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Abstract 
In this paper, we describe the Raytheon BBN Technologies (BBN) led VISER system for the TRECVID 2014 Multimedia Event 
Detection (MED) and Recounting (MER) tasks. We present a comprehensive analysis of the different modules: (1) Metadata 
Generator (MG) – a large suite of audio-visual low-level and sematic features; a set of deep convolutional neural network 
(DCNN) features trained on the ImageNet dataset; automatic speech recognition (ASR); videotext detection and recognition 
(OCR).  For the low-level features, we used D-SIFT, Opponent SIFT, dense trajectories (HOG+HOF+MBH), MFCC and Fisher 
Vector (FV) representation. For the semantic concepts, we have trained 1,800 weakly supervised concepts from the Research Set 
videos and a set of YouTube videos. These concepts include objects, actions, scenes, as well as noun-verb bigrams. We also 
consider the output layer of the DCNN as a 1,000-dimensional semantic feature. For the speech and videotext content, we 
leveraged rich confidence-weighted keywords and phrases obtained from the BBN ASR and OCR systems. (2) Event Query 
Generation (EQG) - linear SVM event models are trained for each feature and combined using probabilistic late fusion 
framework. Our system involves both SVM-based and query-based detections, to achieve superior performance despite the 
varying number of positive videos in the different training conditions. We present a thorough study and evaluation of different 
features used in our system. (3) Event Search (ES) - At search time, simple dot products with the SVM hyperplane are computed 
for each feature and consequently rescaled into a posterior probability score for each video. (4) Semantic Query Generation 
(SQG) - we use the Indri Document Retrieval System to search for the closest words/terms to the given event name in a static 
offline corpus of around 100,000 Wikipedia and Gigapedia documents. After basic text processing, these words (ranked by TF-
IDF measure) are then projected into our concept vocabulary using a text corpus knowledge source (e.g., Gigawords). Further, to 
meet the tight timing constraints of this year’s evaluations for all the above mentioned modules, we compressed all our features 
to 1 byte per dimension which significantly sped up the feature extraction, training and event search timings. Owing to optimized 
feature design, model training and strong compression scheme, we could drastically reduce the time spent for disk I/O during 
MG, EQG and ES. 

Consistent with previous MED evaluations, low-level features still exhibit strong performance. However, their MED 
performance can now be matched by purely semantic features, even in the 100Ex and 010Ex training conditions. As a result, our 
modules stand amongst the fastest, while maintaining very strong performance. Our mean average precision (MAP) and 
Minimum Acceptable Recall (MR0) results are consistently among the top 3 performers for all training conditions for both pre-
specified and ad-hoc events. For the MER task, while 65% of the evaluators found the key evidence convincing, 75 % of the 
judges agreed with the query conciseness and logical appeal. 

1 Introduction 
Large volumes of multimedia videos are captured with surveillance cameras and cheap handheld digital devices. Such imagery 
can provide crucial information for identifying persons, objects and events of interest. The development of an adequately broad, 
fast and robust system for representing and recognizing multimedia events in large volumes of unconstrained imagery, by itself, 
would represent a major scientific breakthrough. To this effect, the annual TRECVID Multimedia Event Detection (MED) and 
Recounting (MER) evaluations [Over et al. 2014, Smeaton et al. 2006] aim to measure progress in developing such techniques, 
and strong performance has been reported in recent evaluations [Natarajan et al. 2013, Alt et al. 2013, Lan et al. 2013]. Although 
low-level features have been shown to perform well, their performance drops considerably when the training data is limited (e.g. 
010Ex). Further, these features cannot be used directly in 000Ex and SQ conditions, where there is no positive visual exemplars 
to perform the traditional supervised learning paradigm. 

In this paper, we provide an overview of the BBN’s VISER system for the TRECVID 2014 MED and MER evaluations. Our 
system uses a combination of low-level visual, audio and multimodal features, as well as semantic audio-visual concept detectors. 
Our low-level system combines a set of features that capture salient gradient, color, texture, motion and audio patterns. Our 
semantic system includes a suite of 1,800 weakly supervised concept detectors. For the concept model training, we use the 
weakly supervised learning framework [Wu et al. 2014] to train linear SVM [Fan et al. 2008] models for each of these concepts. 
In addition to last year, we also use a set of deep convolutional neural network (DCNN) [Jia et al. 2013] features trained on the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset as a set of 1,000 dimensional semantic feature. For the 

http://image-net.org/challenges/LSVRC/2013/�


MED task, we fused these features with speech and videotext output using probabilistic late fusion to get the final system outputs. 
For the MER task, the outputs of the semantic concept detectors along with speech and videotext were combined to produce 
event recounting based on the SQ output. Lastly, in order to meet the timing constraints for MG, EQG and ES, we developed 
feature compression techniques for all the features to reduce the memory footprint and avoid heavy memory disk I/O incurred 
during the execution of the various modules. Our main findings can be summarized as follows: 

• Low-level features continue to exhibit strong performance and form the core of our 100Ex and010Ex submissions; 
• Although the low-level features remain strong, their MED performance can now be matched by purely semantic 

features, in both the 100Ex and 010Ex training conditions; 
• Speech and videotext provide complementary evidences and consistently improve performance for both pre-specified 

and ad hoc event detection; 
• Deep learning system achieves promising results, despite being just based on a single (visual) modality; 
• Floating-point precision is unnecessary. The full precision Fisher vector can be discretized between 0 and 255. The two 

parameters of the affine rescaling must be stored in floating-point precision. At training and search time, the unsigned 
char feature is converted back to floating-point precision and rescaled to its original range of values. The 
reading/writing time is thus reduced by a factor of 4 without significant loss in performance; 

• Our MER system provides robust evidence tagging and localization while reducing the key evidence viewing time to 
43 % of the original video duration. 

The rest of the paper is organized as follows. In Section 2, we describe our metadata generation (MG) system in detail. Section 3 
describes our event query generation (EQG) system for 010Ex and 100Ex training conditions. In Sections 4 and 5, we describe 
our Semantic Query Generation (SQG) and Event Search (ES) systems respectively. We conclude with a discussion of 
experimental results in Section 6. 

2 Metadata Generation (MG) 

2.1 Low-level Features 

We extracted and combined multiple low-level audio and visual features using Fisher Vector encoding [Peronnin et al. 2010]. 
Our low-level system combines a set of features that capture salient gradient, color, texture, motion and audio patterns. We 
considered the following features and systems: 

Audio Features: We considered Mel-Frequency Cepstral Coefficient (MFCC). 

Visual Features: We considered multiple visual features including a gray-scale dense-SIFT (D-SIFT) [Boureau et al. 2010], color 
D-SIFT (Opp-D-SIFT) [van de Sande et al. 2010] computed in the opponent color space, a dense trajectory-based feature that 
combines shape and motion features (I-DT) [Wang et al. 2013].  

We carefully engineered and studied the effects of model complexity vs. discriminativity trade-off. To achieve these goals, we 
undertook the following steps: 

• Feature Normalization: Root Normalization [R. Arandjelovic et al. 2012] achieved the best classification results 
on our internal TRECVID validation dataset. 

• Feature Sampling: The dense features were extracted spatially every 4 pixels at 5 different resolutions to 
increase scale invariance. 

• Fisher Vector Encoding: We observed that reducing the number of GMM clusters while increasing the PCA 
dimension gave slightly better results for most low-level features. 

2.2 Deep Learning 

In addition, this year, we use a set of deep convolutional neural network (DCNN) features trained on the ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) dataset. We have trained on a GPU machine an 8-layer deep convolutional neural 
network on the 1.2 million annotated images from the ILSVRC dataset. The output layer of the DCNN is used as a 1,000-
dimensional semantic feature. We also include the last convolutional layer of the DCNN as a 4,096-dimensional mid-level 
feature for 010Ex and 100Ex training conditions. As can be seen below, the performance of the visual deep learning feature is 
very close to low-level features and audio-visual semantic features. 
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System AP R0 AUC 

Visual Deep Learning 0.2797 0.5373 0.9611 
Low-level 0.3718 0.5812 0.9742 
Semantic 0.3980 0.6330 0.9813 

Table 1: Performance comparison on BBN’s Internal Video Test Partition (E021-E040). Low-level consists of the early fusion of 
D-SIFT, O-SIFT, I-DT and MFCC based Fisher Vectors. Semantic comprises of early fusion of the corresponding WSC features. 

2.3 Video-Level Weakly Supervised Semantic Features (WSC) 

Ability to detect high-level semantic concepts in videos is crucial for event recounting and event detection with a small set of 
positive training examples. However, there are several challenges in developing robust systems for detecting such semantic 
concepts. To this effect, we developed techniques to exploit the annotations in the judgment files provided by LDC for training 
concept detectors. This allows us to utilize annotations of the research set videos that are already available at no additional cost. 
However, a challenge with this data is that they are short, free-form text descriptions. We address this by applying BBN’s natural 
language processing technologies to detect salient concepts in the text annotations. We have trained 1,800 weakly supervised 
concepts from the Research Set videos and a set of YouTube videos. We use linear SVM models for each of the concept models. 
These concepts include objects, actions, scenes, as well as noun-verb bigrams. We extracted the video-level concepts for D-SIFT, 
O-SIFT, MFCC and I-DT based fisher vector representations.  

2.4 Language Features (ASR and OCR) 
Like previous years, we observe that speech and videotext provide complementary evidences and consistently improve 
performance for both pre-specified and ad hoc event detection. To meet this year’s timing constraints, we redesigned both the 
automatic speech recognition (ASR) and video text optical character recognition (OCR) pipelines. In contrast to our previous 
language content based metadata generation (CDR) pipelines, we have developed integrated pipeline from video input to 
metadata output for both speech and videotext. The integrated pipelines is ready for diverse parallel processing environments, 
with support for both single machine and computer cluster environments and significantly reduced network I/O. We have 
developed these pipelines for easier potential prototype integration. 

2.4.1 Automatic Speech Recognition  
We first use a 2-Gaussian GMM-based speech activity detection (SAD) [Ng. et al. 2012] applied on MFCC coefficients to 
automatically identify speech segments. Given the speech segments, we apply HMM-based multi-pass large vocabulary 
automatic speech recognition (ASR) to obtain speech content in the video, and encode the hypotheses in the form of word 
lattices. We developed a baseline speech recognition system using ~1600 hours of English broadcast news data, using upgraded 
tools that enable incorporation of ongoing and future advances in BBN’s Byblos speech recognition systems. To accommodate 
the characteristics of the MED video data, we use updated dictionary and language model that result in about 2-4% (absolute) 
reduction in Word Error Rate, depending on different decoding settings. In particular, we update the lexicon and language model 
using MED 2011 descriptor files [Over et al. 2011], relative web text data, and the small set of 100 video clips with annotated 
speech transcription. We use a trigram language model trained over 2 million words of in-domain data from the MED 2011 
descriptor files and relative web text data and 11 billion words of out-of-domain web-data. The vocabulary size is about 12k. The 
acoustic models are adapted during ASR decoding for each video clip in an unsupervised fashion via Maximum Likelihood 
Linear Regression (MLLR) and Constrained MLLR (CMLLR). We develop a highly integrated speech pipeline optimized for 
efficient metadata generation. We streamline the processing steps, so network I/O is minimized and limited to only the input and 
the output. Specifically, all the processing for a single video happens on a single computer node, and only the final results are 
synchronized back to the disk RAID. 

 



 
Figure 1: Flow Chart of the combined ASR and videotext OCR pipelines 

2.4.2 Videotext OCR 
Since the videotext content presents itself in various forms, such as subtitles, markup titles, text in scenes (e.g., banners and road 
signs), it is much more challenging than conventional scanned document OCR. First, MSER based videotext detector detects the 
bounding boxes. We leverage a statistically trained videotext detector based on SVM to estimate videotext bounding boxes. This 
content is then recognized by HMM-based multi-pass large vocabulary OCR. Similar to the ASR system, word lattices are used 
to encode alternative hypotheses.  

The proposed system comprises of three steps (a) text localization (b) text line aggregation (c) text line recognition. We use 
MSER regions [Jain et al. 2014, Peng et al. 2011] as candidates and instead of using rules or geometric based grouping, we apply 
a text/non-text classifier over each candidate. We compute rich shape descriptors and compress them to very few dimensions 
while preserving discriminability using Partial Least Squares (PLS) technique. PLS technique enables use of a large set of 
features in classification, and speeds up the classification significantly. Each positively labeled candidate serves as an anchor 
region around which we group candidate regions based on geometric and color properties. At this step, we allow negatively 
labeled candidates to take part in text line aggregation, to overcome mistakes in the classification step. We binarize the detected 
text regions and pass it to the BBN HMM-based OCR system [Peng et al. 2011] for word recognition. 

 

 
Figure 2: Flow Chart of the videotext detection and OCR pipeline 

2.4.3 Language Representation for ASR and OCR 
 
We start with a simple histogram representation built on the full lattice vocabulary after removing stopwords, which we denote W 
. This representation, hv = {C(w)|w ∈ W} is simply a histogram, i.e. the expected counts C(w) for each word w for video v. The 



vector hv is l1 normalized to produce a normalized histogram hv�.     
Since the lattice vocabulary is quite large and inclusive, we reduce the size of the representation by removing both extremely rare 
words in the vocabulary which are too infrequent to be robustly processed by machine learning techniques, as well as common 
words which are not useful in  distinguishing videos of different events. Removing these extrema also help to offset noise from 
falsely detected speech and video text content. To this end, we compute the posterior-weighted document frequency df(w) of 
each word w ∈ W over a sample collection of videos V as df(w) = ∑ min (1, C(w))v∈V .  
 
We then remove the 200 most common words as ranked by df, producing an upper cutoff df� . We also set a lower cutoff df by 
removing words with frequencies less than 0.001 times  df� . These two cutoffs produce the compact vocabulary W′ = {w|w ∈
W, df < 𝑑𝑓(w) < df}. 
 
In our experiments, these cutoffs remove approximately 1/3 of the words in W for both ASR and OCR. 
Using the shortened vocabulary W′, we have fv = {C(w)|w ∈ W′}. 
Rather than l1 normalizing fv, we normalize by the l1 of hv, i.e., by the sum of posteriors of all words in the lattice of the given 
video, to produce fv� . This way, we encode in the normalization term information about the total amount of hypothesized language 
content in video v, to discount the potential false alarm in video text detection and speech detection. 
We can further encode information about the potential classification power of each word in our vocabulary W′ by weighting them 

by a revised inverse document frequency, idf(w) = log ( df
df(w)) 

We then define gv = {C(w) × idf(w)|w ∈ W′}. 
 
We produce two representations by two different normalization schemes for gv: first, with a simple l1 normalization to produce 
an idf-weighted histogramgv�, and second, with the l1 norm of hv, as we did with  fv� , to produce  gv�. 

 
Language Source Representation 100Ex (MAP) 010Ex (MAP) 

ASR 

h�v (full histogram) 11.01% 3.93% 

f̃v (reduced vocab, full ℓ1 
normalization) 

12.04% 6.68% 

g�v (reduced vocab + idf) 10.28% 3.70% 
g�v (reduced vocab + idf, 

full ℓ1 normalization) 
12.38% 6.00% 

OCR 

h�v (full histogram) 6.47% 2.16% 

f̃v (reduced vocab, full ℓ1 
normalization) 

8.26% 2.81% 

g�v (reduced vocab + idf) 6.75% 2.18% 
g�v (reduced vocab + idf, 

full ℓ1 normalization) 
7.84% 3.25% 

Table 2: Comparison of various language representations on BBN’s internal test partition (E021-E040) 

 

2.5 Analysis and Comparison 
Thanks to the above mentioned efforts on features size reduction, our entire 2014 metadata store only takes around 100G of disk 
space for about 200,000 videos. As a comparison, our 2013 metadata store required about 1T of disk space for about 100,000 
videos. 

To summarize, the proposed optimization consists of two main changes: 

1. Most computations are performed in floating point format. Only computations where numerical precision is crucial are 
performed in double format. 
2. For a given video, all the features were extracted and encoded sequentially. We have now switched to a multi-threaded 
feature extraction and encoding strategy. 

Table 3 reports the computation times (in seconds on a single Intel(R) Xeon(R) CPU E5450 @ 3.00GHz 8-core Linux machine) 
required to extract D-SIFT features, while Table 4 reports the computations times required for the Fisher vector encoding of the 
extracted D-SIFT features (both in seconds). As observed, our optimization efforts have drastically reduced last year’s 
computation time, while maintaining a similar classification performance. 

  

Table 3: D-SIFT feature extraction timing comparison between BBNVISER’s 2013 and 2014 systems. 



Table 4: D-SIFT Fisher Vector Encoding timing comparison between BBNVISER’s 2013 and 2014 systems 

 

We observed that the full precision Fisher vector can be rescaled between 0 and 255 and stored as unsigned char values without 
much loss of performance. The two parameters of the affine rescaling must be stored in floating-point precision. At training and 
search time, the unsigned char feature is converted back to floating-point precision and rescaled to its original range of values. 
The reading/writing time is thus reduced by a factor of 4 without loss in performance. The table below compares the memory 
footprint between the 2013 [Natarajan et al. 2013] and 2014 systems. 

 

 2013 System 2014 System 

Feature Type Count Total Size per Video (KB) Count Total Size per Video (KB) 

Appearance 2 2,097 1 97 

Color 1 2,097 1 65 

Motion 3 6,291 1 100 

Audio 3 655 1 46 

Deep Learning 0 N/A 2 26 

Semantic 6 6 9 24 

Language 2 176 2 28 

SUM 17 11,322 17 386 

Table 5: Comparison of features used in BBNVISER’s 2013 and 2014 systems 

3 Event Query Generation (EQG) 

Besides a drastic compression of the metadata store, our 2014 system only involves linear classifiers, whereas our 2013 system 
relied on nonlinear kernel SVM classifiers. As a result, it takes only 10-15 min to train each of our 2014 event detectors on a 
COTS machine, while it took a few hours to train our 2013 event detectors on a cluster of computer nodes. Finally, it takes less 
than 5 min to search a database of 200,000 videos on a COTS machine with our 2014 system. The same search would have taken 
hours with our 2013 system due to the use of nonlinear SVMs. The table below compares the performance of SIFT Fisher vectors 
with those from last year. We can see the strong performance this year despite drastic dimensionality reduction and the use of 
linear SVMs. 

 

 

 

 
Feature Dimensionality Classifier MAP MR0 AUC 

D-SIFT 2013 262,144 RBF SVM 0.2589 0.3530 0.9271 

Opp-D-SIFT 2013 524,288 RBF SVM 0.2620 0.3789 0.9327 

Number of Descriptors 2013 System [Natarjan et al. 2013] 2014 System 

35,112 34.93 sec 1.78 sec 

215, 061 209.04 sec 10.19 sec 

669, 900 977.10 sec 41.16 sec 

Number of Descriptors 2013 System [ Natarajan et al. 2013] 2014 System 

35,112 12.12 sec 1.31 sec 

215, 061 70.46 sec 6.87 sec 

669, 900 223.97 sec 20.64 sec 



D-SIFT 2014 131,072 Linear SVM 0.2857 0.3605 0.9307 

Opp-D-SIFT 2014 262,144 Linear SVM 0.2809 0.3960 0.9317 

Table 6: Comparison of D-SIFT and O-SIFT features on BBN’s internal test partition for 100Ex training condition. Note that the 
features this year are stronger despite much lower dimensionality 

While linear SVM perform well for low-level features, we observe that for semantic features, non-linear SVMs perform better 
than linear SVMs .Table 7 shows the comparison on BBN’s internal test partition. 

Kernel Type MAP Test Time (sec/100 videos) 

Linear 0.2451 0.08 
Intersect (Non-Linear) 0.3071 96.0 

Table 7: Comparison of linear v/s non-linear kernels for visual semantic features (100Ex) 

To overcome this, we used a non-linear kernel approximation [Vedaldi et al. 2012] which uses a pre-computed linear feature 
mapping based on the Fourier sampling theorem to approximate homogenous, additive kernels such as chi2, Intersect and 
Hellinger’s. After the mapping, a standard linear SVM can be used. Such a mapping gives performance close to the original non-
linear kernels while being an order of magnitude faster at the search time. 

Kernel Type MAP Test Time (sec/100 videos) 

Linear 0.2451 0.08 

Intersect (Non-Linear) 0.3071 96.0 

Approx. Intersect (Linear) 0.3059 0.40 

Table 8: Non-linear kernel approximation improves performance without much increase in event search 

For the 010 Ex and 100 Ex training conditions, the soft-margin linear SVM event models involve early fusion of features within a 
given modality and late fusion of the ASR, OCR and audio-visual features. The parameters of the SVM classifier are optimized 
using k-fold cross validation based on 100 (resp. 10) positives and about 5,000 negatives (event background). The EQG runs on a 
single 16-core COTS computer. It takes from 10min to 30min to train an event model, depending on the number of cross-
validation folds and the sampling of the parameters space. 

For the 000Ex, the EQG expands the SQ XML to the corresponding concept lexicon space (Sec 4) by adding more relevant 
concepts to generate an event-specific model separately for each of the feature vocabulary.   

4 Semantic Query Generation (SQG) 
The semantic query (SQ) is the translation of the user-defined event query into a system query. It is the only semantic 
representation of an event. When positive training examples are available (e.g., in the 100Ex and 010Ex training conditions), the 
semantic query can be augmented/modified based on the information learned at training time to form the final event query. In the 
SQ training condition, the semantic query is the only input to the system, while in the 000Ex training condition, about 5,000 
background (unlabeled) videos are also provided. In our 2014 system, we generated the SQ automatically, as described below.  

We use the event name (e.g., “birthday party”) as the query to the INDRI document retrieval system [Lemur Project] to retrieve a 
ranked list of the most relevant documents for the given event query. In practice, we keep the top-15 documents. The INDRI text 
corpus consists of about 1 million general Wikipedia articles which have been downloaded into the system before any knowledge 
of the user query. We apply standard text processing techniques (e.g., stop word removal, lemmatization …) to the top-15 
retrieved documents. Each word in the documents is then weighted by its Term Frequency (TF) measured across all the top 
documents. The words having the highest TF are grouped together into a vector which represents the event query. 

Once the event query representation is obtained, we use a text expansion based method to project the query into our various 
semantic feature spaces (ASR, OCR, audio-visual semantics). We use the large text corpus Gigaword for this projection. Our 
semantic features consist of speech (ASR), text (OCR), weakly supervised audio-visual concepts (VideoWords) and ImageNet 
deep convolutional neural network (CNN) features. Once the expanded event query feature vector and video feature vector are 
computed, we use a cosine similarity measure to rank the videos for a given event. Finally, we fuse retrievals from each of the 
features and modalities using a simple linear combination to exploit the complementary nature of the different modalities and 
concept vocabularies.  

For the SQ module, we use only the top 24 features for the language (ASR & OCR) and 9 (audio-visual and CNN) at the time of 
search, while for the 000Ex system we retained 30 language concepts and 15 audio-visual and DCNN concepts. The retained 
concepts for each event are returned in the SQ XML and 000Ex XML, respectively.  The performance of our SQ and 000Ex 
system is reported in Table 3. 

 MED’13 (E021-E030) MED’14 (E021-E040) 

 SQ 000Ex SQ 000Ex 



MAP 0.0431 0.0643 0.0830 0.0901 

MR0 0.1628 0.2183 0.2322 0.2502 

AUC 0.8670 0.9175 0.8869 0.9233 

Table 9: Comparison of SQ, 000Ex training conditions on BBN’s internal test partition (2013 and 2014 systems) 

5 Event Search (ES) 
Using the features described and discriminative event specific models, the ES module searches the video test database for a 
particular event and returns a list of videos ranked based on the corresponding probability scores of belonging to the searched 
event. It also returns a detection threshold above which a video is considered as a positive for the searched event. The score of 
each test video for a particular event is obtained by applying the event model to the test video. Since it only involves the 
computation of inner products and some posterior score normalization, the event search is very fast.  

Late fusion of multiple sub-systems consistently improves performance of our 100Ex and 010Ex systems compared to the best 
single sub-system. Further, fusion of 000Ex systems with 010Ex produced additional gains.  

For our 0-shot system, we combined WSC features from D-SIFT, O-SIFT, I-DT and MFCC features to obtain a score from the 
video-level concepts. This was then combined with scores from ASR, OCR and CNN modalities. As expected, the audio-visual 
semantic features had the strongest performance, followed by high precision OCR and ASR systems. 

For the 010Ex and 100Ex test conditions, since the limiting condition for calculating the video level score is the dimensionality 
of the underlying feature space, we divide the test partition videos into blocks, each of which is then processed by a separate core 
on the COTS machine. Whereas, the 000Ex involves only the semantic features (roughly similar feature dimensionality), we 
perform the multi-threading at feature level. It takes about ~2min to rank a list of ~200,000 videos across all modalities on a 
single 16-core COTS computer. Based on these observations, we submitted our systems to NIST for the TRECVID MED pre-
specified and ad hoc conditions. 

6 Experiments and Results 
In this section, we present results for the systems we submitted for the Pre-Specified and Ad Hoc MED tasks, and for MER, on 
the various training conditions. 

6.1 Pre-Specified Event Detection Submission Systems 
For the pre-specified task, we submitted systems for all the training conditions. The table below presents the MAP scores for the 
different submissions. 

 MAP MR0 

100Ex 29.8% 56.3% 

010Ex 18.0% 41.7% 

000Ex 5.7% 24.3% 

SQ 5.3% 20.3% 

Table 10: MED 2014 Pre-Specified Results 

As expected, there is a large drop in performance from EK100 to EK10 to EK0 and SQ only. Our pre-specified submissions 
overall had strong performance in comparison to other TRECVID 2014 submissions. Our system finished 2nd for 000Ex and SQ 
tasks and 3rd for 100Ex and 010Ex training conditions.  

6.2 Ad Hoc Event Detection Submission Systems 
We submitted an identical set of systems for the ad hoc task and pre-specified event detection. The table below shows the MAP 
scores for the different training conditions. 

 

 

 MAP MR0 

100Ex 22.6% 46.9% 

010Ex 10.9% 33.3% 

000Ex 3.7% 14.7% 



SQ 3.1% 11.7% 

Table 11: MED 2014 Ad Hoc Results 

The performance of the different submissions were consistent with the trends observed in pre-specified, and was also competitive 
with the other submissions. Our SQ and 000Ex systems were 2nd, while the 100Ex and 010Ex systems were 3rd in terms of MAP. 
Further, our SQ and 000Ex systems had consistent performance between pre-specified and ad hoc demonstrating the generality 
and robustness of our concept detectors. 

6.3 Metadata Generation Times 
Our Metadata Generation module was one of the fastest compared to other performers. This was done while maintaining strong 
MAP performance. While we took only 0.027 hours processing time per hour of video to generate all the features (Sec 2) for 
~1,500 videos, we took 0.262 hours ~200, 000 Eval videos. 

6.4 MER Submission 
For the TRECVID Multimedia Event Recounting (MER) Task, we submitted a three-phase system that (1) detected concept 
instances from various modalities; (2) aggregated these detections by modality, based on the initial event-specific semantic query 
(Sec 4); and (3) generated a human-readable recounting containing itemized detections along with confidence and relevance 
information.  The system combined concept detections from the following systems: 

• Audio-Visual Concepts: We obtained these concepts using the system described in Section 2.3. For each test video, we 
applied all our concept detectors and pruned those concepts that had confidence below the threshold learned during training. 

• Automatic Speech Recognition (ASR): We applied BBN’s ASR system on the audio stream, and then detected salient 
keywords in the speech transcript. We then included these keywords, as well as the start and end times of their utterances in 
our MER submission. 

• Videotext: We applied BBN’s Videotext detection and recognition system on the videos and included the output in our 
MER submission. 

For query conciseness, our submission received 17% strongly agree (highest) and 59 % agree votes nominated by 5 human 
judges. For key evidence convincing, we had the lowest strongly disagree (lowest) votes (7 %) and the highest strongly agree 
votes (27 %) nominated by 5 judges. 
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