
EECS E6893 Big Data Analytics
HW2: Steaming Big Data Analytics & Data Analytics
Pipeline
TUTORIAL 2

Ajinkeya Chitrey
ac5166@columbia.edu

1

Agenda

● Streaming Analytics

● Data pipeline orchestration using Apache Airflow

2

Streaming Analytics

Spark Streaming

https://spark.apache.org/docs/latest/streaming-programming-guide.html

https://spark.apache.org/docs/latest/streaming-programming-guide.html

Dstream

● A basic abstraction provided by Spark Streaming
● Represents a continuous stream of data
● Contains a continuous series of RDDs at different time

Dstream Example

Spark Structured Streaming
Tumbling Window

Sliding Window

Spark Structured Streaming

Tumbling Window Sliding Window

Airflow

Workflow

● A sequence of tasks involved in moving from the beginning to the end of a
working process

● Started on a schedule or triggered by an event

10

DAG (Directed Acyclic Graph)

11

● In Airflow, workflows are created using DAGs
● A DAG is a collection of tasks that you want to schedule and run, organized in

a way that reflects their relationships and dependencies
● The tasks describe what to do, e.g., fetching data, running analysis, triggering

other systems, or more
● A DAG ensures that each task is executed at the right time, in the right order,

or with the right issue handling
● A DAG is written in Python

A

B

D

C

Airflow architecture

● Scheduler: handles both triggering scheduled workflows, and submitting tasks to the executor to run.
● Executor: handles running tasks.
● Webserver: a handy user interface to inspect, trigger and debug the behavior of DAGs and tasks.
● A folder of DAG files: read by the scheduler and executor
● A metadata database: used by the scheduler, executor and webserver to store state

12

Executors

13

● SequencialExecutor: The Sequential Executor in Apache Airflow executes tasks one after the other in the order
they are scheduled. While simple and easy to set up, it lacks parallelism and doesn't support concurrent task
execution, making it suitable only for very basic, non-concurrent workflows and small-scale development setups.

● LocalExecutor: The Local Executor, unlike the Sequential Executor, allows limited parallelism by running tasks in
separate processes on the same machine.

● CeleryExecutor: The Celery Executor in Apache Airflow leverages Celery, a distributed task queue system, to
enable concurrent and parallel task execution across multiple worker nodes.

● KubernetesExecutor: The Kubernetes Executor in Airflow leverages Kubernetes clusters to distribute task
execution across containers, allowing seamless scaling of resources based on demand.

Airflow vs Streaming solutions

● Airflow is not a streaming solution. Tasks do not move data from one to another in a dynamic fashion as we
do in streaming solutions.

● Workflows are expected to be slightly more static or slowly changing. This allows for clarity around a unit of
work and consistent orchestration cycles.

14

Sample Use Case using Airflow for ML Pipelines

15

16

HW CLARIFICATIONS:

Task 2 Build workflows

Q2.1 Implement this DAG (25 pts)

○ Tasks and dependencies (10 pts)
○ Manually trigger it (10 pts)
○ Schedule the first run immediately and running the program every 30 minutes (5 pts)

Tasks and Scheduler

17

Operators

18

1. PythonOperator
2. BashOperator
3. branch_operator
4. email_operator
5. mysql_operator
6. DataprocOperator

…

...

PythonOperator:

def function():
print(123)

task = PythonOperator(
task_id='task_id',
python_callable=function,

)

BashOperator:

task = BashOperator(
task_id='task_id',
bash_command='sleep 2',

)
other examples
bash_command='python python_code.py’
bash_command='bash bash_code.sh ‘

(must have a space to
satisfy Jinja template !!)

Operators – Suggested Examples

19

Python Operators Bash Operators

