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ABSTRACT
Online social media repositories such as Flickr and Zooomr
allow users to manually annotate their images with freely-
chosen tags, which are then used as indexing keywords to fa-
cilitate image search and other applications. However, these
tags are frequently imprecise and incomplete, though they
are provided by human beings, and many of them are almost
only meaningful for the image owners (such as the name of
a dog). Thus there is still a gap between these tags and the
actual content of the images, and this significantly limits tag-
based applications, such as search and browsing. To tackle
this issue, this paper proposes a social image “retagging”
scheme that aims at assigning images with better content
descriptors. The refining process, including denoising and
enriching, is formulated as an optimization framework based
on the consistency between “visual similarity” and “seman-
tic similarity” in social images, that is, the visually similar
images tend to have similar semantic descriptors, and vice
versa. An effective iterative bound optimization algorithm
is applied to learn the improved tag assignment. In addi-
tion, as many tags are intrinsically not closely-related to the
visual content of the images, we employ a knowledge based
method to differentiate visual content related tags from un-
related ones and then constrain the tagging vocabulary of
our automatic algorithm within the content related tags. Fi-
nally, to improve the coverage of the tags, we further enrich
the tag set with appropriate synonyms and hypernyms based
on an external knowledge base. Experimental results on a
Flickr image collection demonstrate the effectiveness of this
approach. We will also show the remarkable performance
improvements brought by retagging via two applications,
i.e., tag-based search and automatic annotation.
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1. INTRODUCTION
With the advent of Web 2.0 technology, there is an ex-

plosion of social media sharing system available online (e.g.,
Flickr, Youtube and Zooomr). Rather than simply searching
for and passively viewing media content, such media repos-
itories allow users to upload their media data and annotate
them with freely-chosen tags, and this underscores a trans-
formation of the Web as fundamental as its birth [1]. As
one of the emerging Web 2.0 activities, tagging becomes a
more and more frequently-applied means to organize, index
and search media content for general users, and it provides
a potential way to realize real large-scale content-based mul-
timedia retrieval [2].

Despite the high popularity of tagging social images man-
ually, the quality of tags is actually far from satisfactory as
they are freely entered by grassroots Internet users. For ex-
ample, many users make slips in spelling when entering tags
and some users choose “batch tagging”1 for efficiency which
may introduce many noises. In addition, user-provided tags
are often biased towards personal perspectives and context
cues [3, 4], and thus there is a gap between these tags and
the content of the images that common users are interested
in. For example, an image uploader may tag his dog photos
with “bomb”, and it may make these photos appear in the
search results of query “bomb”. On the other hand, many
potentially useful tags may be missed, as it is impractical for
average users to annotate the images comprehensively. To
summarize, user-provided tags are often imprecise, biased
and incomplete for describing the content of the images.

As an example, Figure 1 illustrates an image from Flickr
and its associated tags. From the figure we can observe that
only “kitty” and “animal” truly describe the visual content

1
Flickr provides a “batch tagging” feature that can simultaneously

assign tags for a batch of images.
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Figure 1: An example image from Flickr and its
associated tags. The tags marked in red color truly
describe the content of the image and the other tags
are content-unrelated or irrelevant.

of the image, and the other tags are imprecise or subjective.
Meanwhile, some other tags that should be used to describe
the visual content are missed, such as “grass” and “flower”.
Moreover, if we further consider the concepts’ lexical vari-
ability and the hierarchy of semantic expressions, the tags
such as “kitten”, “pussy” and “feline” also need to be added.

The imprecise, biased and incomplete characteristics of
the tags have significantly limited the performance of social
image search and organization. For example, they will de-
grade precision and recall rates in tag-based image search.
This paper is aiming at improving the quality of the tags (in
terms of describing the real content of images), thus the per-
formance of tag-based applications can be greatly improved.

The most straightforward approach to tackle the difficulty
is to ask humans to check the tags associated with each im-
age, but obviously this way is infeasible considering the large
number of images and tags. Therefore, an automatic method
based on the available information, such as the content of
images and their existing tags, is desired. In this work, we
propose an optimization framework to improve the tag qual-
ity based on the following two observations in real-world so-
cial images. First, consistency between visual similarity and
semantic similarity, that is, similar images often reflect sim-
ilar semantic theme, and thus are annotated with similar
tags. Second, user-provided tags, despite imperfect, still re-
veal the primary semantic theme of the image content. In
our approach, the improved tag assignments are automati-
cally discovered by maximizing the consistency between vi-
sual similarity and semantic similarity while minimizing the
deviation from initially user-provided tags. This is actually
mining information from different channels to complement
each other in a collective way.

However, the first observation mentioned above is mainly
applicable for “content related” tags2. That is, those tags
that have high correspondence with the visual content. If
we introduce “content unrelated” tags into the above opti-
mization framework, we may even degrade the performance
of the scheme. This is actually also one of the main dif-
ficulties for all automatic learning based image annotation
approaches [5, 6], as well as one of the main reasons caus-
ing “semantic gaps” except for representative features and

2
In this work, we regard whether or not a tag is content-related as its

intrinsic property (in Section 3 we will discuss it in more detail). For
example, the tag “cool” in Figure 1 is content-unrelated. In contrary,
we call a tag irrelevant with respect to an image if it does not describe
the image’s visual content, such as the “dog” and “boy” in Figure 1.
Thus, content-related tags can also be irrelevant.

learning models. Accordingly, we propose a method to filter
out those content unrelated tags to ensure that the quality
of content related tags can be significantly improved.

Though the above tag refinement approach is able to add
some new tags to an image (for example, a tag of an image
may be transferred into a similar image originally without
this tag), it is not able to “invent” new tags for a particu-
lar image if the tags are not assigned to its similar images.
Therefore, as a post-processing step, we propose to use an
external knowledge base to further enrich the tags to a cer-
tain extent, that is, adding synonyms and hypernyms3.

1.1 Overview of the Proposed Scheme
As aforementioned, the goal of the image retagging scheme

is to bridge the gap between tags and the content of im-
ages4. As illustrated in Figure 2, The scheme consists of
three components: tag filtering, tag refinement, and fur-
ther enrichment. Tag filtering eliminates content-unrelated
tags based on a vocabulary that is built with both WordNet
lexical knowledge base [7] and domain knowledge in vision
field. With the obtained content-related tags, we then per-
form a refinement on them by modeling the consistency of
visual and semantic similarities between images in the tag
refinement component. Finally, the further enrichment com-
ponent expands each tag with appropriate synonyms and
hypernyms by mining the WordNet lexical knowledge base
as well as the statistic information on social image website.
The entire approach is fully automatic without needing any
user interaction. It is also worth noting that the proposed
retagging scheme can not only modify the tags but also dis-
cover their confidence (or relevance) scores with respect to
their associated images, which will be useful in many tag-
based applications [8, 9, 10].

1.2 Contribution of this work
The main contributions of this paper can be summarized

as follows:

• We propose an optimization framework to improve the
quality of tags by modeling the consistency of visual
and semantic similarities of images. We also introduce
an efficient iterative algorithm to find its solution.

• Propose a method to construct a content-related vo-
cabulary based on both lexical and domain knowledge,
which can be used to differentiate content-unrelated
tags and content-related ones.

• We investigate how to mine lexical knowledge and sta-
tistical information on social image website to expand
each tag with its synonyms and hypernyms.

2. RELATED WORK
Ames et al. [11] have explored the motivation of tagging

on the Flickr website and they claim that most users tag im-
ages to make them better accessible to the general public.

3
In search, this issue can also be solved by “query expansion”, that is,

expanding query term with its synonyms and hyponyms. But enrich-
ing image tags will be useful for other tag-based applications as well,
such as image organizing and automatic annotating untagged images.
4
One may argue that user-provided tags will always be useful (at least

for the owners themselves). But making tags better describe the con-
tent of images will benefit much more users in tag-based applications.
In addition, we can also choose to keep both the original tags and the
ones after retagging to support content owners and common users at
the same time.
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Figure 2: The schematic illustration of the image retagging approach. Tag filtering is first adopted to filter
out content-unrelated tags. Then an optimization algorithm is performed to refine the tags. Finally, we
augment each tag with its synonyms and hypernyms.

Sigurbjörnsson et al. [12] have provided the insights on how
users tag their photos and what type of tags they are provid-
ing. Kennedy et al. [13] have evaluated the performance of
the classifiers trained with Flickr images and the associated
tags, and demonstrated that tags provided by Flickr users
actually contain many noises. Yan et al. [14] have proposed
a model that is able to predict the time cost of manual image
tagging. Liu el al. [8] have proposed methods to analyze the
relevance scores of tags with respect to the image. Wein-
berger et al. [15] have proposed a method to analyze the
ambiguity of tags. Different tag recommendation methods
have also been proposed that aim at helping users tag im-
ages more efficiently [12]. Despite these works have shown
encouraging results, we can see that most of them focus on
helping users tag images in more efficient ways or directly
utilizing the tags as a knowledge source, whereas there is
still a severe lack regarding improving the quality of tags.

The most related works to this paper are [16, 17], which
showed some brief and preliminary formulations based on a
similar motivation, but the scheme to be introduced in this
paper will provide a much more comprehensive framework
and much deeper theoretical analysis on the performance.
Another related work to our retagging scheme is image an-
notation refinement [18, 19], which tries to improve the qual-
ity of inaccurate concept annotation results. As a pioneering
work, Jin et al. [18] have used WordNet [7] to estimate the
semantic correlation between to-be-annotated concepts and
then highly-correlated concepts are preserved and weakly-
correlated concepts are removed. However, this method has
not taken the visual information of images into account, and
it thus achieves only limited success. The effort in [19] has
further leveraged visual clue, but it is still merely used to
estimate the correlation between to-be-annotated concepts
in order to perform belief propagation among concepts, and
the usage is obviously not sufficient. This is reasonable for
the annotation refinement methods, since typically visual
information is already used in annotation algorithms, but
in retagging the visual clue will be the most important in-
formation source to improve the tag quality. In our scheme,
the tag refinement component will simultaneously model the
visual and semantic clues. Experiments will show that this
method is superior to the existing annotation refinement al-
gorithms.

3. TAG FILTERING
As introduced in Section 1, many tags provided by users

are actually intrinsically content unrelated, such as emo-
tional tags and signaling tags (Signaling tags are those that
indicate to other users to take action on images or recog-
nize their importance, such as “delete me”, “click me” and
“best” [20]). Handling such tags is beyond the capability of
computer vision and machine learning techniques. In addi-
tion, their existence may bring significant noises in analy-
sis or learning algorithms, such as the tag refinement intro-
duced in the next section. Therefore, we propose to filter
out those content unrelated tags to ensure the performance
of content-related tags can be significantly improved by the
refining process.

To differentiate content-related tags from content-unrelated
ones in a large tag set is not a trivial task. The most straight-
forward way is to check each word in an authoritative dictio-
nary (such as Merriam-Webster dictionary) and ask humans
to decide whether it is content-related based on their knowl-
edge and understanding. However, it needs intensive labor
costs. Another possible approach is to mine the relation-
ship between tags and the content of images from large-scale
data, such as the works in [21, 22]. However, a limitation of
this approach is that it needs to be accomplished based on
a set of low-level features. There is always a gap between
these features and the actual image content. For example,
the tags “red” and “green” are of course content-related, but
these approaches may decide them as content-unrelated if
SIFT features are applied. In our work, we solve this diffi-
culty by taking advantage of lexical and domain knowledge,
which is analogous to the approach in [23].

First, from the part-of-speech of words, we only consider
nouns. For example, many photos on Flickr are tagged with
verb “delete”, adjective “beautiful”, adverb “heavily” or nu-
merals such as “2”, “131”, and “1001”. Actually it is hard to
say the non-noun words are definitely not related to image
content, since there also may be several visual patterns for
these words. For example, “beautiful” may relate to flower,
scene or woman with high probability. But these non-noun
words will be difficult to be analyzed or learned. Thus we
restrict ourselves to the noun set of WordNet lexicon [7],
which contains 114, 648 noun entries and the tags that are
out of this set will be out of the scope of this paper.

493



Figure 3: The decision process of some exemplary
tags. Each tag successfully matches one of our
pre-defined visual categories and thus is decided as
content-related.

Then we further observe that noun tags are not always
content-related. Some abstract nouns such as“science”,“life-
time” and “distance”, have weak connection with image con-
tent and thus also need to be filtered out. To this end, we
adopt an automatic process to detect visual property of the
tags as follows.

• We first empirically select a set of high level categories
as a taxonomy of our domain knowledge in vision field.
In this work, we choose “organism”, “artifact”, “thing”,
“color” and “natural phenomenon”, since they cover a
substantial part of tags and contain many frequently
used concepts in computer vision and multimedia do-
mains.

• For each entry in WordNet, there are one or more
senses (a sense can be viewed as a meaning or expla-
nation of the entry), in which WordNet provides a set
of synonyms and hypernyms [24]. For each noun entry
in WordNet lexicon, we traverse along the path that
is composed of hypernyms of the given word until one
of the pre-defined visual categories is matched. If the
match succeeds, the word is decided as content-related,
and otherwise it is decided as content-unrelated.

Figure 3 illustrates the decision process of several exem-
plary tags. In this way, we obtain a content-related vocab-
ulary that contains 57, 623 noun entries. Table 1 illustrates
the number of entries for each category.

Visual Category Number of entries Percentage

Color 423 0.73%
Thing 4, 484 7.78%

Artifact 14, 087 24.45%
Organism 37, 672 65.38%

Natural pheno. 957 1.66%

Table 1: Number of entries for each visual category
in our content-related vocabulary.

It is worth mentioning that although our approach in-
volves several heuristics, it can achieve fairly consistent re-
sults with humans (the detailed results will be demonstrated
in Section 6). Our method is also with high flexibility. For
example, the Wordnet lexical knowledge base can be easily

replaced with other lexical base such as Wikipedia. Besides,
we can easily further add categories to cover more entries.
The vocabulary can also be manually refined by adding or re-
moving entries. In addition, the number of content-related
tags is still very large (57, 623 entries) and we believe the
description capability of this tag set is still high enough to
describe most of the entities in general images. On the other
hand, it is also feasible to extend our approach to non-noun
tags like adjectives which appear frequently in the general
user’s tagging vocabulary by defining proper high-level se-
mantic theme abstractions.

4. TAG REFINEMENT
In this section we introduce the tag refinement algorithm.

We first present the optimization framework and then in-
troduce an iterative bound optimization algorithm to solve
it.

4.1 Tag Refinement Framework
Denote by D = {x1, x2, . . . , xn} a social image collection,

where n is the size of the image set. All unique tags appear-
ing in this collection are gathered in a set T = {t1, t2, . . . , tm},
where m denotes the total number of unique tags. The ini-
tial tag membership for the whole image collection can be

presented in a binary matrix Ŷ ∈ {0, 1}n×m whose element

Ŷij indicates the membership of tag tj with respect to im-

age xi (i.e., if tj is associated with image xi, then Ŷij = 1,

and otherwise Ŷij = 0). To represent the refinement results,
we define another matrix Y whose element Yij ≥ 0 denotes
the confidence score of assigning tag tj to image xi. Denote
by yi = (yi1, yi2, . . . , yim)> the confidence score vector of
assigning the tags to the i-th image.

The tag refinement is accomplished based on two assump-
tions. The first is the consistency of visual and semantic sim-
ilarities between images, i.e., the tags of two visually close
images are expected to be similar5, and the second is that
the user-provided tags are relevant with high probability.
We then introduce a regularization framework which con-
tains two terms that indicate these two assumptions. Note
that these assumptions may not hold for all images, but they
are reasonable in most cases and the regularization scheme
is able to automatically deal with several outliers.

We first compute the visual similarity between images.
Let W denote a similarity matrix whose element Wij indi-
cates the visual similarity between images xi and xj , which
can be directly computed based on a Gaussian function with
a radius parameter σ, i.e.,

Wij = exp(−‖ xi − xj ‖22
σ2

), (1)

where xi and xj denote the low level features of two images
and ‖ · ‖2 denotes the `2-norm.

The semantic similarity of two images is defined based on
their tag sets. The most simple approach is to define it as
the overlap between the two tag sets, i.e., y>i yj . However,
this approach actually treats all tags independently without
considering their correlation. For example, it will give zero

5
It is worth noting that the assumption of the consistency between

visual and semantic similarities might not hold for any two images, es-
pecially when the images of the same class (e.g. cars) have diversified
visual features. However, it is always possible to find visually similar
images with similar semantic theme in a large image collection, which
satisfies our consistency assumption.
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similarity for two images that do not share any common tag,
but the images can still be very semantically similar if their
tags are strongly correlated. To leverage the correlation of
tags, we introduce the tag similarity matrix S, in which the
element Sij ≥ 0 indicates the tag similarity between tags ti

and tj . In this work, we adopt Lin’s similarity measure [25],
a knowledge-based similarity metric which utilizes WordNet
as knowledge base. It estimates the semantic similarity be-
tween ti and tj as

Sij =
2 ∗ IC(lcs(ti, tj))

IC(ti) + IC(tj)
, (2)

where IC(ti) and IC(tj) are the information content6 of ti

and tj respectively, and lcs(ti, tj) is their least common sub-
sumer (LCS) in the WordNet taxonomy which represents the
common ancestor of these two entries that has the maximum
information content. But it is worth noting that our method
is flexible, and the semantic similarities can be computed
through other approaches as well, such as using Google dis-
tance [26]. Then we define the semantic similarity of images
by a weighted dot product, i.e., y>i Syj =

∑m
k,l=1 YikSklYjl.

According to our consistency assumption, the visual sim-
ilarity is expected to be close to semantic similarity, i.e.,
Wij ≈ y>i Syj . This leads to the following formulation:

min
Y

n∑

i,j=1

(Wij −
m∑

k,l=1

YikSklYjl)
2,

s.t. Yjl ≥ 0, j = 1, 2, . . . , n, l = 1, 2, . . . , m.

(3)

We then consider the assumption that user-provided tags
are relevant with high probability. Here we introduce the

minimization of
∑n

j=1

∑m
l=1(Yjl − Ŷjl)

2 exp(Ŷjl), where the

term exp(Ŷjl) is a weighting constant for the initial user-
provided tag assignment. A problem with the above formula

is that Yij and Ŷij may lie at different scales (from Eq. (3)
we can see that Yij may be much smaller than 1, whereas the

value of the initial tag membership Ŷij is restricted to 0 or
1). To deal with this problem, we introduce a scaling factor
αj for each image and thus the optimization term turns to

n∑

j=1

m∑

l=1

(Yjl − αj Ŷjl)
2 exp(Ŷjl). (4)

Formally, we can summarize the above two assumptions
into the following optimization problem:

min
Y,α

L =

n∑

i,j=1

(Wij −
m∑

k,l=1

YikSklYjl)
2

+ C
n∑

j=1

m∑

l=1

(Yjl − αj Ŷjl)
2 exp(Ŷjl),

s.t. Yjl, αj ≥ 0, j = 1, 2, . . . , n, l = 1, 2, . . . , m.

(5)

where C is a weighting factor to modulate the two terms.
The above equation can be written in matrix form as

min
Y,D

L = ‖W−YSY>‖2F + C‖(Y−DŶ)◦E‖2F ,

s.t. Yjl, Djj ≥ 0,
(6)

where ◦ indicates the pointwise product of matrices, the
element Eij of matrix E represents the weighting factor
6
The value of information content of a WordNet concept c is defined

as IC(c) = − log(p(c)), where p(c) denotes the probability with which
the concept c occurs in the text corpus.

exp(Ŷjl) in Eq. (4), and D is an n×n diagonal matrix whose
element Djj = αj .

4.2 Solution of the Optimization Problem
The coupling of Y and α and the positive constraints of

Yjl and αj make the above optimization framework difficult
to solve. In this work, we propose an efficient iterative bound
optimization method to obtain its solution, which is analo-
gous to [27]. The basic idea is to first bound the objective
function with a computationally feasible function, and then
implement an iterative algorithm to obtain its optimal solu-
tion. The following two theorems provide the upper bound
of L and its solution.

Theorem 1. The objective function L in Eq. (5) has an
upper bound L′ as follows.

L ≤ L′ =

n∑

i,j=1

(
W 2

ij +

m∑

l=1

[ỸSỸ
>

]ij [ỸS]il
Y 4

jl

Ỹ 3
jl

− 4
m∑

l=1

Wij [ỸS]ilỸjl log Yjl − 2Wij [ỸSỸ
>

]ij

+ 4
m∑

k=1

Wij [SỸ
>

]kj log Ỹik

)

+ C
n∑

j=1

m∑

l=1

(
Y 2

jl − 2αj ŶjlỸjl(log
Yjl

Ỹjl

+ 1)

+ α2
j Ŷ 2

jl

)
exp(Ŷjl),

(7)

where Ỹ can be any n×m matrix with positive entries.

Theorem 2. The optimal solution of the upper bound L′
is given by





Yjl =

[
−C exp (Ŷjl)Ỹ

3
jl+

√
M

4[ỸSỸ
>

ỸS]jl

] 1
2

,

αj =
∑m

l=1 Ỹjl(log Yjl−log Ỹjl+1)∑m
l=1 Ŷjl

,

(8)

where M = (C exp (Ŷjl))
2
+8UjlỸ

4
jl(2[WỸS]jl+Cαj Ŷjl exp (Ŷjl))

with Ujl = [ỸSỸ
>
ỸS]jl.

Both of the two theorems can be verified with algebraic
manipulations, and their proofs are provided in Appendices
A and B, respectively. With the obtained solution in Eq. (8),
we present an iterative algorithm to approximate the opti-
mal solution of the upper bound function L′, as shown in
Algorithm 1.

Algorithm 1 Iterative Optimization Algorithm

Input: Visual similarity matrix W, Semantic similarity matrix
S, Weighting parameter C.

Output: Y,α.
1. Randomly initialize Y and α that satisfy the constraints in
Eq. (5). Their initial values will not influence the final results.
2. Repeat the following steps until convergence:

• Fix α, update Y using the upper equation in Eq. (8).

• Fix Y, update α using the lower equation in Eq. (8).

In fact the procedure above not only minimizes the upper
bound function L′ but also obtains the optimal solution of
the objective function L, i.e., we have the following theorem:
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Figure 4: An example image on Flickr and its asso-
ciated tags. The synonyms and hypernyms are not
simultaneously provided by the user.

Theorem 3. The process in Algorithm 1 will converge
and leads to the minimum of the objective function L.

The proof of this theorem can be found in Appendix C.
With the computed confidence score matrix Y, we can eas-
ily generate the refined tags of an image xi by setting a
threshold for the confidence scores Yij .

5. FURTHER ENRICHMENT
Although the tag refinement approach can effectively im-

prove the quality of tags, it is still unable to introduce new
tags for an image if these tags do not exist in the original
image collection. However, this difficulty can be alleviated
in certain extent through adding synonyms and hypernyms.
Actually, the synonym and hypernym are both valuable in-
dexing keywords that can be utilized to describe the visual
content. As an example, suppose we have an image anno-
tated with the tag “kitty”. We can observe that the syn-
onyms and hypernyms of “kitty”, such as “kitten”, “pussy”,
“feline” and “animal” are also relevant to the image. How-
ever, most users will not spend time to enter these tags.
Here is a simple empirical validation. We randomly select
1, 000 images that are tagged with“kitty”on Flickr and then
check the synonyms and hypernyms. Table 2 illustrates sev-
eral statistical results, including the percentages of images
that are also tagged with its synonyms (“kitten” or “pussy”)
or hypernyms (“feline” or “animal”). As can be seen, only a
small percentage of images are simultaneously tagged with
“kitty” and its synonyms or hypernyms.

Relation with
“kitty”

Exists with
“kitty” together

Percentage of
images

Synonym
kitten 30.6%
pussy 2.3%

Hypernym
animal 24.8%
feline 28.0%

Table 2: Percentage of images that are simultane-
ously tagged with “kitty” and its synonyms (“kit-
ten”, “pussy”) as well as hypernyms (“feline”, “ani-
mal”).

The missing of such tags will degrade the performance
of tag-based applications. For example, when users perform
search with query“kitten”or“animal”, the photo in Figure 4
will not be returned. To address this issue, we adopt a tag
enrichment step based on lexical knowledge to expand the
synonyms and hypernyms of the refined tags, and this will
be an effective strategy to improve the coverage of the tags.

We take advantage of the WordNet lexicon again. As
discussed previously, the tags after filtering and refinement
are all content-related nouns, and each of them has a co-
ordinate in WordNet. Hence, we apply the lemma entries
in WordNet lexicon as the potential enrichment candidate
words. Take tag “kitty” for example, it matches the visual
category “organism” in its 4-th sense, and thus we collect all
the synonyms and hypernyms in this sense, as illustrated in
Figure 5.

kitty domestic cat cat feline vertebrate chordate animal organism

Hit Category Source Tag

Hypermyous words of kitty

kitty-catkitty kitten

Source Tag 

Synonymous words of kitty

pussy pussycat

Sense 4

Sense 4

Figure 5: The hypernyms and synonyms of tag
“kitty” can be collected based on the WordNet lex-
icon.

6. EMPIRICAL STUDY
We implement and evaluate our retagging approach on a

collection of social images. As the scheme consists of three
components, we carry out experiments to test the perfor-
mance for each of them.

6.1 Data Set
We evaluate our approach on social images that are col-

lected from Flickr. We select ten most popular queries,
including cat, automobile, mountain, water, sea, bird, tree,
sunset, flower and sky, and then perform tag-based image
search with “ranking by interestingness” option. The top
5, 000 returned images for each query are collected together
with their associated information, including tags, uploading
time, user identifier, etc. In this way, we obtain a social
image collection consisting of 50, 000 images and 106, 565
unique tags.

For each image, we extract 428-dimensional features, in-
cluding 225-dimensional block-wise color moment features
generated from 5-by-5 fixed partition of the image, 128-
dimensional wavelet texture features, and 75-dimensional
edge distribution histogram features. These low-level feature
vectors are then used for the calculation of visual similarity
between the images with Eq. (1).

6.2 Evaluation of Tag Filtering
As introduced in Section 3, we have constructed a content-

related vocabulary which is a subset of the WordNet lexicon.
We first match each of the 106, 565 tags in our social image
collection with the noun entries in WordNet. In this way,
11, 861 noun tags are obtained, occupying only 11% of all
tags in our collection. We then further match these tags with
the entries in the content-related vocabulary that includes
5 high level categories, and thus obtain 4, 556 tags. Table 3
illustrates the detailed results.

Now we conduct a simple testing to evaluate this strat-
egy. We randomly select 500 tags from the 11, 861 noun tags
and then ask human assessors to label each tag as “content-
related” or “content-unrelated”. We invite five researchers
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Categories Tag number Percentage
Content-Unrelated 7, 305 61.6%

Content-
Related

Color 83 0.70%
Thing 483 4.07%

Artifact 2, 511 21.2%
Organism 1, 259 10.6%

Natural Pheno. 220 1.85%

Table 3: Statistics of our tag detection results.
There are 4, 556 content-related tags in all in our
social image collection.

in multimedia research community to perform the labeling
task based on their knowledge. The voting results are con-
sidered as the ground truths of these tags. We regard our
method as a binary classification process, and employ accu-
racy measurement as evaluation metric. Table 4 illustrates
the results, from which we can see that the accuracy mea-
surement is as high as 0.83. Considering the simplicity and
the computational efficiency of our method, the result is sat-
isfactory7.

Related Unrelated
Related 132 58

Unrelated 27 283

Accuracy 0.83

Table 4: Confusion matrix obtained by our content-
related tag detection method.

6.3 Evaluation of Tag Refinement
The proposed tag refinement method is also evaluated

on the Flickr dataset. To reduce computational cost, we
first perform the K-means clustering algorithm to divide
the 50, 000 images into 20 groups. Then the tag refinement
algorithm is implemented for each group separately. As in-
troduced in Section 4, our tag refinement algorithm is de-
veloped mainly based on the similarities of images. Since
most similar images will be clustered into the same groups,
the clustering strategy will not degrade the performance of
refinement while being able to significantly reduce compu-
tational costs. The radius parameter σ in Eq. (1) is set to
the median value of all the pair-wise Euclidean distances be-
tween images in the same cluster, and the parameter C in
Eq. (5) is empirically set to 10. We compare the following
three methods:

• Baseline, i.e., keeping the original tags.

• Content Based Annotation Refinement (CBAR). We
adopt the method proposed in [19].

• Our tag refinement method.

Note that actually CBAR and our tag refinement method
both produce confidence scores for tags. Therefore, for these

7
Recently Overell et al. [23] have conducted a study on classifying

tags into 25 semantic categories. They have leveraged the knowledge
sources of both Wikipedia and WordNet and used a SVM classifier.
The study demonstrates that this approach significantly outperforms
other methods, but the classification error rate is still as high as 0.38.
This result indicates that tag classification is actually a challenging
task.

two methods we rank the tags of each image based on their
confidence scores and then keep the top m tags where m
is the number of the original tags. The average number of
tags per image is about 5. The ground truths of the tags
are voted by three volunteers. If a tag is relevant to the
image, it is labeled as positive, and otherwise it is negative.
However, manually labeling all the image-tag pairs will be
too labor-intensive, and thus here we randomly select 2, 500
images as the evaluation set. We adopt precision/recall/F1-
measure as performance measurements. But a problem is
that the estimation of recall measurement needs to know
the full set of relevant tags for each image, but in our case it
is unknown. So here we adopt an alternative strategy. We
gather the tags obtained by CBAR and our method as well
as the original tags for each image, and then the positive
tags among them are regarded as the full relevant set.

Average Precision Average Recall Average F1−Measure
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

Initial

CBAR

Our Method

Figure 6: Performance comparison of the baseline
and the two tag refinement methods.

Figure 6 shows the precision, recall and F1-measure mea-
surements obtained by the three methods, averaged over all
evaluation images. We can see that CBAR and our method
both outperform the baseline method, but the improvement
of CBAR is limited. As analyzed in Section 2, this is due to
the fact that visual information has not been sufficiently ex-
plored in CBAR. Our tag refinement method performs much
better than the baseline and the CBAR methods.

We also study the performance of keeping varied number
of tags. Here we only compare CBAR and our tag refinement
method, since there is no ranking in the original tags. The
results are illustrated in Figure 7. From the figure we can
clearly see that our method consistently outperforms the
CBAR method.

6.4 Evaluation of Tag Enrichment
In this section, we show the results of tag enrichment.

As introduced in Section 5, we obtain the synonyms and
hypernyms of each tag based on the WordNet lexicon, and
then a tag-based search is performed on Flickr website to
obtain their usage frequencies to decide whether to enrich
them. We empirically set the threshold to 10, 000 in this
work, i.e., the tags with usage frequencies under 10, 000 will
not be enriched.

We still utilize the 2, 500 evaluation images to validate
performance of tag enrichment. The ground truths of the
enriched tags are also decided by the three labelers. The
performance measurements before and after enrichment are
illustrated in Table 5 (the recall measurement is computed
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Figure 7: Performance comparison of the CBAR and our methods when keeping different number of tags.

Method Precision Recall
F1-

Measure
Relevant

tag number

Before
Enrichment

0.71 0.34 0.46
3.09

(4.80 in all)

After
Enrichment

0.90 0.66 0.76
9.34

(10.38 in all)

Table 5: Quality comparison of the tags before and
after enrichment. Each measurement has been av-
eraged over all evaluation images.

in the same way as in the last section, i.e., collect all the rel-
evant tags obtained by different methods and regard them
as the full set). From the table we can see that all perfor-
mance evaluation measurements are improved after enrich-
ment. We can see that the recall measurement is improved
from 0.34 to 0.66, and this indicates the coverage of the tags
is significantly improved. Actually our experimental results
show that the average number of relevant tags for an image
is improved from 3.09 to 9.34 after enrichment.

7. APPLICATION
It is widely acknowledged that user-generated tags are

valuable metadata that can be used in many applications.
In this section, we introduce two potential application sce-
narios that could benefit from image retagging.

• Tag-based image search. The images that contain the
query tag are returned in descending order in terms of
their confidence scores.

• Tag-based automatic annotation. For a given image,
we provide the tags of its visual neighbors as the po-
tential labels of the image.

7.1 Tag-Based Image Search
Since the retagging scheme improves the quality of tags,

tag-based image search can be naturally improved. In addi-
tion, our retagging scheme also brings a ranking scheme for
tag-based image search since it not only adds and removes
tags but also assigns them confidence scores. Currently on-
line image sharing websites support tag-based image search
and browsing, but they lack an effective scheme to rank the
search result according to the relevance levels of the images.
Take Flickr for example, it only provides two options to rank
tag-based image search results. One is “most recent”, which

Methods
Using images with

original tags
Using retagged

images

Precision
in average

0.221 0.340

Table 6: Performance comparison of annotation be-
fore and after performing retagging.

ranks the most recently uploaded images on top, and the
other is “most interesting” which ranks images by “interest-
ingness”, a measure that takes clickthrough, comments and
so on into consideration. These two schemes do not take
relevance into account. As introduced in Section 4, our re-
tagging scheme can obtain the confidence scores of tags with
respect to their associated images, and we can regard them
as an indication of relevance levels and provide a relevance-
based ranking.

To demonstrate the effectiveness of this approach, we con-
duct experiment on the 50, 000 Flickr images and perform
tag-based image search with ten tags, i.e., cat, automobile,
flower, sea, bird, sunset, mountain, water, sky and tree. For
each ranking list, the images are decided as “relevant” or “ir-
relevant” with respect to the query tag by human labelers,
and we employ Average Precision (AP) as our evaluation
metric. Give a ranked list L with length n, AP is defined as

AP =
1

R

n∑

j=1

Rj

j
Ij , (9)

where R is the number of relevant instances in L, Rj the
number of relevant instances among the top j instances, Ij =
1 if the j-th instance is relevant and 0 otherwise. To evaluate
the overall performance, we use Mean AP, the mean value
of AP scores over all queries.

We compare our approach with the two schemes provided
by Flickr: (1) interestingness-based ranking; and (2) upload-
ing time-based ranking. Figure 8 illustrates the mean AP
measurement at different return depths and we can see that
our approach consistently outperforms the other two ranking
methods. This demonstrates our approach can remarkably
improve tag-based image search in terms of relevance.

7.2 Tag-Based Automatic Annotation
Leveraging tagged images as training data for annotation

is an important application. Traditional image annotation
algorithms frequently suffer from the insufficiency of training
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Figure 8: The performance comparison of different
ranking methods for tag-based image search.

data. But actually nowadays we can easily collect enormous
tagged images (such as from Flickr), and these images can
be used as labeled data to help annotation, such as the work
in [28]. Here we show that this application can benefit a lot
from our retagging scheme, since the quality of image tags
has been significantly improved.

The experimental setting is as follows. We randomly se-
lect 500 images from a personal photo album as a testing set.
Then for each testing image, we perform the k-NN method
to decide its labels. More specifically, we find its k-nearest
neighbors in our tagged Flickr data (50, 000 in all) and then
collect their tags. The confidence of each tag is estimated
as its appearing frequency in the neighborhood. We then
regard the T most confident tags as the labels of the im-
age. In our experiments, the parameters K and T are both
empirically set to 10.

The experimental results are illustrated in Table 6. We
can see that performing retagging on the training data can
help improve the precision measurement from 0.221 to 0.340,
i.e., there are 2.2 true labels for a testing image in average if
we use the original tags, and there will be 3.4 true labels if
we perform retagging. The relative improvement is 53.8%.
Therefore, our retagging method can help obtain more ac-
curate tag-based annotation results.

8. CONCLUSION
We have introduced an image retagging scheme that aims

at improving the quality of the tags associated with social
images in terms of content relevance. The scheme consists
of three components, i.e., tag filtering, tag refinement and
further enrichment. Experiments on real-world social im-
age dataset have demonstrated its effectiveness. We have
also shown two applications that benefit from the retagging
scheme. Although we have put more emphasis on Flickr in
this work, the proposed retagging framework is flexible and
can be easily extended to deal with a variety of online me-
dia repositories, such as Zooomr as well as any other media
databases with noisy and incomplete tags.
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APPENDIX
A. PROOF OF THEOREM 1

Proof. First, we derive the upper bound of the first term of the
objective function in Eq. (5) as follows
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)2

)

=
∑n

i,j=1

(
W 2

ij +
∑m

k,l=1(
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>

]ij [ỸS]il
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(10)

where Ỹ can be any n×m matrix. The first inequality holds due to
convexity of the square function, i.e., (

∑m
i=1 xi)

2 ≤ (
∑m

i=1
1

λi
x2

i )(
∑m

i=1 λi)

and the second inequality is derived from the property of the square
function, i.e., xy ≤ (x2 + y2)/2 as well as the concave property of
logarithm function, i.e., log x ≤ x− 1.

We then derive the upper bound of the second term of the objective
function in Eq. (5) based on the concaveness of logarithm function as
follows

C
∑n

j=1
∑m

l=1(Yjl − αj Ŷjl)
2 exp(Ŷjl)

= C
∑n

j=1
∑m

l=1(Y
2

jl − 2αj ŶjlYjl + α2
j Ŷ 2
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Ỹjl
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j Ŷ 2
jl

)
exp(Ŷjl).

(11)
Combining the upper bounds in Eq. (10) and Eq. (11), we have
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which completes the proof.

B. PROOF OF THEOREM 2
Proof. Taking the derivative of L′ with respect to Yjl and αj and

setting them equal to zero, we can obtain the following equations:
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(13)

With some algebraic manipulation, we can obtain the solution of
the above equation set as





Yjl =

[
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where M = (C exp (Ŷjl))
2

+ 8UjlỸ
4

jl(2[WỸS]jl + Cαj Ŷjl exp (Ŷjl)) and

Ujl = [ỸSỸ
>
ỸS]jl, and it completes the proof.

C. PROOF OF THEOREM 3
To prove the convergence of the iterative algorithm in Algorithm 1,

we need to first introduce an auxiliary function, which is analogous
to [29].

Definition 1. (Auxiliary Function) A function G(Θ, Θ′) is called
an auxiliary function of function F (Θ) if

G(Θ, Θ
′
) ≥ F (Θ), G(Θ, Θ) = F (Θ) (15)

holds for any Θ, Θ′.

Let {Yt} be the series of matrices obtained in different iterations
of Algorithm 1. We can define

Y
t+1

= arg min
Y

G(Y, Y
t
), (16)

where G(Y, Yt) is the auxiliary function of our objective function
L(Y) in Eq. (5). Then we have

L(Y
t
) = G(Y

t
, Y

t
) ≥ G(Y

t+1
, Y

t
) ≥ L(Y

t+1
). (17)

Thus we can see that L(Yt) is monotonically decreasing. Then
we only need to find an appropriate auxiliary function G(Y, Yt) and
its global optimal. The following lemma presents such an auxiliary
function for L(Yt).

Lemma 1. The following function
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(18)
is the auxiliary function of the objective function L(Y) in Eq. (5).
Furthermore, it is convex with respect to Y and its global minimum
is

Yjl =

[
−C exp (Ŷjl)Y

′3
jl +

√
M

4[Y′SY′>Y′S]jl

] 1
2

, (19)

where M = (C exp (Ŷjl))
2

+ 8UjlY
′4

jl (2[WY′S]jl + Cαj Ŷjl exp (Ŷjl))

and Ujl = [Y′SY′>Y′S]jl.

Proof. Note that G(Y, Y′) is the upper bound of Eq. (5) which
clearly satisfies: (1) G(Y, Y′) ≥ L(Y); (2) G(Y, Y) = L(Y).

To find the minimum of G(Y, Y′), we can derive that
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and the Hessian matrix of G(Y, Y′)

∂G(Y, Y′)
∂Yjl∂Yik

= δjiδlkΦjl (21)

is a diagonal matrix with positive elements, where
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Thus G(Y, Y′) is convex with respect to Y. Therefore, we can

obtain the global minimum of G(Y, Y′) by setting
∂G(Y,Y′)

∂Yjl
= 0.

Now we turn to prove Theorem 3.

Proof. According to Lemma 1, we can obtain the auxiliary func-
tion G(Y, Y′) and thus the objective function L(Y, α) in Eq. (5) has
the following property:

L(Y
0
, α

0
) ≥ L(Y

0
, α

1
) ≥ L(Y

1
, α

1
) ≥ . . . (23)

So L(Y, α) is monotonically decreasing. Since L(Y, α) is obviously
bounded below, the iterative updating process will converge to its
minimum, which completes the proof.
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