

		E 6886 Topics in Signal Processing: Multim	nedia Security Systems
Course Out	line		
Multime	dia Security :		
- Mu	timedia Standards – Ubiq	uitous MM	
- End	cryption – Confidential MN		
• Wa	termarking – Uninfringible	MM	
 Aut 	hentication – Trustworthy	MM	
		li	
	Applications of Multime	eula: ation – Access Control, Identifying	Suspects
- Au	veillance Applications – A	hnormality Detection	ouspeets
• Me	dia Sensor Networks – Ev	ent Understanding Information Ag	aregation
			9 9
2 2/8/06: L	ecture 4 – Digital Watermarking	© 2006 Ching-Yung Lin, Dept	. of Electrical Engineering,
			Columbia Univ.

	Е 6886 Тор	oics in Signal Processing: Multimedia Security Systems
Inv	isible Waterm	ark
 Purpose: Protect ownership (Content) Authenti Copy/ Playback co Properties Transmit picture. 	and trace illegal use. cation ontrol a bitstream through a very r	noisy channel, i.e. the original
 Robust: The watern must be able to survi format transformation printing, and scannin Invisible: The water 	nark must be very difficult, i ve manipulations to the imag n, shifting, scaling, cropping, g. mark should not visually affe	f not impossible, to remove. It ges, such as: lossy compression, quantization, filtering, xeroxing, ect the image/video content.
6 2/8/06: Lecture 4 – Digital Wa	atermarking	© 2006 Ching-Yung Lin, Dept. of Electrical Engineering, Columbia Univ.

	E 6886 Topics in Signal Processing: Multimedia Security Systems
С	hou and Li's JND Model
	$JND(x,y) = max\{f_1(bg(x,y), mg(x,y)), f_2(bg(x,y))\}$
	where
	$f_1(bg(x,y),mg(x,y)) = mg(x,y) \cdot \alpha(bg(x,y)) + \beta(bg(x,y))$
	$f_2(bg(x,y)) = \begin{cases} T_0 \cdot (1 - (bg(x,y)/127)^{0.5}) + 3 & \text{for } bg(x,y) \le 127\\ \gamma \cdot (bg(x,y) - 127) + 3 & \text{for } bg(x,y) > 127 \end{cases}$
	$\alpha(bg(x,y)) = bg(x,y) \cdot 0.0001 + 0.115$
	$eta(bg(x,y)) = \lambda - bg(x,y) \cdot 0.01$
	The experimental result of the parameters are, $T_0 = 17, \ \gamma = \frac{3}{128}$, and $\lambda = \frac{1}{2}$. In this
	model, $bg(x,y)$ is the average background luminance, and $mg(x,y)$ is the contrast
	value calculated from the output of high-pass filtering at four directions. $f_1 \mbox{ and } f_2$
	model the contrast and luminance masking effects, respectively.
33	2/8/06: Lecture 4 – Digital Watermarking © 2006 Ching-Yung Lin, Dept. of Electrical Engineering,

	E 6886 Topics in Signal Processing: Multimedia Security Systems	
Comparison of Lubin's and Models (II)	Daly's Human Visual System	
Amplitude Nonlinea Daly's VDP Local Normalizatie Lubin's VDM N/A		
Subband Decomposi	tion Masking Function Pooling	
Daly's VDP Cortex Filters	coherence/learning effect Probability Map	
Lubin's VDM Steelable Filters	dipper enect 3ND map	
 Masking step: In both models, masking functions are applicited filter banks 	ied to the intensity of spatial-frequency coefficients obtained by	
- Dely uses Wetsen's serter filters which are	a performed in the DET domain	
 Daiy uses watson's cortex filters, which are 		
 divide the whole DFT spectrum into 5 circular subbands and each subband is divided into 6 orientation bands. 		
boundary of subbands are step functions convolved with Gaussian. In total 31 subbands		
I up uses the steering myramid filters, which are similar to an extended wavelet decomposition		
 7 spatial-frequency decomposition ar In total 28 subbands 	nd 4 orientation decomposition.	
 As for the masking functions: 		
 Daly uses a function that is controlled by the type of image (noise-like or sine-waves) and the number of learning (the visibility of a fixed change pattern would increase if the viewer observes it for multiple times). 		
 Lubin uses a function considering the 	e dipper effect	
2/8/06: Lecture 4 – Digital Watermarking	© 2006 Ching-Yung Lin. Dept. of Electrical Engineering	
	Columbia Univ.	

	E 6886 Topics in Signal Processing: Multimedia Security Systems
Comparison of Lubin's and Dal	v's Human Visual System
Models (III)	
Amplitude Nonlinearity Daly's VDP Local Normalization	Intra-eye blurring Re-sampling CSF N/A N/A SORI
Lubin's VDM N/A	optics 120 pxs/deg SQRI
Subband Decomposition	Masking Function Pooling
Daly's VDP Cortex Filters Lubin's VDM Steerable Filters	coherence/learning effect Probability Map dipper effect JND Map
CSE and masking functions are the	a most important parameters in deciding
the masking effect of images	s most important parameters in deciding
 CSF can be interpreted as a calibra 	ation function which is used to normalize the
different perceptual importance in dif	ferent spatial-frequency location.
 Masking funcitons determine how r 	nuch change is allowed in each spatial-
frequency location based on its value	25
Daly's result – Probability map of v	Isibility
 Lubin's model – a map of the JND measure is calculated based on the 	unit value of each pixel. The distance
function (Q is set to 2.4).	Minkowski metile of the output of masking
$D = \left(\sum_{i=1}^{m} T_{i} \right)$	$(10)^{\frac{1}{2}}$
$D_j = \{\sum_{k=1} I_{j,k} \le$	$I_{1} = I_{j,k}(s_2) ^{s_1} $
2/8/06: Lecture 4 Digital Watermarking	© 2006 Ching Yung Lin, Dept. of Electrical Engineering
30 270/00. Lecture 4 – Digital Watermarking	Columbia Univ.

	E 6886 Topics in Signal Processing: Multimedia Security Systems		
Resources: Papers			
	 H. Yu, D. Kundur, and CY. Lin, "Spies, Thieves, and Lies: The Battle for Multimedia in the Digital Era," <i>IEEE Multimedia</i>, Vol.8, No. 3, July 2001. G. W. Braudaway, K. A. Magerlein, and F. Mintzer, "Protecting Publicly Available Images with a Visible Image Watermark," <i>SPIE Optical Security and Counterfeit Deterrence Techniques</i>, Vol. 2659, Jan. 1996. CH. Chou and YC. Li, "A Perceptually Tuned Subband Image Coder Based on the Measure of Just-Noticeable-Distortion Profile," IEEE Trans. on Circuits and Systems on Video Technology, Vol. 5, No. 6, pp. 467-476, Dec. 1995. S. Daly, "The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity," Digital Images and Human Vision, A. B. Watson, ed., pp. 179-206, MIT Press, 1993. J. Lubin, "The Use of Psychophysical Data and Models in the Analysis of Display System Performance," Digital Images and Human Vision, A. B. Watson, ed., pp. 163-178, MIT Press, 1993. A. B. Watson, "DCT Quantization Matrices Visually Optimized for Individual Images," Proceeding of SPIE, Vol. 1913, pp. 202-216, 1993. A. B. Watson, G. Y. Yang, J. A. Solomon and J. Villasenor, "Visibility of Wavelet Quantization Noise," IEEE Trans. on Image Processing, Vol. 6, No. 12, Dec. 1997. I. J. Cox, J. Kilian, F. T. Leighton and T. Shamoon, "Secure Spread Spectrum Watermarking for Multimedia," <i>IEEE Trans. on Image Processing</i>, Vol. 6, No. 12, Dec. 1997. CY. Lin, M. Wu, J. Bloom, M. L. Miller, I. J. Cox and Y. M. Lui, "Rotation, Scale, and Translation Resilient Watermarking for Images," <i>IEEE Trans. on Image Processing, Vol. 10, No. 5, May 2001.</i> F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, "Information Hiding: A Survey," <i>Proceedings of the IEEE</i>, Vol. 87, No. 7, July 1999. 		
40	2/8/06: Lecture 4 – Digital Watermarking © 2006 Ching-Yung Lin, Dept. of Electrical Engineering,		