Towards Optimal Discriminating Order for Multiclass Classification

> Dong Liu, Shuicheng Yan, Yadong Mu, Xian-Sheng Hua, Shih-Fu Chang and Hong-Jiang Zhang

> > Harbin Institute of Technology, China National University of Singapore, Singapore Microsoft Research Asia, China Columbia University, USA

- Introduction
- Our work
- Experiments
- Conclusion and Future work

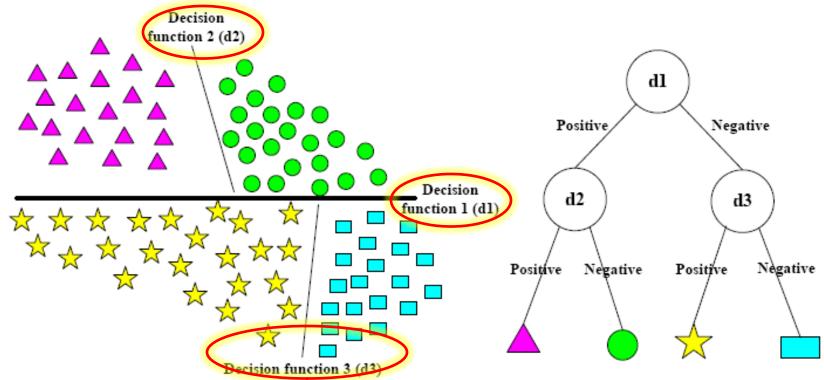
Multiclass Classification

Supervised multiclass learning problem

 Accurately assign class labels to instances, where the label set contains at least <u>three</u> elements.

Important in various applications

Natural Language processing, computer vision, computational biology.

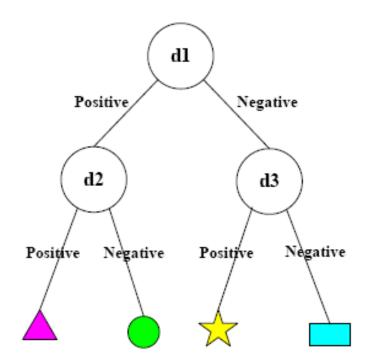


Multiclass Classification (con't)

- Discriminate samples from N (N>2) classes.
- Implemented in a stepwise manner:
 - A <u>subset</u> of the N classes are discriminated at first.
 - Further discrimination of the <u>remaining</u> classes.
 - Until <u>all</u> classes can be discriminated.

Multiclass Discriminating Order

- An approximate discriminating order is critical for multiclass classification, esp. for linear classifiers.
- E.g., the 4-class data CANNOT be well separated unless using the discriminating order shown here.


Many Multiclass Algorithms

- One-Vs-All SVM (OVA SVM)
- One-Vs-One SVM (OVO SVM)
- DAGSVM
- Multiclass SVM in an all-together optimization formulation
- Hierarchical SVM
- Error-Correcting Output Codes
- • • • •

These existing algorithms DO NOT take the discriminating order into consideration, which directly motivates our work here.

Sequential Discriminating Tree

- Derive the optimal discriminating order through a *hierarchical binary partitioning* of the classes.
 - Recursively partition the data such that samples in the same class are grouped into the same subset.
- Use a *binary tree* architecture to represent the discriminating order:
 - Root node: the first discriminating function.
 - Sequential Discriminating Tree (SDT)
 Leaf node: final decision of one specific class.

Tree Induction

- Key ingredient : how to perform binary partition at each non-leaf node.
 - Training samples in the same class should be grouped together.
 - The partition function should have a <u>large margin</u> to ensure the generalization ability.
- We employ a <u>constrained large margin binary</u> <u>clustering algorithm</u> as the binary partition procedure at each node of SDT.

Constrained Clustering

Notations

A collection of samples

- Constraint set
- A constraint indicating that two training samples (i and j) are from the same class
- which side of the hyperplane x_{i} locates

 $f(\mathbf{x}_i) = \boldsymbol{\omega}^{\mathsf{T}} \mathbf{x}_i + \boldsymbol{b}$

 $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^n$

$$\Theta_s$$

 $(i, j) \in \Theta_s$

 y_i

 $y_i = +1$ indicates that \mathbf{x}_i is at the positive side $y_i = -1$ shows that \mathbf{x}_i is at the negative side.

Constrained Clustering (con't)

• **Objective function** $\mathcal{J}_{\omega} = \Omega(\omega) + \lambda_1 \sum_{i} \ell(-y_i f(\mathbf{x}_i)) + \lambda_2 \sum_{(i,j) \in \Theta_s} \hbar((i,j)),$

• Regularization term: $\Omega(\omega) = \frac{1}{2} \|\omega\|^2$

• Hinge loss term: $\ell(x) = (1 - x)_+$

Enforce a large margin between samples of different classes.

• Constraint loss term:
$$\hbar((i,j)) = \begin{cases} 0, & y_i = y_j, \\ (-y_i y_j)_+, & y_i \neq y_j. \end{cases}$$

Enforce samples of the same class to be partitioned into the same side of the hyperplane.

Constrained Clustering (con't)

Objective Function

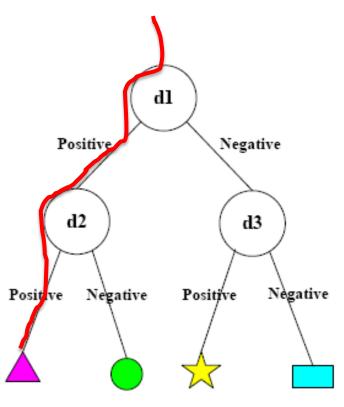
$$\begin{split} \min_{\substack{\omega,b,\xi,\zeta,y}} & \frac{1}{2} \|w\|^2 + \frac{\lambda_1}{n} \sum_i \xi_i + \frac{\lambda_2}{n} \sum_{\substack{(i,j) \in \Theta_s}} \zeta_{ij} \\ s.t. & y_i(\omega^T \mathbf{x}_i + b) + \xi_i \geq 1, \ \xi_i \geq 0, \ \forall \ i, \\ & y_i y_j + \zeta_{ij} \geq 0, \ \zeta_{ij} \geq 0, \ \forall (i,j) \in \Theta_s. \end{split}$$

Kernelization

 $\min_{\substack{\alpha,b,\xi,\zeta}} \quad \frac{1}{2} \alpha^T G \alpha + \frac{\lambda_1}{n} \sum_i \xi_i + \frac{\lambda_2}{n} \sum_{\substack{(i,j)\in\Theta_s}} \zeta_{ij} \quad (4)$ s.t. $|\alpha^T k_i + b| + \xi_i \ge 1, \forall i,$ (5) $(\alpha^T k_i + b)(\alpha^T k_j + b) + \zeta_{ij} \ge 0,$ (6) $\xi_i \ge 0, \forall i,$ $\zeta_{ij} \ge 0, \forall (i,j) \in \Theta_s,$

$\begin{array}{ll} \underset{\alpha,b,\xi,\zeta}{\min} & \frac{1}{2}\alpha^{T}G\alpha + \frac{\lambda_{1}}{n}\sum_{i}\xi_{i} + \frac{\lambda_{2}}{n}\sum_{(i,j)\in\Theta_{s}}\zeta_{ij} & (4) \\ s.t. & |\alpha^{T}k_{i} + b| + \xi_{i} \ge 1, \forall i, \quad (5) \\ & (\alpha^{T}k_{i} + b)(\alpha^{T}k_{j} + b) + \zeta_{ij} \ge 0, \quad (6) \\ & \xi_{i} \ge 0, \forall i, \\ & \zeta_{ij} \ge 0, \forall (i,j) \in \Theta_{s}, \end{array}$

Optimization Procedure


- (4) is convex, (5) and (6) can be expressed as the difference of two convex functions.
- Can be solved with Constrained Concave-Convex Procedure (CCCP).

The induction of SDT

- Input: N-class training data T.
- Output: SDT.
 - Partition T into two non-overlapping subsets P and Q using the large margin binary partition procedure.
 - Repeat partitioning subsets P and Q respectively until all obtained subsets only contain training samples from a single class.

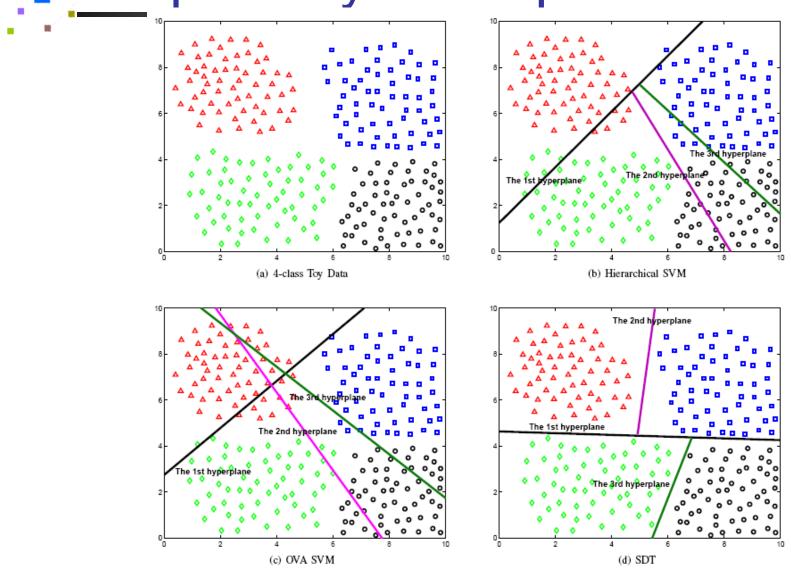
Prediction

- Evaluate the binary discriminating function at each node of SDT.
- A node is exited via the left edge if the value of the discriminating function is non-negative.
- Or the right edge if the value is negative.

Algorithmic Analysis

Time Complexity

 $T_{SDT} \leq \sum_{i=0}^{\lfloor \log_2(N) - 1 \rfloor + 1} (\beta n) = (\lfloor \log_2(N) - 1 \rfloor + 2)\beta n.$ proportionality constant : β Training set size : n


Error Bound of SDT

Theorem 3. Suppose we are able to classify a random n sample of labeled examples using a directed acyclic graph on N classes containing K decision nodes with margins γ_i at node i, then we can bound the generalization error with probability greater than $1 - \delta$ to be less than

$$\frac{130R^2}{n} \left(D' \log(4en) \log(4n) + \log \frac{2(2n)^{N-1}}{\delta} \right),$$

where $D' = \sum_{i=1}^{K} \frac{1}{\gamma_i^2}$, *e* is the Napierian base, and *R* is the radius of a ball containing the support of the distribution.

Exp-I: Toy Example

Exp-II: Benchmark Tasks

- 6 benchmark UCI datasets
 - With pre-defined training/testing splits
 - Frequently used for multiclass classification

Dataset	#training/testing data	#class	#dim.
iris	150/0	3	4
glass	214/0	6	13
vowel	528/0	11	10
vehicle	846/0	4	18
segment	2310/0	7	19
satimage	4435/2000	6	36

Exp-II: Benchmark Tasks (con't)

In terms of classification accuracy Linear vs. RBF kernel.

Linear Kernel	OVA SVM	OVO SVM	DAGSVM	C&S SVM	Hierarchical SVM	SDT
iris	96.00	97.33	96.67	96.67	97.33	98.00
glass	60.28	66.82	61.23	64.95	65.32	68.49
vowel	50.95	80.49	81.03	82.57	81.01	83.75
vehicle	78.72	81.09	80.13	78.72	79.82	82.83
segment	92.47	95.24	94.38	95.37	93.83	97.75
satimage	80.35	85.50	86.30	85.15	87.15	86.20
RBF Kernel	OVA SVM	OVO SVM	DAGSVM	C&S SVM	Hierarchical SVM	SDT
iris	96.67	97.33	96.67	96.67	97.33	98.00
glass	H1 H0	the state of the s				
giuaa	71.76	71.47	72.96	70.87	72.61	73.16
vowel	71.76 97.79	$71.47 \\ 98.93$	$72.96 \\ 98.26$	$70.87 \\ 98.85$	72.61 98.18	73.16 97.02
197						
vowel	97.79	98.93	98.26	98.85	98.18	97.02

Exp-III: Image Categorization

- In terms of classification accuracy and standard derivation
 - COREL image dataset (2,500 images, 255dim color feature).
 - Linear vs. RBF kernel.

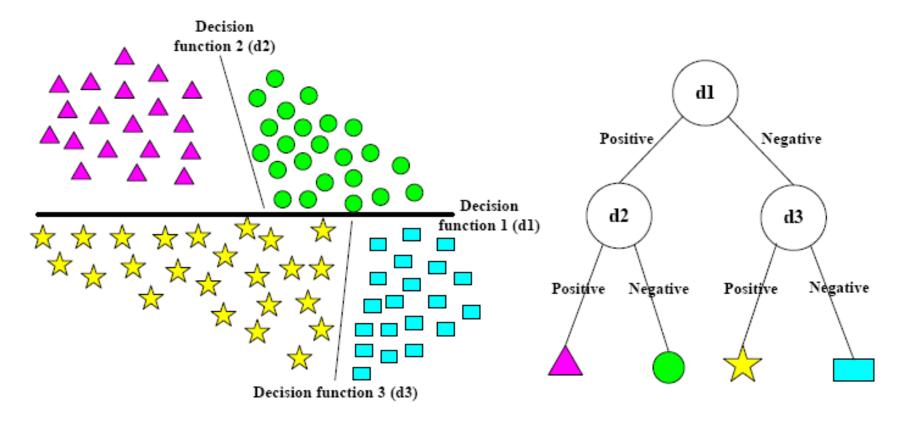
Linear kernel	accuracy	RBF kernel	accuracy
OVA SVM	66.79 ± 2.13	OVA SVM	70.12 ± 3.31
OVO SVM	71.17 ± 2.25	OVO SVM	75.81 ± 3.62
DAGSVM	69.09 ± 2.74	DAGSVM	75.55 ± 3.63
C&S	68.59 ± 2.16	C&S	73.86 ± 3.03
HierSVM	70.12 ± 2.37	HierSVM	72.27 ± 2.96
SDT	73.26 ± 1.98	SDT	77.25 ± 3.09

Exp-IV: Text Categorization

- In terms of classification accuracy and standard derivation
 - 20 Newsgroup dataset (2,000 documents, 62, 061 dim tf-idf feature).
 - Linear vs. RBF kernel.

Linear Kernel	accuracy	RBF Kernel	accuracy
OVA SVM	51.93 ± 5.72	OVA SVM	52.83 ± 5.93
OVO SVM	57.23 ± 6.82	OVO SVM	60.05 ± 2.74
DAGSVM	59.00 ± 6.79	DAGSVM	67.67 ± 3.67
C&S	55.34 ± 6.26	C&S	66.75 ± 2.96
HierSVM	61.71 ± 5.51	HierSVM	68.26 ± 2.43
SDT	63.23 ± 5.27	SDT	68.72 ± 3.04

Sequential Discriminating Tree (SDT)


- Towards the optimal discriminating order for multiclass classification.
- Employ the constrained large margin clustering algorithm to infer the tree structure.
- Outperform the state-of-the-art multiclass classification algorithms.

Future work

- Seeking the optimal learning order for
 - Unsupervised clustering
 - Multiclass Active Learning
 - Multiple Kernel Learning
 - Distance Metric Learning

Question?

dongliu.hit@gmail.com

