oo oo
EECS E6893 Big Data Analytics

HW2: Steaming Big Data Analytics & Data Analytics
Pipeline

TUTORIAL 2

Apurva Patel
amp2365@columbia.edu

October 11, 2024

mailto:amp2365@columbia.edu

Agenda

e Streaming Analytics

e Data pipeline orchestration using Apache Airflow

Streaming Analytics

Spark Streaming

Kafka
Flume J\Z [20i]
HDFS/S3 Sp Qr K [Databases]
Kinesis Streamlng [Dashboards]
Twitter
input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine L1l

https://spark.apache.org/docs/latest/streaming-programming-quide.html

https://spark.apache.org/docs/latest/streaming-programming-guide.html

Dstream

RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4

datafrom | __ = datafrom ' datafrom __ ' datafrom =

DStream ===+« ° : . .
timeOto1l time 1to 2 time 2to 3 time3to4

e A basic abstraction provided by Spark Streaming
e Represents a continuous stream of data
e Contains a continuous series of RDDs at different time

Dstream Example

RDD @ time 1 RDD @ time 2

data from
time 1to 2

data from

DStream ===« -
timeOto 1l

First, we import StreamingContext, which is the main entry point for all streaming functionality. We create a local

StreamingContext with two execution threads, and batch interval of 1 second.

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

Create a local StreamingContext with two working thread and batch interval of 1 second
sc = SparkContext("local[2]", "NetworkWordCount™)
ssc = StreamingContext(sc, 1)

Using this context, we can create a DStream that represents streaming data from a TCP source, specified as hostname (e.g.
Tocalhost) and port (e.g. 9999).

Create a DStream that will connect to hostname:port, like localhost:9999
Tines = ssc.socketTextStream("localhost”, 9999)

This Tines DStream represents the stream of data that will be received from the data server. Each record in this DStream is

aline of text. Next, we want to split the lines by space into words.

Split each line into words
words = Tines.flatMap(lambda Tine: Tine.split(" "))

RDD @ time 3 RDD @ time 4

data from

data from
time 2to 3)

time3to4

This Tines DStream represents the stream of data that will be received from the data server. Each record in this DStream is

a line of text. Next, we want to split the lines by space into words.

split each line into words
words = lines.flatMap(lambda 1ine: Tline.sp1lit(" "))

flatMap is a one-to-many DStream operation that creates a new DStream by generating multiple new records from each
record in the source DStream. In this case, each line will be split into multiple words and the stream of words is represented

as the words DStream. Next, we want to count these words.

Count each word in each batch
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print the first ten elements of each RDD generated in this DStream to the console

wordCounts.pprint()

The words DStream is further mapped (one-to-one transformation) to a DStream of (word, 1) pairs, which is then
reduced to get the frequency of words in each batch of data. Finally, wordcounts .pprint () will print a few of the counts

generated every second.

Note that when these lines are executed, Spark Streaming only sets up the computation it will perform when it is started,
and no real processing has started yet. To start the processing after all the transformations have been setup, we finally call

ssc.start() # Start the computation

ssc.awaitTermination() # wait for the computation to terminate

Spark Structured Streaming

Tumbling Window
Unbounded Table Frput strean
' EEN EE E BH
| [
| —O——— 0
Data Stream | | | a‘ i
‘ New data in the Win}ow 3 Windlow 2 Winiow 1
data stream
| New rows appended
to an unbounded table Sliding Window
Input Stream
| EEN EE H H
=(%) {20y L '\
Data stream as an unbounded table . e I

Spark Structured Streaming

Tumbling Window

Input Stream

Window 3 Window 2 Window 1

The following snippet calculates the visitors' count monthly. It is a windowed

aggregation with a tumbling window of 30 days and counts all the records.

dfPatients \
.groupBy (window(col("visitDate"), "30 days")) \
.agg(count("PID").alias("aggregate_count”)) \

.select("window.start"”, "window.end", "aggregate_ count")

Sliding Window

Input Stream

l Window 1
Window 2
Window 3

The following snippet calculates the monthly visitor count and emits the results every
week. We have created a window on the visitDate for every 30 days and a sliding
interval of a week.

dfpatients \
.groupBy (F.window(F.col ("VisitDate"), "30 days”, "1 week")) \
.agg(F.count("PID").alias("aggregate_count™)) \

.select("window.start”, "window.end", “aggregate_count")

Airflow

Workflow

e A sequence of tasks involved in moving from the beginning to the end of a
working process
e Started on a schedule or triggered by an event

10

DAG (Directed Acyclic Graph)

In Airflow, workflows are created using DAGs
A DAG is a collection of tasks that you want to schedule and run, organized in

a way that reflects their relationships and dependencies
e The tasks describe what to do, e.g., fetching data, running analysis, triggering

other systems, or more
e A DAG ensures that each task is executed at the right time, in the right order,

or with the right issue handling
e A DAG is written in Python

11

Airflow architecture

Scheduler: handles both triggering scheduled workflows, and submitting tasks to the executor to run.
Executor: handles running tasks.

Webserver: a handy user interface to inspect, trigger and debug the behavior of DAGs and tasks.

A folder of DAG files: read by the scheduler and executor

A metadata database: used by the scheduler, executor and webserver to store state

T
e A

Metadata
Database

&1_/

{ |

Scheduler

Workers I

Executor
S S |

User

Webserver
Interface

J

-—

A

DAG
Directory

Executors

® SequencialExecutor: The Sequential Executor in Apache Airflow executes tasks one after the other in the order
they are scheduled. While simple and easy to set up, it lacks parallelism and doesn't support concurrent task
execution, making it suitable only for very basic, non-concurrent workflows and small-scale development setups.

® LocalExecutor: The Local Executor, unlike the Sequential Executor, allows limited parallelism by running tasks in
separate processes on the same machine.

® CeleryExecutor: The Celery Executor in Apache Airflow leverages Celery, a distributed task queue system, to
enable concurrent and parallel task execution across multiple worker nodes.

® KubernetesExecutor: The Kubernetes Executor in Airflow leverages Kubernetes clusters to distribute task
execution across containers, allowing seamless scaling of resources based on demand.

13

Airflow vs Streaming solutions

e Airflow is not a streaming solution. Tasks do not move data from one to another in a dynamic fashion as we
do in streaming solutions.

e Workflows are expected to be slightly more static or slowly changing. This allows for clarity around a unit of
work and consistent orchestration cycles.

/—‘[branch_a]* { follow_branch_a]\
[run_this_ﬁrs(H branchingJ

4 hanch false —m—m———————

join I

—

14

Sample Use Case using Airflow for ML Pipelines

Typical End-to-End ML Pipeline

Jsers

Data Ingest

Airow .

KubemelesPodOperm (KPO) KPO

.
(%) + m'f fow &
fetch updated
fetch new data /“ streamint code I N
chcch 'ov new train model on / \ email on
GPU node \ completion
/
) “ sk 1.7 / P 4
training code update ray
S3KeySensorAsync ~ server EmailOperator

o X -
@ @task decorator

&3>

15

HW CLARIFICATIONS:

Task 2 Build workflows
Q2.1 Implement this DAG (25 pts)

O Tasks and dependencies (10 pts)
O Manually trigger it (10 pts)
O Schedule the first run immediately and running the program every 30 minutes (5 pts)

(] Python operators
(| Bash operators

44

asks and Scheduler

datetime datetime, timedelta
el e def correct_sleeping_function():

time.sleep(2)

airflow DAG

airflow.operators.bash BashOperator
airflow.operators.python PythonOperator

DAG (
default args = { *helloworld
owner': ‘cong’, default_args=default_args,
'depends_on_past': False, description="'A simple toy DAG',
‘email': ['ch3212@columbia.edu'l, schedule_interval=timedelta(days
rt_date=datetime(2021, 1, 1),

‘email_on_failure': F
z ~atchup=False,
['example'l,

nds=30),
PythonOperator(
task_id="t1°',
python_callable=correct_sleeping_function,

)

t2_1 PythonOperator(
Taskiid=stoNi:

_1°,
python_callable=correct_sleeping_function,

)

t2 8 PythonOperator(
ask_id="'t2_2"',
allable—=correct_sleeping_function,
retries=3,
)
g 4] PythonOperator(
L 2t 38

te _id 5
python_callable=correct_sleeping_function,

PythonOperator(
W g=U g e

DA?.(L 1 python_callable=correct_sleeping_function,
'helloworld’,
default_args-default_args, = P thonOp e Ao
description="A simple toy DAG', Bl G R 2 o) .

i X python_callable-correct_sleeping_function,
schedule_interval=timedelta(days
start_date=datetime(2021, 1, 1), v EaanOperaranC
catchup=False, W =ramT
_ ommand="sleep 2°',
tags=['example'l, s
LETH

Operators

Ok wON=

PythonOperator
BashOperator
branch_operator
email_operator
mysql_operator
DataprocOperator

PythonOperator:

def function():
print(123)

task = PythonOperator(
task_id="task _id',
python_callable=function,

)

BashOperator:

task = BashOperator(
task_id="task _id',
bash_command='sleep 2',

)

other examples
bash_command="python python_code.py’
bash _command="'bash bash_code.sh ’

(must have a spacﬁ to
satisfy Jinja template !!)

18

Operators — Suggested Examples

Python Operators Bash Operators

count = o t5 = BashOperator(

correct_sleeping function(): taSk_le 155" -

"This is a fun on that will run within the DAC e baSh command:'glepp l'
time.sleep(2) - : - ?

count_function():
count
count += 1 t6 = BashOperator(
print(‘output of count_increase: ' .format(count)) - ty 1
task id="t6",

time.sleep(2)
: : bash command="sleep
print_function() —

print('This re
time.sleep(2)

PythonOperator(
task_id="t7",
python_callable=correct_sleeping function,

PythonOperator(
task_id="ts8’,
python_callable=print_function,

19

