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ABSTRACT
Image tags have become a key intermediate vehicle to orga-
nize, index and search the massive online image repositories.
Extensive research has been conducted on different yet re-
lated tag analysis tasks, e.g., tag refinement, tag-to-region
assignment, and automatic tagging. In this paper, we pro-
pose a new concept of multi-edge graph, through which a uni-
fied solution is derived for the different tag analysis tasks.
Specifically, each vertex of the graph is first characterized
by a unique image. Then each image is encoded as a region
bag with multiple image segmentations, and the thresholding
of the pairwise similarities between regions naturally con-
structs the multiple edges between each vertex pair. The
unified tag analysis is then generally described as the tag
propagation between a vertex and its edges, as well as be-
tween all edges cross the entire image repository. We develop
a core vertex-vs-edge tag equation unique for multi-edge
graph to unify the image/vertex tag(s) and region-pair/edge
tag(s). Finally, unified tag analysis is formulated as a con-
strained optimization problem, where the objective function
characterizing the cross-patch tag consistency is constrained
by the core equations for all vertex pairs, and the cutting
plane method is used for efficient optimization. Extensive
experiments on various tag analysis tasks over three widely
used benchmark datasets validate the effectiveness of our
proposed unified solution.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing
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1. INTRODUCTION
The prevalence of image/video capture devices and grow-

ing practice of photo sharing with online websites have re-
sulted in proliferation of image data on the Internet. Some
photo sharing websites, such as Flickr [1] and Picasa [2], are
becoming part of our daily lives. Take Flickr as example–
more than 2, 000 images are being uploaded by grassroot
Internet users every minute. Therefore, how to manage, in-
dex and search for these images effectively and efficiently is
becoming an increasingly important research task.

Existing approaches for Internet image search usually build
upon keyword queries against the texts around the images
within webpages, such as anchor texts, texts in the bod-
ies of webpages and file names. Beyond simply harnessing
the indirect surrounding texts of web images for text query
matching, a more desirable technique is to annotate the im-
ages with their associated semantic labels, namely tags. The
underlying principle is that tags can capture the essential se-
mantic contents of images more precisely, and thus are better
for organizing and searching image repositories. Nowadays,
those popular photo sharing websites provide the convenient
interfaces for users to manually add tags to the photos they
browsed, which also attracts a variety of research efforts in
analyzing these user-provided tags. The main focuses of pre-
vious tag analysis research have been put on three aspects:

Tag Refinement. The purpose of tag refinement is to
refine the unreliable user-provided tags associated with the
images. Recent studies reported in [3, 4, 5] reveal that
the user-provided tags associated with those social images
are rather imprecise, with only about 50% precision rate.
Moreover, the average number of tags for each social im-
age is relatively small [6], which is far below the number
required to fully describe the contents of an image. There-
fore, effective methods to refine these unreliable tags have
become emerging needs. Content-based Annotation Refine-
ment (CBAR) [7] is one such method, which re-ranks the
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Figure 1: (a) An illustration of multi-edge graph, a graph with multiple edges between each vertex pair. (b)
For image tag analysis, each edge connects two segmented image regions from two unique images/vertices,
and thus each image/vertex pair is generally connected with multiple edges, where the number of edges for
each image/vertex pair may be different. (c) Based on multi-edge graph, various image tag analysis tasks
can be formulated within a unified framework. For better viewing, please see original color pdf file.

tags of an image and only reserves the top ones as the re-
fined results. However, this method focuses on selecting a
coherent subset of tags from existing tags associated with
each image, and thus is incapable of “inventing” new tags
for a particular image if the tags are not initially provided
by users. To address this issue, Liu et al. [8] propose to refine
the tags based on the visual and semantic consistency resid-
ing in the social images, and assign similar tags to visually
similar images. The refined and possibly enriched tags can
then better describe the visual contents of the images and in
turn improve the performances in tag-related applications.

Tag-to-Region Assignment. Even after we obtain re-
liable tags annotated at the image-level, we still need a
mechanism to assign tags to regions within an image, which
is a promising direction for developing reliable and visible
content-based image retrieval systems. There exist some
related works [9, 10, 11] in computer vision community,
known as simultaneous object recognition and image seg-
mentation, which aims to learn explicit detection model for
each class/tag, and thus inapplicable for real applications
due to the difficulties in collecting precisely labeled image
regions for each tag. In multimedia community, a recent
work is proposed by Liu et al. [12], which accomplishes the
task of tag-to-region assignment by using a bi-layer sparse
coding formulation for uncovering how an image or seman-
tic region could be reconstructed from the over-segmented
image patches of the entire image repository. In [12], the
atomic representation is based on over-segmented patches,
which are not descriptive enough and may be ambiguous
across tags, and thus the algorithmic performance is lim-
ited.

Multi-label Automatic Tagging. Accurate manual
tagging is generally laborious when the image repository vol-
ume becomes large, while a large portion of images uploaded
onto those photo sharing websites are unlabeled. Therefore,
an automatic process to predict the tags associated with an
image is highly desirable. Generally, popular machine learn-
ing techniques are applied to learn the relationship between

the image contents and semantic tags based on a collection
of manually labeled training images, and then use the learnt
models to predict the tags of those unlabeled images. Many
algorithms have been proposed for automatic image tagging,
varying from building classifiers for individual semantic la-
bels [13, 14] to learning relevance models between images
and keywords [15, 16]. However, these algorithms gener-
ally rely on sufficient training samples with high quality la-
bels, which are however difficult, if not impossible, to be
obtained in many real-world applications. Fortunately, the
semi-supervised learning technique can well relieve the above
difficulty by leveraging both labeled and unlabeled images
in the automatic tagging process. The most frequently ap-
plied semi-supervised learning method for automatic image
tagging is graph-based label propagation [17]. A core compo-
nent of the algorithms for label propagation on graph is the
graph construction. Most existing algorithms simply con-
struct a graph to model the relationship among individual
images, and a single edge is connected between two vertices
for capturing the image-to-image visual similarity. Never-
theless, using a single edge to model the relationship of two
images is inadequate in practice, especially for the real-world
images typically associated with multiple tags.

Although many tag related tasks have been exploited,
there exist several limitations for these existing algorithms.
(1) Most existing algorithms for tag refinement and auto-
matic tagging tasks typically infer the correspondence be-
tween the images and their associated tags only at the im-
age level, and utilize the image-to-image visual similarity
to refine or predict image tags. However, two images with
partial common tags may be considerably different in terms
of holistic image features, and thus image level similarity
may be inadequate to describe the similarity of the under-
lying concepts among the images. (2) The only work [12]
for tag-to-region assignment task, despite working at the re-
gion level, suffers from the possible ambiguities among the
smaller-size patches, which are expected to sparsely recon-
struct the desired semantic regions.
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It is worth noting that the various tasks on tag analy-
sis are essentially closely related, and the common goal is
to discover the tags associated with the underlying seman-
tic regions in the images. Therefore, we naturally believe
that there exists a unified framework which can accomplish
these tasks in a coherent way, which directly motivates our
work in this paper. Towards this goal, we propose a new
concept of multi-edge graph, upon which we derive a uni-
fied formulation and solution to various tag analysis tasks.
We characterize each vertex in the graph with a unique im-
age, which is encoded as a “bag-of-regions” with multiple
segmentations, and the thresholding of the pairwise similar-
ities between the individual regions naturally constructs the
multiple edges between each two vertices. The foundation of
the unified tag analysis framework is cross-level tag propaga-
tion which propagates and adapts the tags between a vertex
and its connected edges, as well as between all edges in the
graph structure. A core vertex-vs-edge tag equation unique
for multi-edge graph is derived to bridge the image/vertex
tags and the region-pair/edge tags. That is, the maximum
confidence scores over all the edges between two vertices in-
dicate the shared tags of these two vertices (see Section 2).
Based on this core equation, we formulate the unified tag
analysis framework as a constrained optimization problem,
where the objective characterizing the cross-region tag con-
sistency is constrained by the core equations for all vertex
pairs, and the cutting plane method is utilized for efficient
optimization. Figure 1 illustrates the unified tag analysis
framework based on the proposed multi-edge graph.

The main contributions of this work can be summarized
as follows:

• We propose a unified formulation and solution to var-
ious tag analysis tasks, upon which, tag refinement,
tag-to-region assignment as well as automatic tagging
can be implemented in a coherent way.

• We propose to use the multi-edge graph to model the
parallel semantic relationships between the images. We
also discover a core equation to connect the tags at the
image level with the tags at the region level, which nat-
urally realizes the cross-level tag propagation.

• We propose an iterative and convergence provable pro-
cedure with the cutting plane method for efficient op-
timization.

2. GENERAL MULTI-EDGE GRAPH
An object set endowed with pairwise relationships can be

naturally illustrated as a graph, in which the vertices repre-
sent the objects, and any two vertices that have some kind
of relationship are joined together by an edge. However,
in many real-world problems, representing the relationship
between two complex relational objects with a single edge
may cause considerable information loss, especially when the
individual objects convey multiple information channels si-
multaneously. A natural way to remedy the information
loss issue in the traditional graph is to link the objects with
multiple edges, each of which characterizes the information
in certain aspect of the objects, and then use a multi-edge
graph to model the complex relationships amongst the ob-
jects. Take the friendship mining task on Flickr website as
example, the individual users often provide a collection of
information channels including personal profiles, uploaded

images, posted comments, tags, etc. Typically, the friend-
ship relations do not reside only within a single information
channel, but rather are spread across multiple information
channels. Therefore, we represent each shared information
channel between any two users with an edge, which naturally
forms a multi-edge graph structure. Note that the available
information channels for the individual users might be dif-
ferent1, thus the edge number between different user pairs
may be different. With this new graph structure, we can see
a more comprehensive picture of the relations between the
users, and thus better recognize the friendship relations.

Now we give the definition of multi-edge graph. For-
mally, we have a multi-edge graph G = (V, E), where V =
{1, 2, ..., N} denotes the vertex set, E is a family of multi-
edge set Eij of V , where Eij = {eij

1 , ..., eij

|Eij |} denotes the

multiple edges between vertex i and vertex j. Since each
edge in the graph represents one shared information channel
between two vertices, we may place a feature representation
for the edge to indicate the shared information within the
specific information channel conveyed by this edge. We as-
sume that the multi-edge graph G = (V, E) is represented
by a symmetric edge weighting matrix W, where each Wij

measures the weighting similarity between two edge feature
representations.

Obviously both graph vertices and edges may convey the
class/tag information for the multi-edge graph, and then the
general target of learning over the multi-edge graph becomes
to infer the tags of the edges supported by the individual in-
formation channels and/or the tags of the unlabeled vertices
based on the tags of those labeled vertices. To realize the
cross-level tag inference, a core equation unique for multi-
edge graph is available for bridging the tags at the vertex
level and the tags at the edge level. Given a tag c, assume
a scalar yc

i ∈ {0, 1}2 is used to illustrate the labeling infor-
mation of the vertex i, where yc

i = 1 means that vertex i
is labeled as positive with respect to c and yc

i = 0 other-
wise. We also associate a real-value label fct ∈ [0, 1] with the
edge et to capture the probability that the edge et is labeled
as positive with respect to c under the specific information
channel residing on et. Then for any two vertices i and j, a
core equation can be formulated as follows:

yc
iy

c
j = max

et∈Eij
fct . (1)

Discussion. Compared with the traditional single edge
graph, the proposed multi-edge graph has the following char-
acteristics: (1) each edge is linked at a specific information
channel, which naturally describes the vertex relation from
a specific aspect; (2) the graph adjacent structure better
captures the complex relations between the vertices owing
to the multi-edge linkage representation; and (3) the graph
weighting is performed over the individual edge representa-
tions, which may describe the correlation of the heteroge-
neous information channels.

There are also some works [18, 19] related to the term of
“multi-graph” in literature, but the focus of these works is to
combine multiple graphs obtained from different modalities

1
For example, some users only upload photos onto Flickr but never

provide other information, while some users only post comments to

others’ photos without sharing his/her own photos.
2

yc
i denotes the entry corresponding to tag c in the tag vector yi,

and thus is a scalar. Similar statement holds for vector fc and its

scalar entry fct .
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of the same observations to obtain a more comprehensive
single edge graph, which, however, is essentially different
from the multi-edge graph introduced in this work, where
multiple edges are constructed to characterize the parallel
relationships from different information channels between
the vertices.

The recently proposed hypergraph [20] also attempts to
model the complex relationships among the objects. How-
ever, the modeling is performed on a single information
channel of the objects, which also causes considerable infor-
mation loss. Instead of modeling the relationship of objects
with a single channel, multi-edge graph differs from hyper-
graph by explicitly constructing the linkages with multiple
information channels of the vertices.

3. CONSTRUCT MULTI-EDGE GRAPH FOR
UNIFIED TAG ANALYSIS

In this section, we first describe the bag-of-regions repre-
sentation for the images, and then introduce the multi-edge
graph construction procedure for image-based tag analysis.

3.1 Bag-of-Regions Representation
An image usually contains several regions with different

semantic meanings. A straightforward solution for image
content analysis is to divide an image into several seman-
tic regions and extract features from each region for content
analysis. In this work, we use image segmentation to de-
termine the semantic regions within the individual images.
If the segmentation is ideal, regions shall correspond to the
semantic objects. However, in general, perfect image seg-
mentation, which builds a one-to-one mapping between the
generated regions and objects in the image, is still beyond
the capabilities of those existing algorithms [21, 22]. There-
fore, it is impossible to expect a segmentation algorithm
to partition an image into its constituent objects. Inspired
by the work in [23], we propose to use multiple segmenta-
tions to relieve the limitations of image segmentation. For
each image, we compute multiple segmentations by employ-
ing different segmentation algorithms. Each of the result-
ing segmentations is still assumed to be imperfect, and the
weakened assumption is that some of the segments from all
segmentations are correct. Specifically, we choose to use two
popular image segmentation algorithms in this work. One
is the graph-based segmentation algorithm in [21], which
incrementally merges smaller-sized patches with similar ap-
pearances and with small minimum spanning tree weights.
The other one is the Normalized Cut algorithm proposed
by Shi et al. [22], which performs the segmentation via a
spectral graph partitioning formulation. After obtaining the
multiple segmentation results, we apply the “bag-of-regions”
representation to describe each image, and each segment
constitutes one atomic component of one bag. Figure 2 illus-
trates the bag-of-regions representation of an example input
image.

Furthermore, we represent each segmented region with
Bag-of-Words (BoW) features. We first apply the Harris-
Laplace detector [24] to determine a set of the salient points.
Then the Scale Invariant Feature Transform (SIFT) fea-
tures [25] are computed over the local areas defined by the
detected salient points. We perform K-means clustering
method to construct the visual vocabulary with 500 visual
words. Then each SIFT feature is mapped into an integer

Input Image Bag-of-Regions
Segmentation 2

Segmentation 1

Figure 2: The “bag-of-regions” representation of an
input image. We use two segmentation algorithms
to segment the input image simultaneously and then
collect all derived segments to obtain the bag-of-
regions representation.

(visual word index) between 1 and 500. Finally, each region
is represented as a normalized histogram over the visual vo-
cabulary.

3.2 Multi-edge Graph Construction
For tag analysis, each vertex of the multi-edge graph char-

acterizes one unique image from the entire image collec-
tion. The multi-edge graph construction can be decom-
posed into two steps: graph adjacency construction and
graph weight calculation. For graph adjacency construc-
tion, we aim to build up the edge linkages between the re-
gions of different image vertices (each region is considered as
one information channel). Given two image vertices i and
j, and their corresponding bag-of-regions representations,

xi = {x1
i ,x

2
i , ...,x

|xi|
i } and xj = {x1

j ,x
2
j , ...,x

|xj |
j }, our ap-

proach is to put one edge if and only if the two regions in
the two images are “close enough” (consistent in information
channels). In our setting, we use the mutual k-nearest neigh-
bors strategy to discover the closeness relations between the
regions. Specifically, two regions xm

i and xn
j are linked with

an edge if xm
i is among the k1 nearest neighbors of xn

j and
vice versa. Here the k1 nearest neighbors are measured by
the usual Euclidean distance and the parameter k1 is fixed
to be 5. Once the linkages between the regions are created,
the adjacency relations between the image vertices can be
naturally constructed where any two vertices with at least
one edge connection are considered as adjacent in the graph
structure. It is worth noting that the adjacent relations
defined in this work are symmetric and consequently the
constructed adjacency graph is undirected. Then, for each
edge et linking two regions xm

i and xn
j , we define its feature

representation v(et) as the average of xm
i and xn

j , namely,
v(et) = (xm

i + xn
j )/2, aiming to convey unbiased informa-

tion from two regions. For graph weight calculation, based
on the feature representations of the edges, we define the
similarity between two edges et and eh as follows

Wth =





e
− ‖v(et)−v(eh)‖2

2σ2 , if h ∈ Nk2(t) or t ∈ Nk2(h),

0, otherwise,
(2)

where Nk2(·) denotes the edge index set for the k2-nearest
neighbors of an edge measured by Euclidean distance and
k2 is set as 100 for all the experiments. σ is the radius
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parameter of the Gaussian function, and is set as the median
value of all pairwise Euclidean distances between the edges.

4. UNIFIED TAG ANALYSIS OVER IMAGE-
BASED MULTI-EDGE GRAPH

In this section, we present the unified tag analysis frame-
work over the image-based multi-edge graph. We first de-
scribe the problem formulation and then introduce an effi-
cient iterative procedure for the optimization.

4.1 Basic Framework
We restrict our discussion in a transductive setting, where

l labeled images {(x1,y1), . . . , (xl,yl)} and u unlabeled im-
ages {xl+1, . . . ,xl+u} are given3. We represent each image
xi (i = 1, 2, . . . , l + u) with the “bag-of-regions” representa-
tion as described in Section 3.1. All unique tags appeared
in the labeled image collection can be collected into a set
Y = {yi, y2, . . . , ym}, where m denotes the total number of
tags. For any labeled image (xi,yi) (i = 1, 2, . . . , l), the tag
assignment vector yi is a binary vector yi ∈ {0, 1}m, where
the k-th entry yk

i = 1 indicates that xi is assigned with
tag yk ∈ Y and yk

i = 0 otherwise. Besides, a multi-edge
graph G = (V, E) with vertices V corresponding to the l +u
images, where vertices L = {1, . . . , l} correspond to the la-
beled images, and vertices U = {l +1, . . . , l +u} correspond
to the unlabeled images, is also provided. Furthermore, we
collect all edges in the graph and re-index the edges in E as
E = {e1, e2, . . . , eT }, where T is the total number of edges
in the graph.

The general goal of tag analysis is to infer globally con-
sistent edge-specific tag confidence vector ft for each edge et

(t = 1, . . . , T ), wherein the c-th entry fct denotes the proba-
bility of assigning tag yc to the edge et. This is essentially
to infer the fine tag information at the region level from the
coarse tag information at the image level. Intuitively, the
side information conveyed by a set of images annotated with
the same tag could be sufficient for disclosing which regions
should be simultaneously labeled with the tag under consid-
eration. This is due to the fact that any two images with the
same tag will be linked at least by one edge that connects
two regions corresponding to the concerned tag in the multi-
edge graph. The repetition of such pairwise connections in
a fraction of the labeled images will be an important sig-
nal that can be used to infer a common “visual prototype”
throughout the image collection. Finding multiple visual
prototypes and their correspondences with respect to the
individual tags is the foundation of the unified tag analysis
framework. More importantly, the core equation in Eq. (1)
plays an important role in linking the tags of the edges and
the tags of the images, and offers the capability for propa-
gating tags between them.

Furthermore, by assuming that similar edges share sim-
ilar regional features, the distribution of edge-specific tag
confidence vector should be smooth over the graph. Given
a weighting matrix W which describes the pairwise edge
relationship based on Eq. (2), we can propagate the edge-
specific tag confidence vectors from the labeled image pairs
to the unlabeled ones by enforcing the smoothness of these

3
Note that the proposed framework is general and may not need the

support of unlabeled data. For example, in tag refinement and tag-to-

region assignment tasks, we can only use the labeled images to obtain

the desired results.

edge-specific tag confidence vectors over the graph during
the propagation. Here, we refer to this approach as Cross-
level Tag Propagation due to the extra constraints from the
core vertex-vs-edge tag equations for all vertex pairs.

We formulate the cross-level tag propagation within a reg-
ularized framework which conducts the propagation implic-
itly by optimizing the regularized objective function,

min
F

Ω(F,W) + λ

m∑
c=1

∑
i,j∈Lc

`(yc
iy

c
j , max

e∈Eij
I>c fk(e))

s.t. ft ≥ 0,

m∑
c=1

fct = 1, t = 1, 2, . . . , T, (3)

where F = [f1, f2, . . . , fT ]> consists of the edge-specific tag
confidence vectors to be learned for T edges in the graph,
Lc denotes the collection of labeled images annotated with a
specific tag yc, k(e) denotes the index of edge e in E. `(·, ·)
is a convex loss function such as hinge loss, and Ic is an m-
dimensional binary vector with the c-th entry being 1 and
other entries all being 0’s. Ω is a regularization term respon-
sible for the implicit tag propagation, and λ is a regulariza-
tion parameter. Since the numerical values residing in F are
edge-specific tag confidence scores over the tags, we enforce
ft ≥ 0 to ensure that the scores are non-negative. Further-
more, the

∑m
c=1 fct = 1 constraint is imposed to ensure that

the sum of the probabilities to be 1, which essentially cou-
ples different tags together and makes them interact with
each other in a collaborative way.

We enforce the tag smoothness over the multi-edge graph
by minimizing the regularization term Ω:

Ω(F,W) =

T∑

t,h=1

Sth‖ft − fh‖2 = 2tr(F>LF). (4)

Here S = Q− 1
2 WQ− 1

2 is a normalized weight matrix of
W. Q is a diagonal matrix whose (i, i)-entry is the i-th row
sum of W. L = (I − S) is the graph Laplacian. Obviously,
the minimization of Eq. (4) yields a smooth propagation of
the edge-specific tag confidence scores over the graph, and
nearby edges shall have similar tag confidence vectors.

Based on the pairwise side information provided by images
annotated with the same tag, we instantiate the loss function
`(·, ·) in Eq. (3) with `1-loss:

`(yc
iy

c
j , max

e∈Eij
I>c fk(e)) = |yc

iy
c
j − max

e∈Eij
I>c fk(e)|. (5)

By introducing slack variables and plugging Eq. (4) and
Eq. (5) into Eq. (3), we obtain the following convex opti-
mization problem:

min
F,ξcij

2tr(F>LF) + λ

m∑
c=1

∑
i,j∈Lc

ξcij

s.t. −ξcij ≤ yc
iy

c
j − max

e∈Eij
I>c fk(e) ≤ ξcij , ξcij ≥ 0,

ft ≥ 0, 1>ft = 1, t = 1, 2, . . . , T. (6)
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This is also equivalent to

min
F,ξcij

2tr(F>LF) + λ

m∑
c=1

∑
i,j∈Lc

ξcij

s.t. I>c fk(e) − ξcij ≤ yc
iy

c
j , e ∈ E ij

yc
iy

c
j − max

e∈Eij
I>c fk(e) ≤ ξcij ,

ξcij ≥ 0, c = 1, 2, . . . , m, i, j ∈ Lc,

ft ≥ 0, 1>ft = 1, t = 1, 2, . . . , T. (7)

4.2 Optimization with Cutting Plane
The optimization problem in Eq. (7) is convex, resulting

in a globally optimal solution. However, optimizing Eq. (7)
with respect to all ft’s is of great computational challenge.
Instead of solving it directly, we employ the alternating op-
timization method. The main idea is to sequentially solve a
batch of edge-specific tag confidence vectors residing on the
edges between two given vertices at each time by fixing other
vectors on the remaining edges. We repeat this procedure
until Eq. (7) converges or a maximum number of iterations
is reached.

In each iteration, solving a subset of edge-specific tag con-
fidence vectors Fij = [f

k(e
ij
1 )

, f
k(e

ij
2 )

, . . . , f
k(e

ij

|Eij |)
] that cor-

respond to the edges between two given vertices i and j
yields a standard Quadratic Programming (QP) problem:

min
Fij ,ξc

Ω(Fij ,W) + λ

m∑
c=1

ξc

s.t. I>c fk(e) − ξc ≤ yc
iy

c
j , e ∈ E ij ,

yc
iy

c
j − max

e∈Eij
I>c fk(e) ≤ ξc,

ξc ≥ 0, c = 1, 2, . . . , m,

fk(e) ≥ 0, 1>fk(e) = 1, e ∈ E ij . (8)

Since we only solve the fd’s residing on edges between
vertex i and vertex j and treat the others as constant vectors
during the optimization, the smooth term that relates to the
concerned optimization variable can be written as

Ω(Fij ,W) = 2
∑

et∈Eij

∑

eh /∈Eij

St?h?(f>t? ft? − 2f>t? fh?)

+2
∑

et∈Eij

∑

eh∈Eij\{et}
St?h?(f>t? ft? − 2f>t? fh? + f>h? fh?), (9)

where t? = k(et) and h? = k(eh) denote the indices of edge
et and edge eh in the edge set E, respectively.

We vectorize the matrix Fij by stacking their columns into
a vector. Denote by r = vec(Fij), then fk(et) can be calcu-

lated as fk(et) = Atr, where At = [I(t−1)∗m+1, . . . , It∗m]>

with Ig an (m × |E ij |)-dimensional column vector in which
the g-th entry is 1 while the other entries are all 0’s. Thus
the objective function can be rewritten as

min
r,ξc

Ω(r,W) + λ

m∑
c=1

ξc

s.t. I>c Atr− ξc ≤ yc
iy

c
j , et ∈ E ij ,

yc
iy

c
j − max

et∈Eij
I>c Atr ≤ ξc,

ξc ≥ 0, c = 1, 2, . . . , m,

r ≥ 0, 1>Atr = 1, et ∈ E ij . (10)

Although the objective function in Eq. (10) is quadratic
and the constraints are all convex, the second constraint is
not smooth. Hence, we cannot directly use the off-the-shelf
convex optimization toolbox to solve the problem. Fortu-
nately, the cutting plane method [26] is able to well solve
the optimization problem with non-smooth constraints. In
Eq. (10), we have m slack variables ξc (c = 1, 2, ..., m).
To solve it efficiently, we first drive the 1-slack form of
Eq. (10). More specifically, we introduce one single slack
variable ξ =

∑m
c=1 ξc. Finally, we can obtain the objective

function as

min
r,ξ

Ω(r,W) + λξ

s.t. ξ ≥
m∑

c=1

max
(
0, I>c Atr− yc

iy
c
j ,y

c
iy

c
j − max

et∈Eij
I>c Atr

)

r ≥ 0, 1>Atr = 1, et ∈ E ij . (11)

Now the problem becomes how to solve Eq. (11) efficiently,
which is convex and has non-smooth constraints. In cutting
plane terminology, the original problem in Eq. (11) is usually
called the master problem. The variable ξ is regarded as the
nonlinear function of r, i.e., ξ(r) =

∑m
c=1 max(0, I>c Atr −

yc
iy

c
j ,y

c
iy

c
j − maxet∈Eij I>c Atr). The basic idea of cutting

plane method is to substitute the nonlinear constraints with
a collection of linear constraints. The algorithm starts with
the following optimization problem:

min
r

Ω(r,W)

s.t. r ≥ 0, 1>Atr = 1, et ∈ E ij . (12)

After obtaining the solution rs (s = 0) of the above prob-
lem, we approximate the nonlinear function ξ(r) around rs

by a linear inequality:

ξ(r) ≥ ξ(rs) +
∂ξ(r)

∂r
|r=rs(r− rs), (13)

Denote by g1(r) = 0, g2(r) = I>c Atr − yc
iy

c
j , g3(r) =

yc
iy

c
j −maxet∈Eij I>c Atr, the subgradient of ξ(r) in Eq. (13)

can be calculated as follows:

∂ξ(r)

∂r
|r=rs =

m∑
c=1

(
zp(r)× ∂gp(r)

∂r

)
|r=rs . (14)

Here,

zp(r) =





1, if p = arg maxp=1,2,3 gp(r),

0, otherwise,
(15)

and ∂g1(r)/∂r = 0, ∂g2(r)/∂r = I>c At and ∂g3(r)/∂r =
−∑

et∈Eij γetI
>
c At, where γet is defined as follows:

γet =





1, if et = arg maxet∈Eij I>c Atr,

0, otherwise.
(16)

The linear constraint in Eq. (13) is called a cutting plane
in the cutting plane terminology. We add the obtained con-
straint into the constraint set and then use efficient QP pack-
age to solve the reduced cutting plane problem. The opti-
mization procedure is repeated until no salient gain when
adding more cutting plane constraints. In practice, the cut-
ting plane procedure halts when satisfying the ε-optimality
condition, i.e., the difference between the objective value of
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Algorithm 1 Unified Tag Analysis Over Multi-edge Graph

1: Input: A multi-edge graph G = (V, E) of an image
collection X , with the labeled subset Xl and the un-
labeled subset Xu, edge affinity matrix W = {wij}
(i, j = 1, 2, .., T ) of the edge set E, and regularization
constant λ.

2: Output: The edge-specific tag confidence vectors F =
[f1, f2, ..., fT ]>.

3: Initialize F = F0, t = 0, ∆J = 10−3, J−1 = 10−3.
4: while ∆J/J t−1 > 0.01 do
5: for any pairwise labeled vertices i and j do
6: Derive problem in Eq. (11), set the constraints set

Ω = φ and s = −1;
7: Cutting plane iterations:
8: repeat
9: s=s+1;

10: Get (rs, ξs) by solving Eq. (11) under Ω;
11: Compute the linear constraint by Eq. (13) and

update the constraint set Ω by adding the ob-
tained linear constraint into it.

12: until Convergence
13: end for
14: for any pairwise vertices i and j in which at least one

is unlabeled do
15: Solve the QP problem whose form is similar to

Eq. (12).
16: end for
17: t = t + 1; Ft = Ft−1; ∆J = J t−1 − J t;
18: end while

the master problem and the objective value of the reduced
cutting plane problem is smaller than a threshold ε. In this
work, we set ε to be 0.1. We use J t to denote the value of the
objective function in Eq. (7), then the whole optimization
procedure can be summarized as in Algorithm 1.

4.3 Unified Tag Analysis with the Derived F

Once the tag confidence vectors F = [f1, f2, . . . , fT ]> are
obtained, the predicted tag vector y∗ for a given seman-
tic region x can be obtained in a majority voting strategy.
Assume there are totally p edges connected with the re-
gion x in the multi-edge graph, which form an edge subset
E(x) = {ex

1 , ex
2 , . . . , ex

p}. We collect the corresponding confi-
dence vectors into a subset F(x) = [fk(ex1 ), fk(ex2 ), . . . , fk(exp)],

where k(ex
i ) denotes the index of edge ex

i in the whole edge
set of the multi-edge graph. In essence, each confidence vec-
tor in F(x) represents the tag prediction result of region x,
where the c-th entry corresponds to the confidence score of
assigning tag yc to region x. Since each region usually only
contains one semantic concept, we select the tag with the
maximum confidence score in the confidence vector as the
predicted tag of the given region. Furthermore, since there
are p edges simultaneously connected with region x, we pre-
dict the tag with each confidence vector and select the tag
with the most prediction number as the final predicted tag
of region x. By doing so, we can obtain a binary tag assign-
ment vector for each region, and then the three tag analysis
tasks can be implemented in the following manner:

Tag Refinement. For each image with user-provided
tags, we predict the binary tag assignment vector for each
of its composite regions in the bag-of-regions representation
and then fuse all binary vectors through the logic OR op-

erator. The obtained vector then indicates the refined tags
for the given image.

Tag-to-Region Assignment. The tag-to-region assign-
ment is implemented in a pixel-wise manner. Since our ap-
proach relies on two segmentation algorithms, one pixel will
appear twice in two regions. For each region, we predict its
tag and count the corresponding predicted number with the
tag prediction method discussed above. If the tag predic-
tions for the two regions are inconsistent, we select the tag
with the most prediction number as the predicted tag of the
concerned pixel.

Automatic Tagging. We predict the binary tag assign-
ment vector for each region of an unlabeled image, and then
fuse the obtained binary vectors via OR operator.

4.4 Algorithmic Analysis
We first analyze the time complexity of Algorithm 1. In

the optimization, each sub-problem is solved with the cut-
ting plane method. As for the time complexity of the cutting
plane iteration, we have the following two theorems:

Theorem 1. Each iteration in steps 9-11 of Algorithm 1
takes time O(dn) for a constant constraint set Ω, where d is
the number of edges between vertex i and vertex j.

Theorem 2. The cutting plane iteration in steps 8-12 of

Algorithm 1 terminates after at most max{ 2
ε
, 8λR2

ε2 } steps,
where

R2 =

m∑
c=1

max
et∈Eij

(0, ‖I>c At‖, ‖
∑

et∈Eij

γetI
>
c At‖),

and ε is the threshold for terminating the cutting plane iter-
ation (see Section 4.2). Here ‖ · ‖ denotes `2-norm.

The proofs of the above two theorems are direct by fol-
lowing the proofs in [27], and are omitted here due to space
limitations. In this work, we implement Algorithm 1 on
the MATLAB platform of an Intel XeonX5450 workstation
with 3.0 GHz CPU and 16 GB memory, and observe that the
cutting plane iteration converges fast. For example, in the
tag-to-region assignment experiment on the MSRC dataset
(see Section 5.2), one optimization sub-problem between two
vertices can be processed within only 0.1 seconds, which
demonstrates that the cutting plane iteration of Algorithm 1
is efficient. Furthermore, as each optimization sub-problem
in Eq. (11) is convex, its solution is globally optimal. There-
fore, each optimization between two vertices will monoton-
ically decrease the objective function, and hence the algo-
rithm will converge. Figure 3 shows the convergence process
of the iterative optimization, which is captured during the
tag-to-region assignment experiment on the MSRC dataset.
Here one iteration refers to one round of alternating opti-
mizations for all vertex pairs, which corresponds to steps
5-16 of Algorithm 1. As can be seen, the objective function
converges to the minimum after about 5 iterations.

5. EXPERIMENTS
In this section, we systematically evaluate the effective-

ness of the proposed unified formulation and solution to
various tag analysis tasks over three widely used datasets
and report comparative results on two tag analysis tasks:
(1) tag-to-region assignment, and (2) multi-label automatic
tagging. We have also conducted extensive experiments on
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Figure 3: The convergence curve of Algorithm 1 on
the MSRC dataset in the tag-to-region assignment
experiment (See Section 5.2 for the details).

the tag refinement task over real-world social images and
obtained better results than the state-of-the-art tag refine-
ment methods in [7] and [8]. This result is not shown here
due to space limitations.

5.1 Image Datasets
We perform the experiments on three publicly available

benchmark image datasets: MSRC [11], COREL-5k [28]
and NUS-WIDE [4], which are progressively more difficult.
The MSRC dataset contains 591 images from 23 object and
scene categories with region-level ground truths. There are
about 3 tags on average for each image. The second dataset,
COREL-5k, is a wildly adopted benchmark for keywords
based image retrieval and image annotation. It contains
5, 000 images manually annotated with 4 to 5 tags, and the
whole vocabulary contains 374 tags. A fixed set of 4, 500
images are used as the training set, and the remaining 500
images are used for testing. The NUS-WIDE dataset, re-
cently collected by the National University of Singapore, is a
more challenging collection of real-world social images from
Flickr. It contains 269, 648 images in 81 categories and has
about 2 tags per image. We select a subset of this dataset,
focusing on images containing at least 5 tags, and obtain
a collection of 18, 325 images with 41, 989 unique tags. We
refer to this social image dataset as NUS-WIDE-SUB and
the average number of tags for each image is 7.8.

5.2 Exp-I: Tag-to-Region Assignment
Our proposed unified solution is able to automatically as-

sign tags to the corresponding regions within the individ-
ual images, which naturally accomplishes the task of tag-
to-region assignment. In this subsection, we compare the
quantitative results from our proposed unified solution with
those from existing tag-to-region assignment algorithms.

5.2.1 Experiment setup
To evaluate the effectiveness of our proposed unified so-

lution in the tag-to-region assignment task, two algorithms
are implemented as baselines for comparison. (1) The kNN
algorithm. For each segmented region of an image, we first
select its k nearest neighboring regions from the whole se-
mantic region collection, and collect the images containing
these regions into an image subset. Then we count the occur-
rence number of each tag in the obtained image subset and
choose the most frequent tag as the tag of the given seman-
tic region. We apply this baseline with different parameter
setting, i.e., k=49 and 99, and thus can obtain two results
from this baseline. (2) The bi-layer sparse coding (bi-layer)
algorithm in [12]. This algorithm uses a bi-layer sparse cod-

ing formulation to uncover how an image or semantic region
can be robustly reconstructed from the over-segmented im-
age patches of an image set, and is the state-of-the-art for
tag-to-region assignment task.

The evaluation of the tag-to-region assignment is based
on the region-level ground truth of each image, which is not
available for the COREL-5k and NUS-WIDE-SUB datasets.
To allow for direct comparison, here we report the per-
formance comparisons on the MSRC-350 and COREL-100
datasets, both of which have been utilized to evaluate the
tag-to-region performance in [12]. More specifically, the
MSRC-350 dataset focuses on relatively well labeled classes
in MSRC dataset, which contains 350 images annotated with
18 different tags. The second dataset, COREL-100, is the
subset of COREL image set, which contains 100 images with
7 tags, and each image is annotated with the region-level
ground truth. Besides, we fix the parameter λ to be 1 in all
the experiments. The tag-to-region assignment performance
is measured by pixel-level accuracy which is the percentage
of pixels with agreement between the assigned tags and the
ground truth.

Table 1: Tag-to-region assignment accuracy compar-
ison on MSRC-350 and COREL-100 dataset. The
kNN-based algorithm is implemented with different
values for the parameter k, namely, kNN-1: k=49,
kNN-2: k=99.

Dataset kNN-1 kNN-2 bi-layer [12] M-E Graph

MSRC-350 0.45 0.37 0.63 0.73
COREL-100 0.52 0.44 0.61 0.67

5.2.2 Results and Analysis
Table 1 shows the pixel-level accuracy comparison be-

tween the baseline algorithms and our proposed unified so-
lution on the MSRC-350 and COREL-100 datasets. From
the results, we have the following observations. (1) Our
proposed unified solution achieves much better performance
compared to the other three baseline algorithms. This clearly
demonstrates the effectiveness of our proposed unified so-
lution in the tag-to-region assignment task. (2) The con-
textual tag-to-region assignment algorithms including the
bi-layer and our proposed multi-edge graph based unified
solution outperform the kNN based counterparts. This is
because the former two harness the contextual information
among the semantic regions in the image collection. (3) The
multi-edge graph based tag-to-region assignment algorithm
clearly beats the bi-layer sparse coding algorithm, which
owes to the fact that the structure of the multi-edge graph
avoids the ambiguities among the smaller size patches in the
bi-layer sparse coding algorithm. Figure 4 illustrates the
tag-to-region assignment results for some exemplary images
from MSRC-350 and COREL-100 datasets produced by our
proposed unified solution. By comparing the results in [12],
the results in Figure 4 are more precise, especially for the
boundaries of the objects.

5.3 Exp-II: Multi-label Automatic Tagging
In this subsection, we evaluate the performance of our

proposed unified formulation and solution in the task of au-
tomatic image tagging. Since our proposed unified solution
is founded on the multi-edge graph, the learning procedure
is essentially in a transductive setting.

32



Figure 4: Example results of tag-to-region assign-
ment on MSRC-350 and COREL-100 dataset. For
better viewing, please see original color pdf file.

5.3.1 Experiment Setup
We compare our proposed multi-edge graph based semi-

supervised learning algorithm against the following estab-
lished semi-supervised multi-label learning algorithms for
automatic image tagging. (1) The Multi-Label Local and
Global Consistency (ML-LGC) algorithm proposed by Zhou
et al. [17]. It decomposes the multi-label automatic image
tagging problem into a set of independent binary classifi-
cation problems, and solves each of them with a graph-
based label propagation procedure. (2) The Constrained
Non-negative Matrix Factorization (CNMF) algorithm pro-
posed by Liu et al. [29]. It infers the multiple tags associ-
ated with an unlabeled image through optimizing the con-
sistency between image visual similarity and tag semantic
correlation. (3) The Semi-supervised Multi-label learning
algorithm by solving a Sylvester Equation (SMSE) proposed
by Chen et al. [30], which is similar to the algorithm in [31].
The algorithm constructs two graphs on the sample level and
tag level, then defines a quadratic energy function on each
graph, and finally obtains the tags of the unlabeled data
by minimizing the combination of the two energy functions.
Note that these three algorithms are actually the state-of-
the-art algorithms for semi-supervised multi-label learning
in literature, and the automatic image tagging based on
these algorithms are implemented at the image-level without
image segmentation requirement. We use the BoW model to
represent each image as a 500 dimensional feature vector. (4)
The Multiple-Instance Semi-Supervised Learning algorithm
(MISSL) proposed by Rahmani et al. [32]. It transforms the
automatic image tagging problem into a graph-based semi-
supervised learning problem that works at both the image
and the semantic region levels. We use the bag-of-regions
representation in Section 3.1 as the multiple-instance rep-
resentation of the images. Since MISSL can only handle

Table 2: Performance comparison of different auto-
matic tagging algorithms on different datasets.

Dataset method Precision Recall

MSRC
(22 tags)

ML-LGC 0.62 0.55
CNMF 0.65 0.61
SMSE 0.67 0.62
MISSL 0.63 0.60

M-E Graph 0.72 0.67

COREL-5k
(260 tags)

ML-LGC 0.22 0.24
CNMF 0.24 0.27
SMSE 0.23 0.28
MISSL 0.22 0.29

M-E Graph 0.25 0.31

NUS-WIDE-SUB
(81 tags)

ML-LGC 0.28 0.29
CNMF 0.29 0.31
SMSE 0.32 0.32
MISSL 0.27 0.33

M-E Graph 0.35 0.37

binary classification, we decompose the multi-label learning
task into a set of binary classification problems and solve
each of them independently.

Regarding the parameter setting for each algorithm, we
consider the suggested parameter setting strategies in the
original work and present the best result as the final output
for each algorithm. Besides, we also fix the parameter λ in
our algorithm to be 1 throughout the experiments in this
section. In the experiments, we assign each image the top
m tags with the highest confidence scores obtained from the
automatic tagging algorithm, where m is the number of tags
generated by our algorithm.

We evaluate and compare among the five multi-label au-
tomatic tagging algorithms over the three datasets. For the
MSRC dataset, there are only 3 images annotated with tag
“horse”, so we remove this tag and evaluate different algo-
rithms on the remaining 22 tags. We randomly and evenly
split it into the labeled and unlabeled subsets. Since the
training/testing data split in COREL-5k dataset has been
provided by this dataset, we accordingly use the 4, 500 train-
ing images as the labeled data and use the remaining 500
images as the unlabeled data. There are totally 260 distinct
tags appearing in the testing set. For the NUS-WIDE-SUB
dataset, we use the 81 semantic concepts which have been
provided with ground truth annotations as the tagging vo-
cabulary of this dataset4. We also randomly and evenly
split the dataset into labeled and unlabeled subsets. For the
performance evaluation metric we adopt the precision and
recall, which are popularly applied in the multi-label image
tagging tasks. We calculate precision and recall on each tag
and average each of them from multiple tags to measure the
final performance.

5.3.2 Results and Analysis
Table 2 shows the performance comparison of the above

five algorithms over the three datasets. From the results, we

4
It is worth noting that the multi-label image tagging task is greatly

different from the tag refinement task in that the former aims at

utilizing precisely labeled images to predict potential tags of the un-

labeled images, while the latter works towards refining the imprecise

tags provided by the users. Therefore, we cannot directly use the

user-provided tags as the labels of the training images for the NUS-

WIDE-SUB dataset.
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have the following observations: (1) The proposed unified
solution based on multi-edge graph outperforms the other
four multi-label image tagging algorithms over all datasets.
It indicates the effectiveness of the proposed unified solution
in the automatic image tagging task. (2) Our proposed uni-
fied solution outperforms the MISSL which is also based on
the semantic regions, as our algorithm explicitly explores the
region-to-region relations in the multi-edge graph structure.

6. CONCLUSIONS AND FUTURE WORK
We have introduced a new concept of multi-edge graph

into image tag analysis, upon which a unified framework is
derived for different yet related analysis tasks. The unified
tag analysis framework is characterized by performing cross-
level tag propagation between a vertex and its edges as well
as between all edges in the graph. A core equation is devel-
oped to unify the vertex tags and the edge tags, based on
which, the unified tag analysis is formulated as a constrained
optimization problem and the cutting plane method is used
for efficient optimization. Extensive experiments on two ex-
ample tag analysis tasks over three widely used benchmark
datasets have demonstrated the effectiveness of the proposed
unified solution. For future work, we will pursue other ap-
plications of the multi-edge graph, such as analyzing user
behavior in social network or mining knowledge from the
rich information channels of multimedia documents.
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