. I plotted the entire range ω = 0 . . . 2π to
emphasize the symmetry of the second zero’s response.
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The responses for zeros A and C are similar, but with different values of r and θ, and con-
sequently different maxima and minima. For A, ζ = 0.5 + 0.5j, r ≈ 0.71, θ = π/4, so
the single-zero’s minimum is around 0.29, its maximum is around 1.71, and its conjugate’s
value at the minimum is around 1.2 (so the unnormalized value at the minimum will be around
1.2× 0.29 ≈ 0.35). The single zero gives a d.c. magnitude of 0.71 and a magnitude at ω = π/2
of
√

(3/2)2 + (1/2)2 ≈ 1.6, so the unnormalized maxima of the product of the two responses
is 0.5 at ω = 0 and 2.5 at ω = π. Thus, the normalized minima are around 0.35/0.5 = 0.7 and
the maximum at 2.5/0.5 = 5.
For C, ζ = 0.5 + 1j, r ≈ 1.12, θ is a little larger than π/3, so the unnormalized combined
response has minimum around 0.12 × 1.9 ≈ 2.1 and is 1.25 at ω = 0 and 13/4 = 3.25
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at ω = π. Thus, the gain-normalized response has minima of about 2.1/1.25 ≈ 1.7 and a
maximum around 3.25/1.25 = 2.6. Thus, the sketches for all three of the zero pairs (over the
specified interval ω = 0 . . . π) are shown below:
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For confirmation, here are the actual responses plotted by Matlab:

>> zA = 0.5 + 0.5j;
>> zB = 0.5 + 0.75j;
>> zC = 0.5 + 1j;
>> GzA = 1/abs((zA-1).ˆ2);
>> GzB = 1/abs((zB-1).ˆ2);
>> GzC = 1/abs((zC-1).ˆ2);
>> w = 0:0.01:pi;
>> ejw = exp(w*1j);
>> plot(w/pi, GzA*abs((ejw-zA).*(ejw-zA’)))
>> grid
>> hold on
>> plot(w/pi, GzB*abs((ejw-zB).*(ejw-zB’)),’-r’)
>> plot(w/pi, GzC*abs((ejw-zC).*(ejw-zC’)),’-c’)
>> hold off 0 0.2 0.4 0.6 0.8 1
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For the poles, the responses will be simply the reciprocals of the zeros, except of course for
C, which is a system with poles outside the unit circle, meaning that the unit circle is not in the
region of convergence, and the Fourier transform is not finite (an unstable system). But for A and
B, the maxima in the sketch above become minima at 1/5 = 0.2 and 1/3.6 ≈ 0.28 respectively,
and (relatively sharp) maxima at 1/0.7 ≈ 1.4 and 1/0.18 ≈ 5.5 respectively:
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And in Matlab (following on from the code above):

>> w = omega;
>> plot(w/pi, 1./(GzA*abs((ejw-zA).*(ejw-zA’))))
>> hold on
>> plot(w/pi, 1./(GzB*abs((ejw-zB).*(ejw-zB’))),’-r’)
>> grid
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Grading: To get full marks, you had to show some actual calculation for the values of the
frequencies and magnitudes at the maxima and minima. Getting the precise “shape” of the
curves was not critical.

(b) The energy of the impulse response h[n] is
∑

n |h[n]|2. The two-zero systems have simple three-
point impulse responses, but the two-pole systems have infinite impulse responses (decaying
sinusoids). However, by Parseval’s relation, the energy also equals 1

2π

∫ π
π |H(ejω)|2dω. We can

“eyeball” our sketches of the magnitude responses to see that (iv) (poles at A) clearly has the
smallest squared integral (i.e., the average value of the curve after we square it) – it never even
exceeds 1.5. Although the magnitudes of two of the systems with zeros do have minima below
the minimum of this curve, their broad and large maxima give them a much larger integrated
energy. Matlab confirms (doing a numerical approximation to the integral, which is just the
average level of the squared curves):

>> mean((GzA*abs((ejw-zA).*(ejw-zA’))).ˆ2)
ans = 9.0046
>> mean((GzB*abs((ejw-zB).*(ejw-zB’))).ˆ2)
ans = 4.0334
>> mean((GzC*abs((ejw-zC).*(ejw-zC’))).ˆ2)
ans = 2.2828
>> mean((1./(GzA*abs((ejw-zA).*(ejw-zA’)))).ˆ2)
ans = 0.6000
>> mean((1./(GzB*abs((ejw-zB).*(ejw-zB’)))).ˆ2)
ans = 2.7868

Thus, we need to find the impulse response of the system with the conjugate poles at A. However,
we haven’t been asked for the closed-form response, but only the first five values; it’s probably
easier simply to evaluate these by “running the machine” for a few steps. The z-transform of
this system is H(z) = G

(1−ζz−1)(1−ζ∗z−1)
where ζ = 0.5 + 0.5j = rejθ with r =

√
2/2 and

θ = π/4 (so cos θ =
√

2/2 too). Expanding the denominator to be 1 − 2r cos(θ)z−1 + r2z−2

gives H(z) = G
1−z−1+0.5z−2 ; now it is clear that G = 0.5 to ensure H(1) = 1. Thus, our

difference equation is y[n] = 0.5x[n] + y[n − 1] − 0.5y[n − 2]; working this forward from
zero initial state and with x[n] = δ[n] gives y[n] = {0.5, 0.5, 0.25, 0,−0.125} for n = 0 . . . 4.
Note that this sequence is decaying exponentially, and the total energy of these first four points
is about 0.58, so it’s plausible that it’s going to asymptote at 0.6, Matlab’s numerical estimate of
the total energy from above.
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Grading: You got roughly half the points for figuring out the system with the lowest energy IR,
and the rest for finding the IR. You got some points for a correct approach to finding the impulse
response, even if it didn’t give you the right answer, or if you applied it to the wrong system. Of
course, you were welcome to find the IR by solving the LCCDE, but that would probably have
taken longer than the approach above.

2. As it happens, this is just a type-IV even-length, anti-symmetric FIR filter as we covered in class on
Tuesday, but the question was posed without assuming you’d be familiar with this.

(a) We have h[n] = {2, 2,−2,−2}, soH(z) = 2(1+z−1−z−2−z−3) andH(ejω) can be found in
the usual way by dividing out ej(−1.5)ω and combining the resulting conjugate pairs of complex
exponentials into sins:

H(ejω) =2
(
1 + e−jω − e−2jω − e−3jω

)
=2e−1.5jω

(
e1.5jω − e−1.5jω + e0.5jω − e−0.5jω

)
=2e−1.5jω (2j sin 1.5ω + 2j sin 0.5ω)

=4je−1.5jω (sin 1.5ω + sin 0.5ω)

The 4-point DFT is simply H(ejω) evaluated at ω = 2πk/4 for k = 0, 1, 2, 3 which gives
H[k] = {0, x, 0, x∗}, where

x = 4je−(3/2)π/2(sin 3π/4 + sinπ/4)

= 4ejπ/2e−j3π/4(
√

2/2 +
√

2/2)

= 4e−jπ/4
√

2
= 4− 4j

(b) SinceH(ejω) = 4je−1.5jω (sin 1.5ω + sin 0.5ω), the magnitude response is given by 4(sin 1.5ω+
sin 0.5ω), which never quite goes negative in the interval ω = 0 . . . π:
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The phase response is then simply the phase of je−1.5jω, which is just π/2− 1.5ω:
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(c) We notice that x[n] is a delayed version of h[n] with a pure sinusoid added. We’re given no
information about gating or sidedness, so we can assume the sinusoid is of infinite extent. At
ω = π, H(ejω) = 0, so this frequency is entirely removed from the output. All we’re left with
is the convolution of h with a delayed version of itself, y[n] = h[n] ~h[n−n0], or equivalently
h[n] ~ h[n] delayed by n0 samples. For a finite-length sequence this short, the easiest thing is
probably to figure out all 7 nonzero points of the convolution one by one, as

∑
m h[m]h[n−m],

giving h[n] ~ h[n] = {4, (4 + 4) = 8, (−4 + 4− 4) = −4, (−4− 4− 4− 4) = −16,−4, 8, 4}
(exploiting the observation that the result must be symmetric around its midpoint since it is a
negated autocorrelation, h[n] = −h[4− n]). Thus, starting from n = 0 (and assuming n0 > 0),
y[n] = {[n0 zeros], 4, 8,−4,−16,−4, 8, 4, 0, 0, 0, . . .}.

(d) Because y[n] is simply h[n] convolved with itself and delayed by n0 samples, Y (ejω) is simply
e−jn0H(ejω)2, and thus |Y [k]| is just |H[k]|2, even though y[n] itself is too long to fit into a 4
point sequence, and would have to be time aliased to directly calculate its DFT. Thus, |Y [k]| =
{0, 32, 0, 32}.

Grading: All subsections received equal proportions of the points; the magnitude sketch just had to be
based on the correct sinusoids, it didn’t matter if you got the shape or location of the bump quite right.
The key parts for (c) were to eliminate the sinusoid and try to describe a delayed self-convolution;
mistakes in actually calculating the convolution lost minimal points.
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