ACM MM 2010

Image Retagging

Dong Liu, Xian-Sheng Hua, Meng Wang and Hong-Jiang Zhang

Harbin Institute of Technology

Microsoft Research Asia

Microsoft Advanced Technology Center

Social Media and the Associated Tags -

Towards Large-Scale Content-Based Multimedia Search

medici chapel, Firenze, Italy...

Loggia dei lanzi, sword, honeymoon, ...

Status, building, sky, Italy, ...

Cathedral, tower, Italy...

Challenge

Social tags are good, but they are

- Noisy
- Ambiguous
- Incomplete
- No relevance information

Two directions to improve tag quality

- Tag Ranking (Liu, Hua, Zhang. Tag Ranking. WWW 09)
- Retagging (Liu, Hua, Wang, Zhang. *Image Retagging*. MM 10)

Tags associated with social images are <u>imprecise</u>, <u>subjective</u> and <u>incomplete</u>.

kitty top101 boy young lovely

Imprecise Tags

Subjective Tags

Missing Tags

grass flower cat animal

What we are going to do:

Improve the quality of the tags to better describe content.

But how can we make it? Automatically.

Two Observations

Similar images similar tags

river bear animal bath

User-provided tags correlate with the image content with high probability

Nikon cat animal garden rabit

Basic Assumptions

- Tag Refinement
 - The consistency between visual similarity and semantic similarity should be maximized.
 - The deviation from the initially user-provided tags should be minimized.

Tag Refinement

Notations

- a social image collection
- All unique tags
- tag membership
- refinement results
- confidence score vector
- visual similarity
- semantic similarity

$$\mathcal{D} = \{x_1, x_2, \dots, x_n\}$$

$$\mathcal{T} = \{t_1, t_2, \dots, t_m\}$$

$$\hat{\mathbf{Y}} \in \{0,1\}^{n \times m}$$

if t_j is associated with image x_i , then $\hat{Y}_{ij} = 1$

$$\mathbf{Y} \quad Y_{ij} \geq 0$$

confidence $\mathbf{y}_i = (y_{i1}, y_{i2}, \dots, y_{im})^{\top}$ image x_i

$$W_{ij} = exp(-\frac{\|x_i - x_j\|_2^2}{\sigma^2}),$$

$$S_{ij} = \frac{2 * IC(lcs(t_i, t_j))}{IC(t_i) + IC(t_j)},$$

Tag Refinement

Modeling the basic assumptions

 Visual and semantic consistency

$$\min_{\mathbf{Y}} \quad \underbrace{\sum_{i,j=1}^{n} (W_{ij}) \sum_{k,l=1}^{m} Y_{ik} S_{kl} Y_{jl})^2}_{s.t.},$$
 s.t.
$$Y_{jl} \geq 0, \quad j = 1, 2, \dots, n, \quad l = 1, 2, \dots, m.$$

 User-provided tags are relevant with high probability

$$\sum_{j=1}^{n} \sum_{l=1}^{m} (Y_{jl} - \alpha_j \widehat{Y}_{jl})^2 \exp(\widehat{Y}_{jl}).$$

Overall formulation

$$\begin{aligned} & \min_{\mathbf{Y}, \alpha} \quad \mathcal{L} = \sum_{i,j=1}^{n} (W_{ij} - \sum_{k,l=1}^{m} Y_{ik} S_{kl} Y_{jl})^2 \\ & \quad + C \sum_{j=1}^{n} \sum_{l=1}^{m} (Y_{jl} - \alpha_j \widehat{Y}_{jl})^2 \exp(\widehat{Y}_{jl}), \\ & s.t. \quad Y_{jl}, \alpha_j \geq 0, \quad j = 1, 2, \dots, n, \quad l = 1, 2, \dots, m. \end{aligned}$$

Tag Refinement

Optimizing with iterative updating

Bound the objective function

Derive the solution

Iterative updating until convergence

$$\begin{split} \mathcal{L} &\leq \mathcal{L}' = \sum_{i,j=1}^{n} \left(W_{ij}^2 + \sum_{l=1}^{m} \left[\widetilde{\boldsymbol{Y}} \boldsymbol{S} \widetilde{\boldsymbol{Y}}^{\top} \right]_{ij} \left[\widetilde{\boldsymbol{Y}} \boldsymbol{S} \right]_{il} \frac{Y_{jl}^4}{\tilde{Y}_{jl}^3} \\ &- 4 \sum_{l=1}^{m} W_{ij} \left[\widetilde{\boldsymbol{Y}} \boldsymbol{S} \right]_{il} \widetilde{Y}_{jl} \log Y_{jl} - 2 W_{ij} \left[\widetilde{\boldsymbol{Y}} \boldsymbol{S} \widetilde{\boldsymbol{Y}}^{\top} \right]_{ij} \\ &+ 4 \sum_{k=1}^{m} W_{ij} \left[\boldsymbol{S} \widetilde{\boldsymbol{Y}}^{\top} \right]_{kj} \log \widetilde{Y}_{ik} \right) \\ &+ C \sum_{j=1}^{n} \sum_{l=1}^{m} \left(Y_{jl}^2 - 2 \alpha_j \widehat{Y}_{jl} \widetilde{Y}_{jl} (\log \frac{Y_{jl}}{\tilde{Y}_{jl}} + 1) \right. \\ &+ \alpha_j^2 \widehat{Y}_{jl}^2 \right) \exp(\widehat{Y}_{jl}), \end{split}$$

$$\left\{ \begin{array}{l} Y_{jl} = \left[\frac{-C \exp{(\hat{Y}_{jl})} \hat{Y}_{jl}^3 + \sqrt{M}}{4 [\hat{Y} S \hat{Y}^{\intercal} \hat{Y} S]_{jl}} \right]^{\frac{1}{2}}, \\ \\ \alpha_j = \frac{\sum_{l=1}^m \hat{Y}_{jl} (\log Y_{jl} - \log \hat{Y}_{jl} + 1)}{\sum_{l=1}^m \hat{Y}_{jl}}, \end{array} \right.$$

- Fix α, update Y using the upper equation
- Fix Y, update α using the lower equation

Is It Reliable?

Visual Property of Tags

Content - Related Tag

baby night
beach ocean ocean
animal autumn
dog dog
sunset ocean
flower
bike

Describe the **REAL** visual content of the images.

Informative for ALL general users.

Content - Unrelated Tag

photo macro
fun my science
raw old best Nikon
top101 deleteme
live

Describe the <u>CONTEXTUAL</u> information about the images .

Only informative to the image owners.

Our Basic Assumption

RECALL

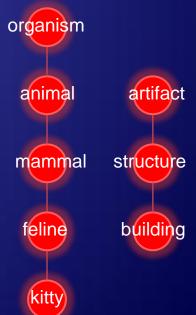
Similar images have similar tags.

Only applicable for "content-related" tags.

- Involving the content-unrelated tags will
 - Introduce lots of noises.
 - Degrade the algorithmic performance.

These tags should be removed from the automatic learning procedure.

Tag Filtering



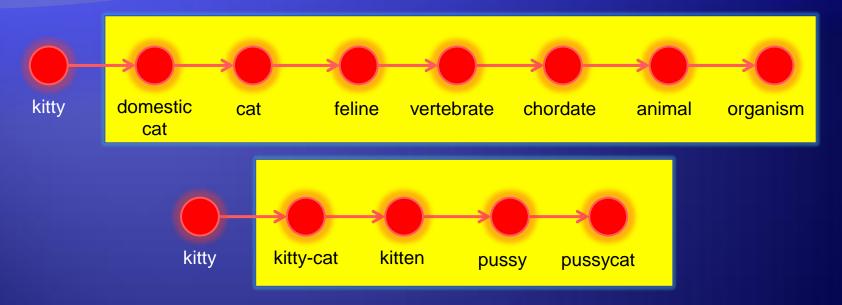
Filter out all content-unrelated tags.

Construct a content-related tag dictionary by using the <u>lexical</u> and <u>domain</u> knowledge

Traverse along the path until one predefined category is matched

Is It Enough?

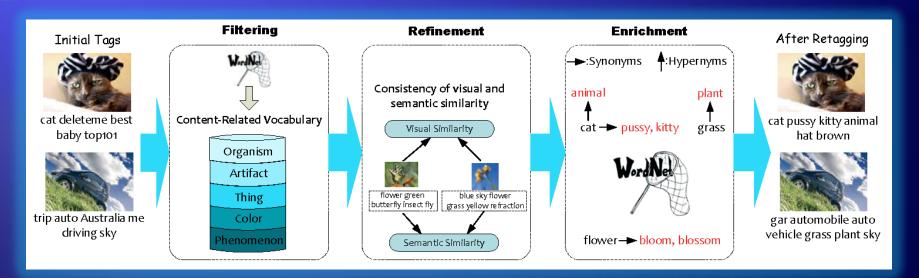
Synonym and hypernym



The missing of such tags will degrade the performance of tag-based applications.

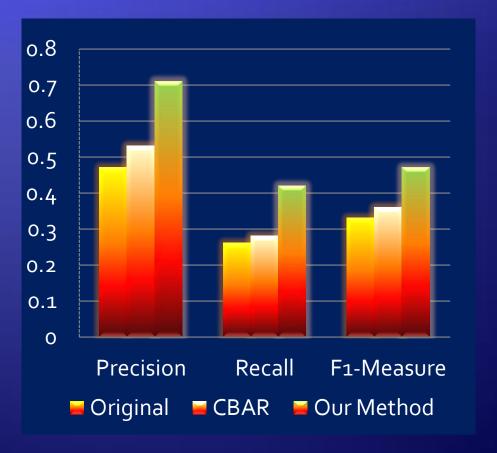
Further Enrichment

Make use of Wordnet lexicon



Use each tag to perform tag-based image search on Flickr.

The tags with more than 10,000 returned images are retained.


In Summary: Image Retagging

Three-step strategy

Performance of Tag Refinement

- In term of average precision, recall and F1-Measure
 - 50,000 Flickr images with 4,556 content-related tags.
 - 2,500 test images.

Initial Tags: sunset orange usa boat northcarolina fv10 lakecrabtree morrisville massimostrazzeri nikonstunninggallery

CBAR: water sky white blue nature sunset sun yellow light red

Our Method: sunset sky water nature boat sun flower
asa landscape red

Initial Tags: 2005 cats topf25 animal animals topv111 cat zoo washingtondc smithsonian

CBAR: green nature cat flower landscape sea mountain sky water animal

Our Method: cat sky animal water sunset nature blue zoo tree tiger

initial Tags: canada reflection bird water birds 1025fav reflections geese bc britishcolumbia

CBAR: blue white water sky nature green yellow nikon tree light

Our Method: water bird sky sunset yellow nature blue cat flower beach

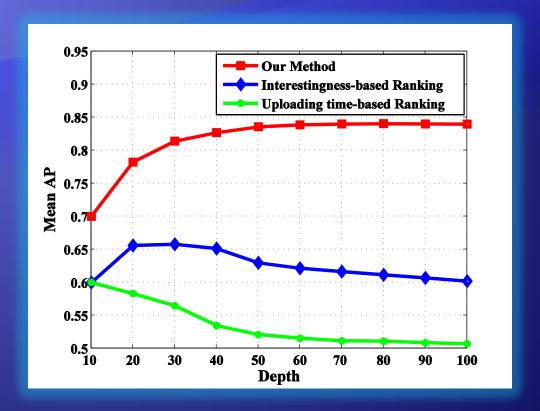
Initial Tags: nepal mountain mountains trek wow dawn village annapurna nov99 gandruk

CBAR: sky water blue white nature sunset sun light green vellow

Our Method: mountain sky water sunset nature blue flower sawn tree landscape

Performance of Tag Enrichment

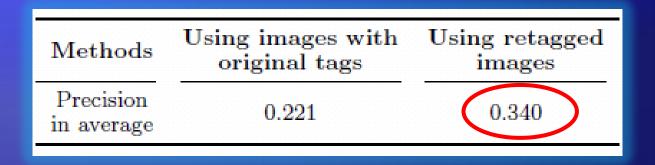
Method	Precision	Recall	F1-measure	Relevant tag num
Before Enrichment	0.71	0.34	0.46	3.09 (4,80 in all)
After Enrichment	0.90	0.66	0.76	9.34 (10.38 in all)


Tagging quality is further improved rafter the tag enrichment procedure.

Application 1: Tag-Based Image Search

- Use the learnt confidence scores as relevance measure
- Ranking results for query "cat"

Performance of Tag-Based Search


Our confidence score based ranking strategy outperforms the other image ranking strategies on Flickr

Application 2: Auto Tagging

Use top tags of the images after retagging to predict the tags of the unlabeled images

Performance of Auto Tagging

Using top tags after image retagging can obtain better results than using the original images directly

Conclusion

- User-provided tags are imprecise and incomplete, which limits the performance of tag-based applications
- We propose an image retagging strategy to solve this problem:
 - Tag filtering to remove the content-unrelated tags
 - Tag refinement to automatically refine the tags
 - Tag enrichment to expand the tags with synonyms and hypernyms.
- Image retagging benefits a series of tag-based applications

Future work

- Extend it to online videos
- Using more fruitful information cues such as image regions and surrounding texts

Thank You

