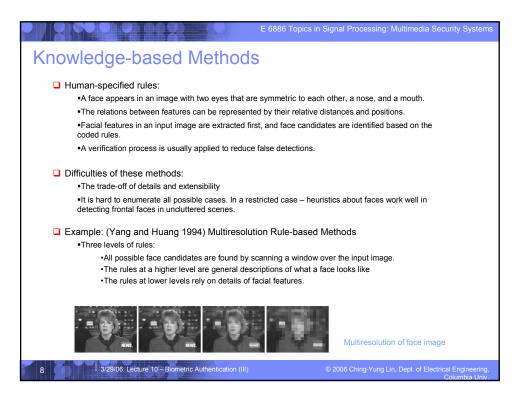
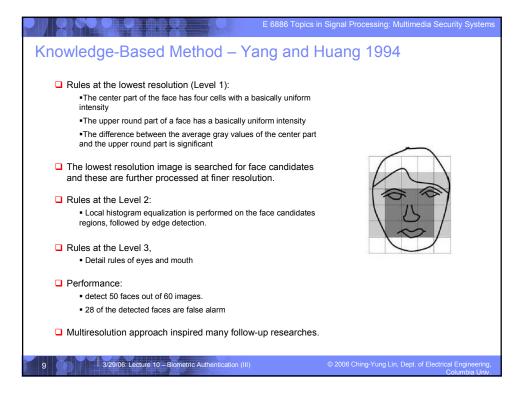
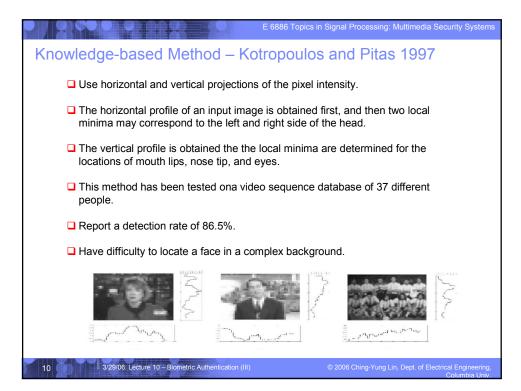
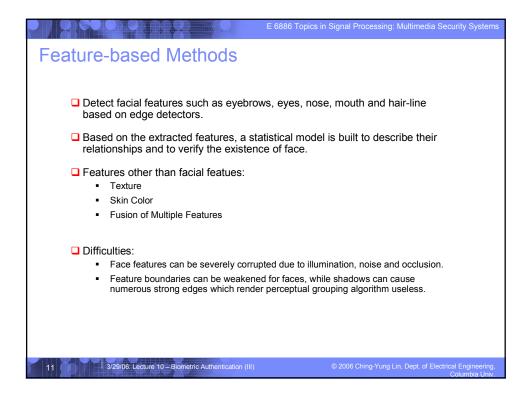


	E 6886 Topics in Signal Processing: Multimedia Security Systems
Course Outline	
Multimedia Security :	
 Multimedia Standards – Ubio 	uitous MM
 Encryption and Key Manage 	ment – Confidential MM
 Watermarking – Uninfringible 	MM
 Authentication – Trustworthy 	MM
Surveillance Applications – A	ation – Access Control, Identifying Suspects
2 3/29/06: Lecture 10 – Biometric Authentication (III) © 2006 Ching-Yung Lin, Dept. of Electrical Engineering, Columbia Univ.

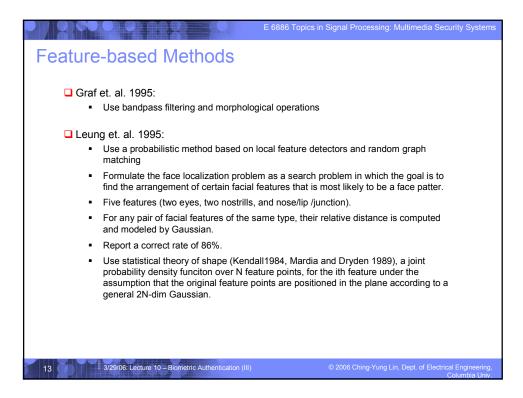


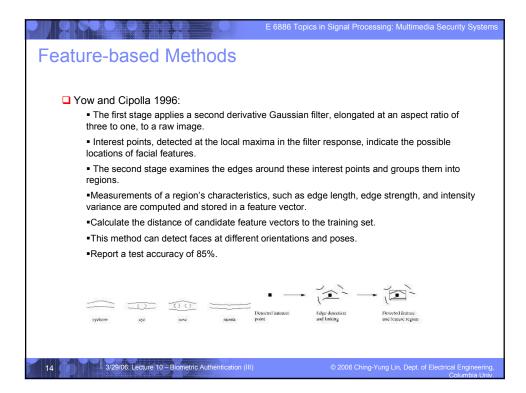


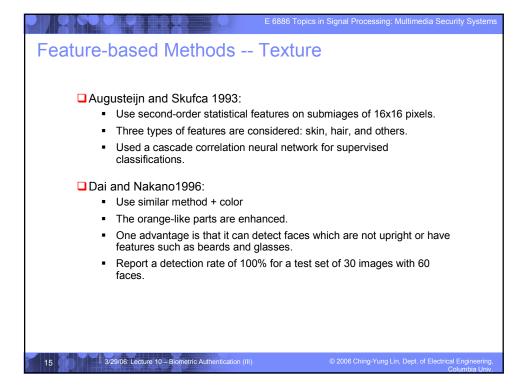


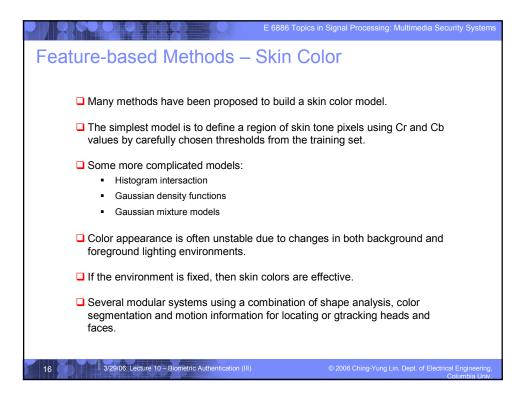


Categorization of N	Methods for Face Detection in a Single Image
Approach	Representative Works
Knowledge-based	
	Multiresolution rule-based method
Feature invariant	
 Facial Features 	Grouping of edges
– Texture	Space Gray-Level Dependence matrix (SGLD) of face pattern
– Skin Color	Mixture of Gaussian
 Multiple Features 	Integration of skin color, size and shape
Template matching	
 Predefined face templates 	Shape template
 Deformable Templates 	Active Shape Model (ASM)
Appearance-based method	
 Eigenface 	Eigenvector decomposition and clustering
 Distribution-based 	Gaussian distribution and multilayer perceptron
 Neural Network 	Ensemble of neural networks and arbitration schemes
 Support Vector Machine (SVM) 	SVM with polynomial kernel
 Naive Bayes Classifier 	Joint statistics of local appearance and position
– Hidden Markov Model (HMM)	Higher order statistics with HMM
 Information-Theoretical Approach 	Kullback relative information

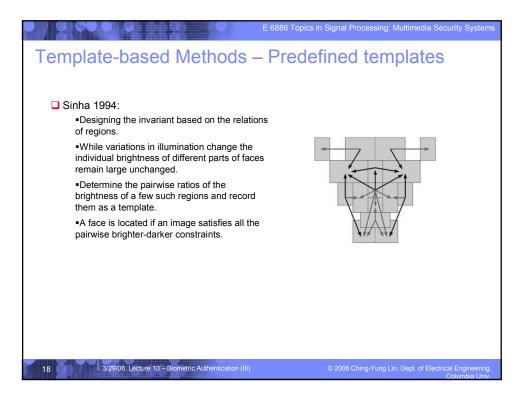


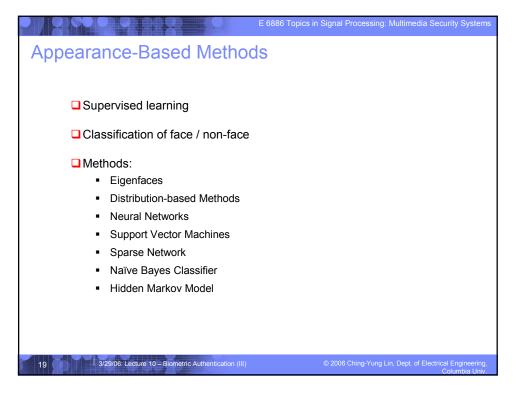


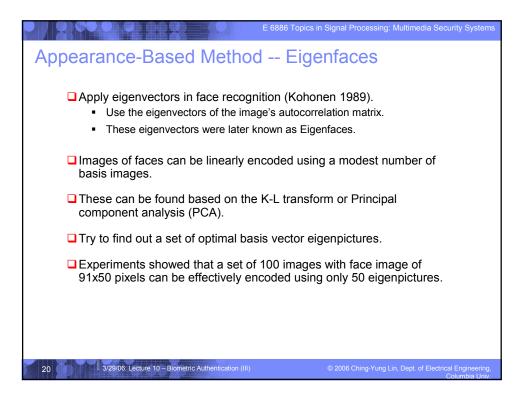


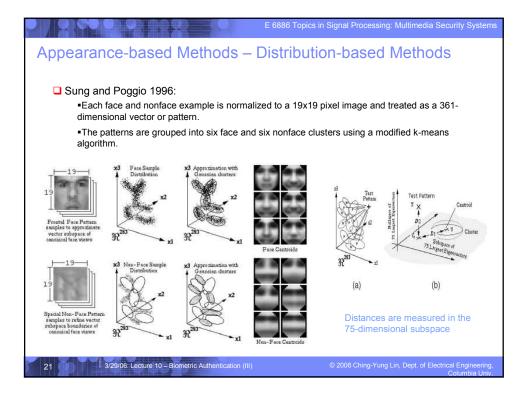


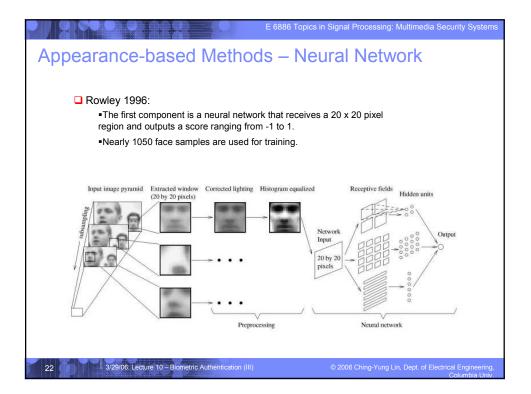
E 6886 Topics in Signal Processing: Multimedia Security Systems
Feature-based Methods
Sirohey 1993:
 Use an edge map (Canny detector) and heuristics to remove and group edges so that only the ones on the face contour are preserved.
 An ellipse is then fit to the boundary between the head region and the background.
 Detection accuracy: 80% out of a database of 48 images.
Chetverikov and Lerch 1993:
 Use blobs and streaks (linear sequences of similarly oriented edges).
 Use two dark blobs and three light blobs to represent eyes, cheekbones and nose.
 Use streaks to represent the outlines of the faces, eyebrows and lips.
 Two triangular configurations are utilized to encode the spatial relationship among the blobs.
Procedure:
 A low resolution Laplacian image is gnerated to facilitate blob detection. The image is scanned to find specific triangular occurences as candidates A face is detected if streaks are identified around a candidate.
12 3/29/06: Lecture 10 – Biometric Authentication (III) © 2006 Ching-Yung Lin, Dept. of Electrical Engineering, Columbia Univ.

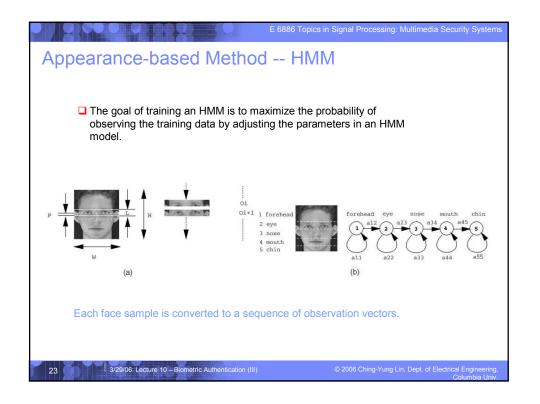


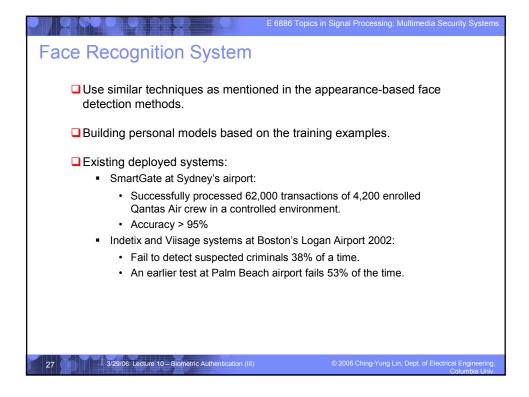


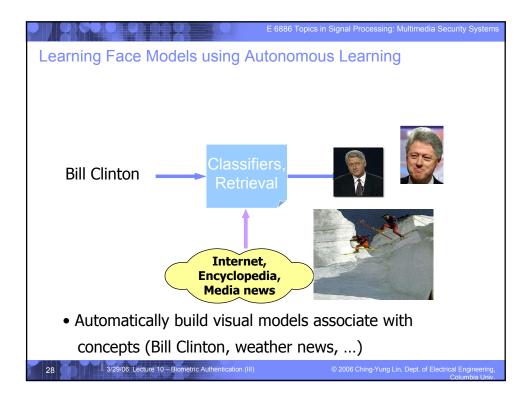


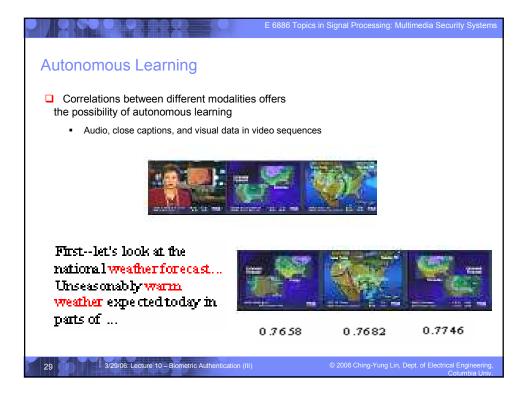


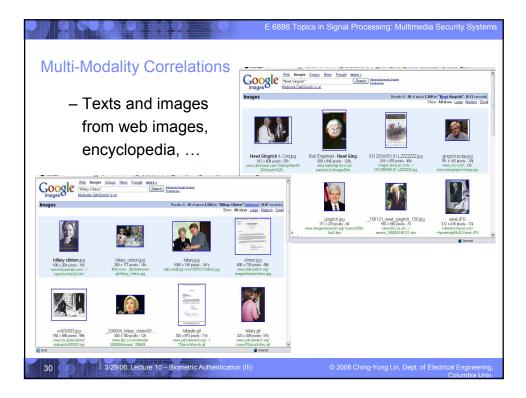


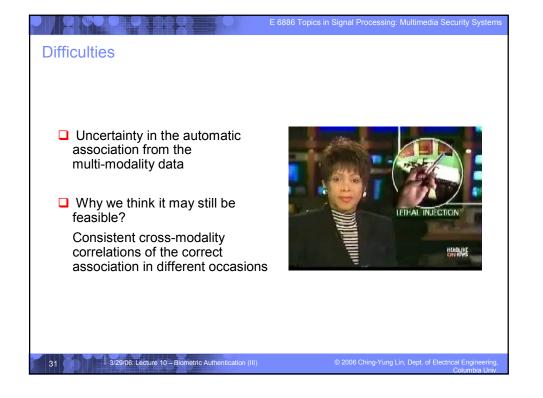


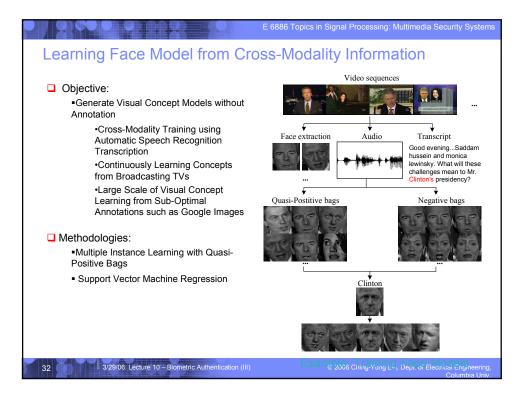


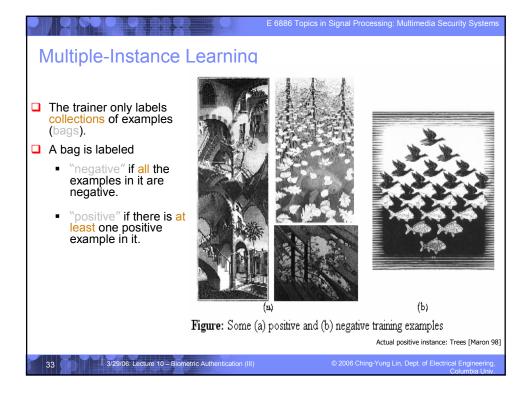


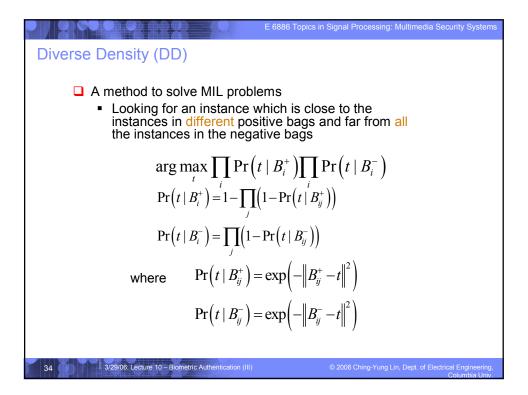

ace imag	ge Database	
	-	
	e commonly used face image datab	2505
	e commonly used lace image datab	0353
Data Set	Location	Description
MIT Database	ftp://whitechapel.media.mit.edu/pub/images/	Faces of 16 people, 27 of each person
[163]	rep. // whiteenaper.incena.inteera/pub/inages/	under various illumination conditions, scale and head orientation.
FERET Database [115]	http://www.nist.gov/humanid/feret	A large collection of male and female faces. Each image contains a single person with certain expression.
UMIST Database [56]	http://images.ee.umist.ac.uk/danny/ database.html	564 images of 20 subjects. Each subject covers a range of poses from profile to frontal views.
University of Bern Database	ftp://iamftp.unibe.ch/pub/Images/FaceImages/	300 frontal face images of 30 people (10 images per person) and 150 profile face images (5 images per person).
Yale Database [7]	http://cvc.yale.edu	Face images with expressions, glasses under different illumination conditions.
AT&T (Olivetti) Database [136]	http://www.uk.research.att.com	40 subjects, 10 images per subject.
Harvard Database [57]	ftp://ftp.hrl.harvard.edu/pub/faces/	Cropped, masked face images under a wide range of lighting conditions.
M2VTS Database [116]	http://poseidon.csd.auth.gr/M2VTS/index.html	A multimodal database containing various image sequences.
Purdue AR Database [96]	http://rvl1.ecn.purdue.edu/~aleix/aleix_face _DB.html	3,276 face images with different facial expressions and occlusions under different illuminations.

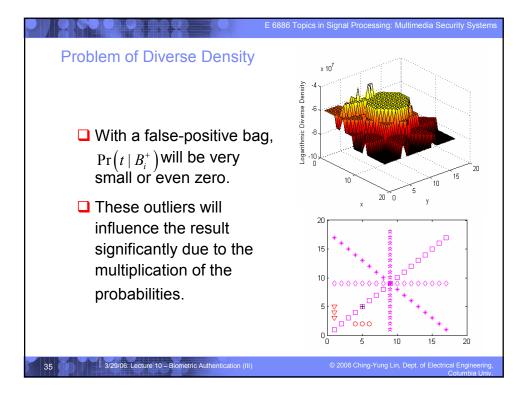

		6886 Topics in Signal Processing: Multimedia Security Systems
Benchmark for	Face Detection	on
Commonly used t	est sets	
ADD		
Data Set	Location	Description
MIT Test Set [154]	http://www.cs.cmu.edu/~har	Two sets of high and low resolution gray scale images with multiple faces in complex background.
CMU Test Set [128]	http://www.cs.cmu.edu/~har	130 gray scale images with a total of 507 frontal faces.
CMU Profile Face Test Set [141]	ftp://eyes.ius.cs.cmu.edu/usr20/ ftp/testing_face_images.tar.gz	208 gray scale images with faces in profile views.
Kodak Data Set [94]	Eastman Kodak Corporation	Faces of multiple size, pose and under varying illumination in color images. Designed for face detection and recognition.
25 3/29/06: Lecture 10	- Biometric Authentication (III)	© 2006 Ching-Yung Lin, Dept. of Electrical Engineering, Columbia Univ.

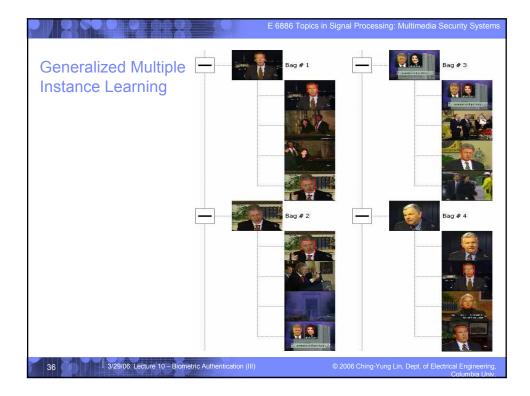

n experimental res					
A test of several algo	rithms				
-					
Experimental Results				ind	
Test Set 2	(23 Images with 136	6 Faces) (See Text f	for Details)		
	Test Set 1		Test Set 2		
	1050				
Method	Detection Rate	False Detections	Detection Rate	False Detections	
Method Distribution based [154]		False Detections N/A			
	Detection Rate		Detection Rate	False Detections	
Distribution based [154]	Detection Rate N/A	N/A	Detection Rate 81.9%	False Detections 13	
Distribution based [154] Neural network [128]	Detection Rate N/A 92.5%	N/A 862	Detection Rate 81.9% 90.3%	False Detections 13 42	
Distribution based [154] Neural network [128] Naive Bayes classifier [140]	Detection Rate N/A 92.5% 93.0%	N/A 862 88	Detection Rate 81.9% 90.3% 91.2%	False Detections 13 42 12	
Distribution based [154] Neural network [128] Naive Bayes classifier [140] Kullback relative information [24]	Detection Rate N/A 92.5% 93.0% 98.0%	N/A 862 88 12758	Detection Rate 81.9% 90.3% 91.2% N/A	False Detections 13 42 12 N/A	
Distribution based [154] Neural network [128] Naive Bayes classifier [140] Kullback relative information [24] Support vector machine [107]	N/A 92.5% 93.0% 98.0% N/A	N/A 862 88 12758 N/A	Detection Rate 81.9% 90.3% 91.2% N/A 74.2%	False Detections 13 42 12 N/A 20	
Distribution based [154] Neural network [128] Naive Bayes classifier [140] Kullback relative information [24] Support vector machine [107] Mixture of factor analyzers [175]	Detection Rate N/A 92.5% 93.0% 98.0% N/A 92.3%	N/A 862 88 12758 N/A 82	Detection Rate 81.9% 90.3% 91.2% N/A 74.2% 89.4%	False Detections 13 42 12 N/A 20 3	
Distribution based [154] Neural network [128] Naive Bayes classifier [140] Kullback relative information [24] Support vector machine [107] Mixture of factor analyzers [175] Fisher linear discriminant [175]	Detection Rate N/A 92.5% 93.0% 98.0% N/A 92.3% 93.6% 93.6% 94.2%	N/A 862 88 12758 N/A 82 74	Detection Rate 81.9% 90.3% 91.2% N/A 74.2% 89.4% 91.5%	False Detections 13 42 12 N/A 20 3 1	

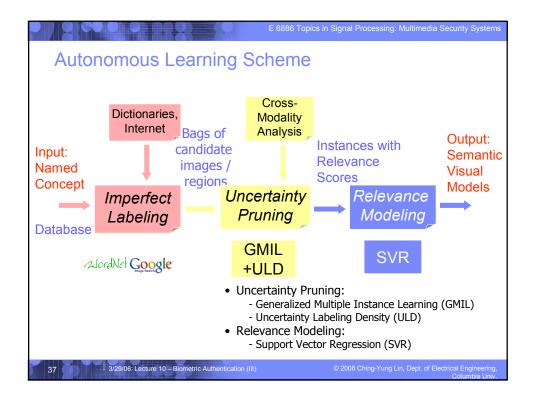


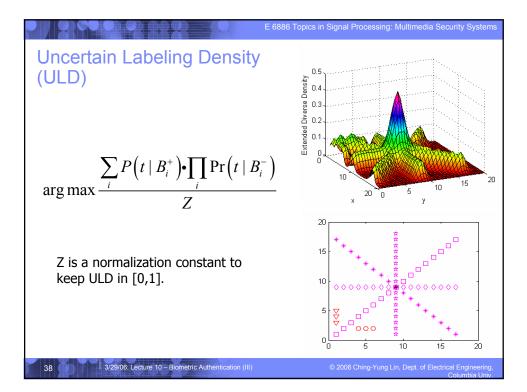


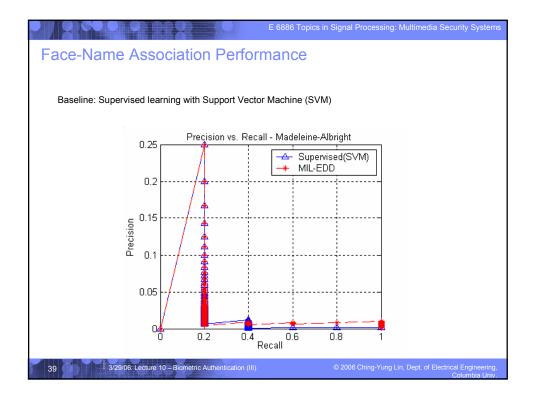


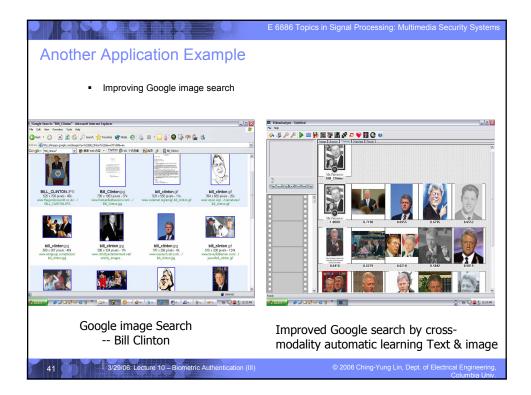


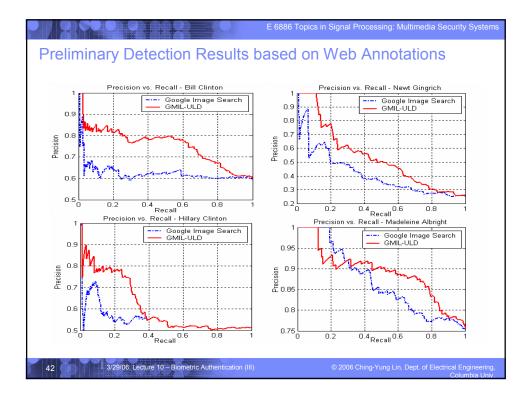












	36 Topics in Signal Processing: Multimedia Security Systems
References	
 MH. Yang, D. Kriegman and N. Ahuja, "I Survey", IEEE Trans. on Pattern Analysis 24, No. 1, Jan 2002. S.Y. Kung, Mak, and S. H. Lin, "Biometric 2005. (Chapter 8) Xiaodan Song, Ching-Yung Lin and Ming-Ti Concept Training Using Imperfect Cross- Tan, K.H. Yap and L. Wang, editors, Intellige 	and Machine Intelligence, Vol. Authentication", Prentice-Hall, ing Sun, "Automatic Visual Modality Information," Y.P.
 Soft Computing, Springer, 2004. Xiaodan Song, Ching-Yung Lin and Ming-Ti automatic face model training from large IEEE CVPR Workshop on Face Processing 	video databases," The First
43 3/29/06: Lecture 10 – Biometric Authentication (III)	© 2006 Ching-Yung Lin, Dept. of Electrical Engineering, Columbia Univ.