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Abstract

Object co-detection aims at simultaneous detection of
objects of the same category from a pool of related images
by exploiting consistent visual patterns present in candidate
objects in the images. The related image set may contain
a mixture of annotated objects and candidate objects gen-
erated by automatic detectors. Co-detection differs from
the conventional object detection paradigm in which detec-
tion over each test image is determined one-by-one inde-
pendently without taking advantage of common patterns in
the data pool. In this paper, we propose a novel, robust
approach to dramatically enhance co-detection by extract-
ing a shared low-rank representation of the object instances
in multiple feature spaces. The idea is analogous to that
of the well-known Robust PCA [28], but has not been ex-
plored in object co-detection so far. The representation is
based on a linear reconstruction over the entire data set and
the low-rank approach enables effective removal of noisy
and outlier samples. The extracted low-rank representation
can be used to detect the target objects by spectral cluster-
ing. Extensive experiments over diverse benchmark dataset-
s demonstrate consistent and significant performance gains
of the proposed method over the state-of-the-art object co-
detection method and the generic object detection methods
without co-detection formulations.

1. Introduction
Given an image and a target object category, the goal of

object detection is to localize the instance of the given cate-

gory within the image, often up to bounding box precision.

The task is often challenging because the visual appearance

of objects is often diverse due to occlusions, cluttered back-

ground, illumination and viewpoint changes.

The classical approach to object detection is to train ob-

ject detectors from manually labeled bounding boxes in a

set of training images and then apply the detectors on the

individual test images. Despite previous success, this s-

trategy only focuses on obtaining the best detection result

within one image at a time and fails to leverage the consis-
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Figure 1. Illustration of robust object co-detection. Given a pool of

automatically detected candidate regions and the training bound-

ing box set, we represent them using K different features. For

each feature matrix, we perform linear reconstruction, represent-

ing each bounding box as a linear combination of other bounding

boxes where the resulting coefficient matrix measures the mutu-

al dependency of bounding boxes. We derive a shared low-rank

reconstruction matrix from theK reconstructions while removing

the noisy and outlying bounding boxes in each feature matrix in

a sparse residue matrix. The low-rank reconstruction coefficient

matrix is then fed into Normalized Cuts clustering to yield co-

detection results.

tent object appearance often existent when there are multi-

ple related images. A promising alternative, called object

co-detection [2], is to simultaneously identify “similar” ob-

jects in a set of related images and use intra-set appearance

consistency to mitigate the visual ambiguity.

The previous method for object co-detection measures

the consistency of the object appearances across images us-

ing pairwise matching, i.e., objects belonging to the same

category are expected to have high visual similarity. How-

ever, there are two main issues with this approach. First,

the requirement for “pairs” means that it only seeks to mod-

el the two object instances at a time, not accounting for the
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structure of the entire object space that may exist when there

are more than two samples. This results in a direct loss

of structure information when extending beyond pairwise

relations, defeating the very purpose and advantage of co-

detection. Second, previous co-detection methods have not

considered noise and outlier object instances often caused

by significant content variation.

We propose a novel object co-detection method which

addresses these two issues and show empirically that im-

proved detection results follow naturally from exploiting

information from multiple images during detection. The

overall procedure for our proposed co-detection method is

illustrated in Figure 1. Given a target object category and

a training corpus with bounding box annotations, we first

train several state-of-the-art object detectors so that diverse

appearances of the target object can be covered and the fam-

ily of detectors can collectively reach a high recall in detec-

tion accuracy. These detectors are then applied to the test

images to obtain an initial bounding box candidate pool.

With the bounding boxes from the training set and the initial

candidate pool over the test images, we extract K low-level

features from each of them. For each feature, we perform

a linear reconstruction task to represent each bounding box

as a linear combination of other bounding boxes such that

the reconstruction coefficients represent the dependency of

one bounding box to the others. We seek to find a shared

low-rank reconstruction coefficient matrix across these K
reconstructions that captures the global structure of the ob-

ject space while removing noise and outliers in each fea-

ture space via a sparse residue matrix. We formulate the

problem as a constrained nuclear and �2,1 norm minimiza-

tion problem and use the Augmented Lagrange Multiplier

(ALM) [14] method for efficient optimization.

Notably, our method leverages unlabeled data and is sim-

ilar to semi-supervised learning. However, the difference is

that the unlabeled data is not given arbitrarily, but corre-

sponds to potential bounding boxes generated by multiple

detectors. On such candidate data, the low-rank assumption

is more likely to hold. The use of low-rank constraints on

the coefficient matrix is particularly important for discover-

ing the mutual dependence that may exist between bound-

ing boxes, which we refer to as the “global structure”. To

capture this structure on bounding boxes, we assume that

the reconstruction coefficient vectors is dependent on each

other. In many cases, due to the intrinsic complexity of ob-

ject appearance, it is often impossible to find a single feature

to accurately measure the mutual dependency among ob-

jects. While different features may yield different low-rank

coefficient matrices, a shared low-rank coefficient matrix

is necessary because it captures object dependency across

these features and in so doing, ensures robustness. Noise

and outliers from each feature space can also be removed vi-

a a sparse residue matrix which reduces ambiguity that may

have been introduced by each feature. Our experiments on

benchmark datasets used by [2] as well as on PASCAL VOC

2007 and 2009 show consistent and significant margins of

improvement over generic object detectors using little prior

and the state-of-the-art object co-detector.

2. Related Work
Object detection is a longstanding challenge in the com-

puter vision community. Perhaps most notably, sliding win-

dow classifiers have gained enormous popularity as they are

especially well suited for faces [27], and rigid objects like

pedestrians [9] and cars [22]. In this setting, typically, a bi-

nary classifier is first trained on annotated object instances

and then evaluated using a uniform sampling of possible

locations and scales in each test image followed by post-

processing step to find objects, such as non-maximum sup-

pression. Felzenszwalb et al. [12] proposed a deformable

part-based model which assumes that an object is com-

posed by several deformable components whose positions

are treated as latent variables and are applied toward a la-

tent support vector machine (SVM) for detection. Recent-

ly, Malisiewicz et al. [18] proposed the use of an ensem-

ble of Exemplar-SVMs for object detection, where a SVM

is trained on a single positive instance and many negatives

during training. This better captured the specific visual ap-

pearance of each positive instance and performed competi-

tively against many of the part-based detectors with growth

out of [12]. However, these works are largely optimized on

taking only one image into consideration at a time and ne-

glect the collective information when there is a corpus of

images available at test time.

The most relevant work to our proposed method is the

co-detection work of Bao et al. [2]. Similar to our set-

ting, they seek to detect the target objects that simultane-

ously appear in a set of images. Specifically, they repre-

sent an object category using part-based object representa-

tions and measure appearance consistency between objects

by pairwise similarity matching. In their approach, the in-

formation from multiple images are combined through an

energy-based formulation that models both within-image

and cross-image similarities. Again, this ignores the global

structure in the object space and also assumes the absence

of large variance noise. In contrast, we focus on collec-

tively discovering global structure from an object bound-

ing box pool and concurrently removing outliers, which we

believe leads to robust object co-detection, able to handle

noise. Our method is also closely related to image co-

segmentation [23, 20], which performs simultaneous seg-

mentation of the shared foreground regions in a set of im-

ages but does not attempt to recognize the object identity.

Contrarily, co-detection aims at assigning a category label

to each detection object.

Our work is motivated by Robust PCA [28] and recent
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low rank matrix recovery works [6, 5]. In particular, Liu et
al. [15] proposed the low-rank representation method which

can be used to discover the underlying subspace structures

by imposing the low-rank constraint on the representation

coefficient matrix while using �2,1-norm to remove outliers.

We have recently seen several successful similar formula-

tions of this toward applications including image segmen-

tation [8] and saliency detection [24]. Our method is dis-

tinct in that we develop a low-rank coefficient matrix that

is shared over multiple reconstructions derived from differ-

ent features. We note that related work can also be found

in multi-task joint sparse representation [30], but it seeks to

find stable training images across multiple features to classi-

fy test images rather than using them to discover the global

structure as we do toward object localization in images.

3. Robust Object Co-Detection
In this section, we introduce our robust object co-

detection method based on multi-feature low-rank recon-

struction. We first present how we generate an initial pool of

candidate bounding boxes of the target object and then de-

scribe our problem formulation. Finally, we explain how to

use a learned low-rank coefficient matrix for co-detection.

3.1. Bounding Box Candidate Pool Generation
Exhaustive window scanning will generate a massive

number of bounding boxes that dramatically increases the

computational burden of the object detector. Therefore, an

initial bounding box generation procedure is necessary to

prune the windows that do not contain any target objec-

t. Given a target object category and its associated train-

ing bounding boxes, we train two kinds of object detectors:

Deformable Part-based Model (DPM) [12] and Ensemble of

Exemplar-SVMs (ESVMs) [18]. These two detectors com-

plementarily model the object appearance via their native

choices of feature representation. A similar bounding box

candidate pool generation method was adopted in [2] using

DPM. We apply the detectors on each test image and se-

lect the top B bounding boxes with the highest detection

scores as the potential localizations on that image. We set

B to be twice the average number of bounding boxes in the

training images1. Because we have two detectors, there are

2B bounding box suggestions for each test image. After re-

moving the duplicate bounding boxes with non-maximum

suppression, we obtain an initial bounding box pool with a

high recall. We note that other bounding box pool genera-

tion methods, such as objectness detection [1] may be also

considered as alternatives to these two detectors.

3.2. Problem Formulation
Given an object category, suppose we have l training

bounding boxes and u potential bounding boxes from the

1Note that studying the optimal choice of B is a legitimate research

problem but not the main focus of this paper.

initial bounding box pool. We extract low-level features

from each bounding box and obtain a feature matrix X =
[x1, . . . ,xl+u], where xi ∈ R

m is the feature vector of the

i-th bounding box (i = 1, . . . , l+u) with m denoting the di-

mensionality of the feature vector. We begin by considering

the following linear reconstruction problem2:

X = XZ + E, (1)

where Z = [z1, . . . , zl+u] ∈ R
(l+u)×(l+u) is the recon-

struction coefficient matrix with zi ∈ R
l+u denoting the

reconstruction coefficient vector of bounding box xi. No-

tably, the j-th entry in vector zi is the contribution of the

bounding box xj in reconstructing the bounding box xi,

and measures the mutual dependence between xi and xj .

E is the reconstruction residue matrix of the given feature

matrix X .

There are two issues associated with the above linear re-

construction. First, it finds the reconstruction coefficient

vector for each bounding box individually, and hence does

not take into account the global structure of the bounding

boxes. Second, it cannot remove undesired noise and out-

liers which may degrade detection performance. To solve

the above two issues, we consider the following matrix de-

composition problem:

min
Z,E

rank(Z) + λ‖E‖2,1, (2)

s.t. X = XZ + E,

where rank(Z) is the rank of the matrix Z, ‖E‖2,1 =∑l+u
i=1

√∑m
j=1(Ei,j)2 is the �2,1-norm, and λ ≥ 0 is a

tradeoff parameter balancing the two competing terms.

The minimization of rank(Z) forces the reconstruction

coefficient matrix to have the lowest rank possible. As

a result, the reconstruction coefficient vectors of differen-

t bounding boxes influence each other in such a way as to

encourage bounding boxes to be linearly spanned by only a

few bases. The matrix Z then represents the global struc-

ture of the bounding boxes. The second term ‖E‖2,1 en-

sures that a small number of columns are non-zero, restrict-

ing the amount of noise that leaks into the feature matrix.

By removing E from X , the feature representations of the

bounding boxes become more compact, reducing potential

ambiguity in the detection process.

The objective function of (2) is based on a single fea-

ture modality. In general, we require more than one feature

to discover the global structure of the objects given their

diverse visual appearance. A more promising alternative

is to find a reconstruction coefficient matrix shared across

multiple features, whose entries can more precisely reflect

2Linear reconstruction has been successfully applied in several recent

works on sparse representation [29], subspace clustering [15], etc. Indeed,

our method can be extended to the non-linear case, e.g., graph-based re-

construction.
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the degree of contribution from features on the mutual de-

pendence between any two bounding boxes. Given K to-

tal features, for the k-th feature where k = 1, . . . ,K, let

Xk = [xk
1 , . . . ,x

k
l+u] be the feature matrix of all the bound-

ing boxes where xk
i ∈ R

mk is the feature vector of the i-th
bounding box (i = 1, . . . , l + u) with mk being the dimen-

sionality of the k-th modality. We consider the objective:

min
Z,Ek

rank(Z) + λ

K∑
k=1

‖Ek‖2,1, (3)

s.t. Xk = XkZ + Ek, k = 1, ...,K,

where Ek is the residue matrix removed from Xk. Note

that the coefficient matrix Z is shared across K features.

The above optimization problem is difficult to solve due

to the discrete nature of the rank function. Instead, we focus

on the following tractable convex objective which is a good

surrogate of the original optimization problem:

min
Z,Ek

‖Z‖∗ + λ
K∑

k=1

‖Ek‖2,1, (4)

s.t. Xk = XkZ + Ek, k = 1, . . . ,K,

where ‖ · ‖∗ denotes the nuclear norm of a matrix, i.e., the

sum of the singular values.

3.3. Object Co-Detection with Matrix Z∗

After solving for the global structure matrix Z∗ from (4),

we can use it to simultaneously detect all target objects from

a bounding box collection consisting of the training anno-

tations and the initial bounding box pool from Section 3.1.

We accomplish this task via a clustering procedure which

partitions the bounding boxes so that each cluster contains

objects with the same visual appearance. Since the coeffi-

cient matrix Z∗ inherently captures the mutual dependence

of the bounding boxes, it is natural to employ it as an affini-

ty measure for clustering. To ensure the symmetric property

of affinity matrices, we convert Z∗ into a symmetric affinity

matrix W via the relation [15]:

W =
1

2

(|(Z∗)�|+ |Z∗|). (5)

Using this affinity matrix, we employ Normalized

Cuts [25] to segment bounding boxes into N clusters

{C1, . . . , CN}. We then define the detection score si for the

i-th test bounding box (i = l + 1, . . . , l + u) as:

si =
max {|P(CIi)|, 1}
max1≤q≤N |P(Cq)| ×

∑
j∈P(CIi ) Wij

max {|P(CIi)|, 1}
, (6)

where Ii is an indicator specifying the index of the clus-

ter which the i-th test bounding box belongs to, P(Cq) is

the set of positive training bounding boxes in cluster Cq ,

and | · | denotes the cardinality of a set. Here we use

max {|P(CIi)|, 1} operator to ensure that clusters that have

no positive samples do not cause division by zero. Though

the numerator of left-hand-side and denominator of right-

hand-side term will cancel out, we present Eq.(6) so as to

clearly show how scores arise. The first right-hand-side

term is a weighting term that gives clusters with greater

number of positive training samples higher weight. This

is accomplished by dividing the number of positive training

samples in the same cluster as the i-th sample by the highest

number of per-cluster positive training samples across all

clusters. The result is that clusters with more positive train-

ing samples have higher voting power and thus, the scores

for test samples in those clusters are likely to have higher

weight. The second term is simply the average of affinities

between the i-th sample and all positive training instances in

the same cluster. With these scores on test bounding boxes,

we can then obtain a rank list in which the highest positive

detections are ranked in the top positions. These top ranking

bounding boxes correspond to the result of our co-detection

for that respective object category.

4. Optimization Procedure
The problem is a mixed nuclear norm and �2,1-norm op-

timization problem, which can be easily solved by the Aug-

mented Lagrange Multiplier (ALM) [14] method.

First, we convert the problem in (4) into the following

equivalent form:

min
Z,Ek,J

‖J‖∗ + λ
∑K

k=1
‖Ek‖2,1, (7)

s.t. Xk = XkZ + Ek, k = 1, ...,K,

Z = J.

This problem can be solved by the Augmented Lagrange

Multiplier (ALM) method [14], which minimizes the fol-

lowing augmented Lagrange function:

min
Z,Ek,J,Y k,U

‖J‖∗ + λ
∑K

k=1
‖Ek‖2,1 (8)

+
∑K

k=1

〈
Y k, Xk −XkZ − Ek

〉
+

〈
U,Z − J

〉

+
μ

2
(
∑K

k=1
‖Xk −XkZ − Ek‖2F + ‖Z − J‖2F ),

where 〈·, ·〉 denotes the trace of inner product, Y k(k =
1, . . . ,K) and U are the Lagrange multipliers, and μ > 0
is a penalty parameter. For fast convergence speed, we use

inexact ALM to solve (8) and resulting optimization proce-

dure is found in Algorithm 1. Step 4 is solved by adopting

singular value thresholding operator [4] and Step 6 is solved

via the analytic solution in [16].

We implemented Algorithm 1 in MATLAB on a ma-

chine equipped with a 12-Core Intel Xeon E5649 proces-

sor, 2.65 GHz CPU and 48 GB memory, and have generally

observed that the iterative optimization converges fast. For

example, in detecting the “aeroplane” category on PASCAL

VOC 2007 dataset (see Section 5.2), a single iteration of the

320732073209



Algorithm 1 Solving (8) by Inexact ALM

1: Input: multi-feature matrixXk (k = 1, . . . ,K), parameter λ
2: Initialize: Z = J = 0, Ek = 0, {Y 1, . . . , Y K , U} = 0, μ =

10−6, μmax = 1010, ρ = 1.1
3: while not converged do
4: Update J by

J = argmin 1
μ
‖J‖∗ + 1

2
‖J − Z − U/μ‖2F

5: Update Z by

Z = (I +
∑K

k=1 (X
k)

�
Xk)

−1
(
∑K

k=1 ((X
k)

�
Xk−

(Xk)
�
Ek) + J + (

∑K
k=1 (X

k)
�
Y k − U)/μ)

6: Update Ek by

Ek = argmin λ
μ
‖Ek‖2,1 + 1

2
‖Ek − (Xk −XkZ + Y k

μ
)‖2

F
7: Update the multipliers

Y k = Y k + μ(Xk −XkZ − Ek), k = 1, . . . ,K
U = U + μ(Z − J)

8: Update parameter μ by μ = min (ρμ, μmax)
9: Check convergence conditions: ∀ k = 1, . . . ,K,

Xk −XkZ − Ek → 0
Z − J → 0

10: end while
11: Output: Z,Xk, Ek, k = 1, . . . ,K

optimization of Steps 3 through 10 finishes within about 5
seconds. Since each optimization sub-problem in Algorith-

m 1 will monotonically decrease the objective function, the

algorithm is guaranteed to converge.

5. Experiments
We evaluate our proposed method on several benchmark

object detection datasets. We compared the following:

• Deformable Part-based Models (DPM) [12].

• Ensemble of Exemplar-SVMs (ESVMs) [18].

• Multi-Feature Matching (MFM): We first generate an

initial bounding box pool through DPM and ESVMs,

then rank all the candidate bounding boxes based on

their average similarity with respect to the l training

bounding boxes. The similarity is measured from mul-

tiple features3.

• Multi-feature joint Sparse Reconstruction (MSR): The

�1-norm is applied to the coefficient matrix shared over

multiple features, i.e., it does not capture the global

structure across the objects.

• Single-feature Low-Rank Reconstruction (SLRR): We

report the detection performance based on the each in-

dividual feature modality.

• Our method called Multi-feature joint Low-Rank Re-

construction (MLRR).

• Several other reported state-of-the-art objec-

t detection/co-detection methods [2, 10, 13, 31].

3For the j-th candidate bounding box, its similarity is calculated as

s̄j = 1
lK

∑l
i=1

∑K
k=1 s

k
ij , where skij = exp(−d(xk

i ,x
k
j )/σ

k) is the

Gaussian similarity based on the k-th feature modality, d(xk
i ,x

k
j ) is the

χ2 distance between xk
i and xk

j , and σk is the mean value of all pairwise

χ2 distances between the candidate and training bounding boxes.

We note that there are some recent works that using

strong auxiliary information such as shape masks [7] and

image contextual cues [26]. We do not include these meth-

ods into our comparison, but emphasize that our detection

framework is applicable to any generic feature and outper-

forms the generic detection methods with using any of those

priors or contexts. Moreover, to ensure fairness, we down-

load and use the DPM models of PASCAL VOC 07 that

yield the same results reported in [12, 18].

We extract three kinds of features from each bounding

box including SIFT Bag-of-Words (BoW) [17], Gabor [19],

and LBP [21] features. For SIFT BoW, we extract densely-

sampled SIFT descriptors every 8 pixels with a patch size of

16 × 16. We then train a codebook with 1, 024 codeword-

s and quantize the descriptors in each bounding box into a

1, 024-dimension histogram. For the Gabor feature, we par-

tition each bounding box into 2×2 blocks and apply a set of

Gabor filters over 4 scales and 6 orientations in each block.

From the filter’s response in each block, we use the mean

and standard deviation as the feature descriptor. The result-

ing feature vector is 192 dimensions. For the LBP feature,

we generate LBP codes using 8 neighbors on a circle of unit

radius and obtain a 59-dimensional feature vector.

We note that our method has two parameters: the trade-

off parameter λ and the number of clusters N . To deter-

mine the appropriate value for each parameter, we varied

the value of λ on the range of {10−3, 10−2, . . . , 100}, and

cluster number N discretely between {10, 15, . . . , 60}. We

then choose the best parameter values based on validation

performance. For the parameter setting of other competed

methods, we follow the original suggestion parameter set-

ting strategies and choose the best parameter values based

on validation performance.

Following the evaluation method in PASCAL VOC chal-

lenge, a predicted bounding box is considered correct if it

overlaps more than 50% with the ground-truth bounding

box, otherwise it is considered a false detection. The av-

erage precision (AP) is computed from the precision/recall

curve and is an approximation of the area under this curve.

The mean AP (mAP) measures the mean of the APs over all

categories of the dataset.

5.1. Comparison with [2]
Here, we distinguish our method from the recently pro-

posed object co-detection method in [2]. We perform com-

parisons on two datasets used by the work: Ford Car [2]

and Pedestrian dataset [11]. The Ford Car dataset consists

of 430 images in five scenes and Pedestrian dataset contain-

s 490 training frames and 354 test frames from two video

sequences of the shopping street.

Since the co-detection method in [2] is based on pair-

wise matching, it selects various image pairs as the test set

for performance evaluation. There are two kinds of image

pairs they selected for testing: stereo pair and random pair.
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S
ta

ti
st

ic
s Stereo Pair

#unique images 141 ± 1 141 ± 1 285 ± 3 285 ± 3
#bounding boxes per image 10.28 ± 0.01 8.4 ± 0.01 8.41 ± 0.04 5.16 ± 0.05

average recall (%) 70.10 ± 1 74.43 ± 1 76.66 ± 1.3 85.12 ± 1.1

Random Pair
#unique images 138 ± 2 138 ± 2 273 ± 2 273 ± 2

#bounding boxes per image 10.24 ± 0.04 8.47 ± 0.05 8.47 ± 0.02 5.17 ± 0.01

average recall (%) 70.06 ± 0.19 74.28 ± 0.05 76.83 ± 0.18 84.31 ± 0.2

Datasets & Methods Ford Car (all) Ford Car (h>80) Pedestrian (all) Pedestrian (h>120)

A
P

(%
) Stereo Pair

DPM [2] 49.8 47.1 59.7 55.4
Co-Detector [2] 53.5 55.5 62.7 63.4
Ours (MLRR) 55.0 ± 0.1 57.5 ± 0.1 67.8 ± 0.9 70.1 ± 1.1

Random Pair
DPM [2] 49.8 47.1 59.7 55.4

Co-Detector [2] 50.0 49.1 58.1 58.1
Ours (MLRR) 55.1 ± 1.4 57.5 ± 1.2 67.7 ± 1.3 70.3 ± 1.5

Table 1. Top: Statistics of images pairs based on two different sampling strategies. Bottom: Performance comparison (AP %) on Ford Car

and Pedestrian datasets.

The stereo image pairs are obtained from a stereo camera,

meaning most images contain matching objects. The ran-

dom image pairs are randomly selected from the dataset,

where many the pairs contain few or no matching objects.

Specifically, they select 300 and 200 image pairs for Ford

Car and Pedestrian datasets under the two settings. The au-

thors only provide 354 test stereo pairs for Ford Car dataset

while the other pairs are not publicly available. To ensure

a similar setting, we select 300 stereo pairs from the 354
available stereo pairs and select 300 random pairs from the

whole dataset for testing on the Ford Car dataset.

For the Pedestrian dataset, since there are not any test

pairs available, we follow the same stereo pair generation

method as in the released pairs of the Ford Car dataset. We

select 200 stereo pairs from test frames with the constraint

that each pair consists of two frames whose frame interval

is at most three within the video sequence. In addition, 200
random pairs are randomly selected from the test frames.

Remaining images from Ford Car and the original training

frames of Pedestrian dataset are used as training data. The

experiments are repeated three times and the average perfor-

mance and standard deviation are calculated. In each run,

we perform two-fold cross validation on the training set to

determine the best parameters for each method.

The comparison of results is shown in Table 1 and we see

that our method outperforms the object co-detection method

by a large margin on both datasets under different test pair

sampling strategies. We see that the average margin of im-

provement for the co-detector of [2] from per-image detec-

tion is only about 5.77% and 0.82% for stereo and random

pair, respectively, but we push it to 9.60% and 9.65%. Fig-

ure 2 shows example incorrect bounding boxes successfully

removed by our method (corresponding to bounding boxes

with non-zero columns in the residue matrix).

5.2. Experiments on PASCAL Datasets
We also evaluated our proposed method on two other

benchmark object detection datasets: PASCAL VOC 2007

and VOC 2009.

PASCAL VOC 2007 dataset. This dataset contain-

Figure 2. Incorrect bounding boxes on Ford car and Pedestrian

datasets removed by our method. On each dataset, we rank the

bounding boxes via the score 1
K

∑K
k=1 ‖Ek

j ‖2, where Ek
j denotes

the j-th column of residue matrix Ek, and we pick the top three

bounding boxes as examples here.

s 9, 963 images over 20 categories which are divided in-

to “train”, “val” and “test” subsets, i.e., 25% for training

(2, 501 images), 25% for validation (2, 510 images) and

50% for testing (4, 952 images). For each method, we select

the best parameter based on the validation performance on

the validation set “val”. The average recall rate across the

20 categories in the bounding box candidate pool is 59.8%
and there are on average 6.7 bounding box candidates in

each image after duplicate removal.

Table 2 shows the per-category performances of differ-

ent methods in comparison, where we also directly cite the

results from [10, 13, 31] for comparison. From the results,

we observe the following: (1) Our proposed MLRR algo-

rithm outperforms all the other baseline methods by a rea-

sonable margin, achieving the best mean performance. (2)

Both co-detection methods (MSR and MLRR) outperfor-

m the single-object detection methods (DPM, ESVMs and

MFM). This intuitively is due to the fact that the former

takes advantage of the consistent object appearance across

the images while the latter only looks at one image at a time.

(3) Our proposed MLRR performs significantly better than

the other co-detection method MSR as it uses the low-rank

constraint to capture the global structure of objects. On the

other hand, MSR measures the mutual dependency of dif-
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Figure 3. Example detection results and removed incorrect bounding boxes on PASVAL VOC 2007 test set. Red bounding boxes denote

detections. Incorrect bounding boxes are picked from the top two bounding boxes ranked by scores 1
K

∑K
k=1 ‖Ek

j ‖2.

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

DPM [12] 28.7 51.0 6.0 14.5 26.5 39.7 50.2 16.3 16.5 16.6 24.5 5.0 45.2 38.3 36.2 9.0 17.4 22.8 34.1 38.4 26.8

ESVMs [18] 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7

Zhu et al. [31] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6

Desai et al. [10] 28.8 56.2 3.2 14.2 29.4 38.7 48.7 12.4 16.0 17.7 24.0 11.7 45.0 39.4 35.5 15.2 16.1 20.1 34.2 35.4 27.1

Harzallah et al. [13] 35.1 45.6 10.9 12.0 23.2 42.1 50.9 19.0 18.0 31.5 17.2 17.6 49.6 43.1 21.0 18.9 27.3 24.7 29.9 39.7 28.9

MFM 21.1 49.9 6.6 7.9 15.6 34.9 49.6 17.3 19.0 17.8 22.5 8.8 48.6 40.1 36.6 10.2 11.9 26.5 39.6 36.7 26.1

MSR 26.6 50.3 11.9 12.8 28.7 35.0 50.1 18.3 19.2 18.1 28.5 9.1 50.2 39.9 37.4 13.7 21.5 30.4 39.7 37.3 28.9

Our SLRR(SIFT) 33.0 52.2 11.6 16.1 29.0 42.5 52.0 19.2 19.2 22.7 29.4 9.6 50.6 41.0 38.5 17.1 24.1 31.3 41.1 39.7 31.0

Our SLRR(Gabor) 31.3 51.2 11.9 16.5 30.4 41.2 50.6 18.1 19.6 22.5 27.8 9.3 49.7 40.2 38.4 18.1 23.2 30.9 40.0 37.7 30.4

Our SLRR(LBP) 30.7 51.6 11.9 14.1 27.9 34.1 50.8 18.2 18.5 19.4 28.4 9.3 47.1 40.5 38.4 18.9 23.2 30.7 39.4 37.2 29.5

Our MLRR 34.1 53.0 12.4 18.9 31.2 43.2 52.7 21.6 22.8 25.0 32.2 10.6 51.7 41.0 38.6 19.2 27.3 32.5 41.3 41.9 32.5
Table 2. Performance comparison (AP %) on PASCAL VOC 2007 test set.

ferent objects separately and thus fails to leverage global

information. (4) MLRR outperforms the performances ob-

tained with only a single feature. This is because MLRR in-

fers a shared low-rank coefficient matrix and can aggregate

evidences from multiple features, resulting in a more cohe-

sive representation. In Figure 3, we show some detection

results and removed noisy bounding boxes by our method.

PASCAL VOC 2009 dataset. For VOC 2009, the an-

notations of the test samples are still confidential. There-

fore, we use only the VOC 2009 “train/val” dataset which

has 7, 054 images where the “train” set has 3473 images for

training and the “val” set has 3, 581 images for test. For pa-

rameter selection, we use three-fold cross validation on the

training set to determine the best parameter value for each

method. The average recall rate across the 20 categories in

the initial bounding box candidate pool is 61.2% and there

are in average 6.1 bounding box candidates in each test im-

age after duplicate removal.

In Figure 4, we show several precision-recall curves for

example target categories. We can see that the precision of

our method is higher than other methods as the recall varies.

As seen on Table 3, our method outperforms all baselines

and achieves the best performance on each category.

5.3. Discussion
Scalability. The scalability of our method is dictated by

the size of the bounding box candidate pool during the co-

detection process. Though large-scale co-detection is not

the primal focus of this current work, we note that there

are ways for controlling the complexity by dividing the test

bounding boxes into clusters with moderate size and apply-

ing our method within each cluster.

Out-of-Sample Extension. For a new image, it is

possible to apply the traditional out-of-sample extensions

from transductive learning [3] to acquire detection scores

of bounding boxes. When testing a new image, we begin

by applying DPM and ESVMs on it to obtain its bound-

ing box candidates as before. For each candidate z, we can

use its low-level feature to search a set of nearest neighbors

{xi}Ti=1 from all the bounding boxes in the original dataset,

where xi is a neighbor of z and T is the total number of

the neighbors. Based on this set of neighbors, the detection

score can be estimated as s(z) =
∑T

i=1
W (z,xi)∑T
i=1 W (z,xi)

s∗i ,

where W (z, xi) is the similarity between z and xi, and s∗i
is the detection score of xi obtained by our method. The

result is a detection score for an unseen bounding box.

6. Conclusion
We have presented a robust object co-detection method

to simultaneously detect target objects from an image col-

lection. Given a bounding box pool represented in multiple

feature spaces, we perform multiple linear reconstruction-

s, each of which produces a reconstruction coefficient ma-

trix measuring the mutual dependency of the bounding box-

es. The co-detection problem is formulated as inferring a

shared low-rank coefficient matrix across all reconstruction-

s with noise and outlier removing constraints within each
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Figure 4. Precision-recall curves for four example categories from PASCAL VOC 2009 validation set.

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

DPM [12] 40.3 45.7 10.3 10.1 23.6 47.1 36.8 17.9 16.3 14.7 13.7 11.5 41.1 32.9 44.2 9.9 18.5 19.2 38.2 26.2 25.9

ESVMs [18] 20.4 30.9 9.5 9.5 10.6 38.5 17.3 2.0 5.2 9.6 2.5 2.1 20.0 21.8 10.4 5.0 11.9 9.5 27.8 21.5 14.3

MFM 32.4 38.4 8.6 9.5 23.9 45.3 33.6 20.6 14.9 15.6 10.2 11.3 39.3 31.5 42.6 9.3 12.5 19.9 36.9 27.1 24.2

MSR 39.3 43.1 11.0 10.2 24.6 48.0 36.4 20.9 15.9 17.4 12.4 13.6 40.0 33.5 43.4 10.7 20.9 22.2 38.2 27.4 26.5

Our SLRR(SIFT) 42.6 48.4 12.5 11.7 28.3 49.3 39.3 24.0 17.2 19.6 15.9 13.9 43.3 34.3 44.5 13.0 23.7 23.5 41.6 28.2 28.7

Our SLRR(Gabor) 41.4 47.4 10.6 11.4 29.6 48.0 39.1 23.3 18.5 18.3 13.0 13.8 43.2 34.2 44.7 11.8 22.0 22.0 37.2 28.6 27.9

Our SLRR(LBP) 41.4 45.6 10.3 10.6 29.0 48.3 38.7 21.2 16.2 19.6 12.8 14.1 39.6 34.0 44.4 10.0 21.3 23.2 38.6 26.9 27.3

Our MLRR 43.4 49.7 13.9 12.1 29.8 50.5 39.8 26.7 19.3 21.0 18.1 15.1 46.6 35.3 44.8 13.1 24.5 25.3 42.0 29.2 30.1
Table 3. Performance comparison (AP %) on PASCAL VOC 2009 validation set.

feature. The low-rank coefficient matrix captures the global

structure of objects across these multiple features and can

be used to produce the co-detections using spectral clus-

tering. Empirical experiment results on various object de-

tection benchmarks show that our method outperforms the

state-of-the-art generic object detection methods. For fu-

ture work, we will investigate inductive object co-detection

methods which not only infers a reconstruction coefficient

matrix to leverage global structure but also builds a decision

function for bounding boxes unseen in the candidate pool.
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