EECS E6893 Big Data Analytics
HW2: Classification and Twitter data analysis with Spark Streaming

Guoshiwen Han, gh2567@columbia.edu
Agenda

- Binary classification with Spark MLlib
 - Logistic Regression

- Twitter data analysis with Spark Streaming
 - LDA
Logistic Regression

- Logistic Function:
 \[
p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}
 \]
 \[
 \log \left(\frac{p(X)}{1 - p(X)} \right) = \beta_0 + \beta_1 X.
 \]

- Likelihood Function:
 \[
 \ell(\beta_0, \beta_1) = \prod_{i: y_i = 1} p(x_i) \prod_{i': y_{i'} = 0} (1 - p(x_{i'})).
 \]
Spark Streaming

Dstream

- A basic abstraction provided by Spark Streaming
- Represents a continuous stream of data
- Contains a continuous series of RDDs at different time
Architecture

Spark Streaming

Spark Context

Google Storage

BigQuery

Twitter API

Socket

Request

Data

Put streaming data

Read data

Write data
LDA (Latent Dirichlet allocation)

- A topic model.
- A three-layer Bayesian probability model, including a three-layer structure of words, topics, and documents.
- It can be used to generate a document, and identify themes in a large-scale document.
LDA (Latent Dirichlet allocation)

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANIGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive $400,000 each. The Juilliard School, where music and the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000 donation, too.
LDA (Latent Dirichlet allocation)

- The left side is the word node, and the right side is the document node. Each word node stores some weight values to indicate which topic the word is related to; similarly, each article node stores an estimate of the topic discussed in the current article.

\[p(w|d) = \sum_{i=1}^{k} p(w|z_k) \cdot p(z_k|d) \]

d is the document, *w* is the word, *z* is the topic, and *k* is the number of topics.
HW2
HW2 Part I Binary classification with Spark MLlib

- Adult dataset from UCI Machine Learning Repository
- Given information of a person, predict if the person could earn > 50k per year
HW2 Part I Binary classification with Spark MLlib

Workflow
- Data loading: load data into Dataframe

```scala
data.show(3)
```

```
| _c0| _c1| _c2| _c3| _c4| _c5| _c6| _c7| _c8| _c9| _c10|_c11|_c12|
|---|---|---|---|---|---|---|---|---|---|---|---|
| _c13| _c14|

| 39| State-gov| 77516.0| Bachelors| 13.0| Never-married| Adm-clerical| Not-in-family| White| Male| 2174.0| 0.0|40.0| United-States| <=50K|
| 50| Self-emp-not-inc| 83311.0| Bachelors| 13.0| Married-civ-spouse| Exec-managerial| Husband| White| Male| 0.0| 0.0|13.0| United-States| <=50K|
| 38| Private|215646.0| HS-grad| 9.0| Divorced| Handlers-cleaners| Not-in-family| White| Male| 0.0| 0.0|40.0| United-States| <=50K|

---

only showing top 3 rows
## HW2 Part I Binary classification with Spark MLlib

### Workflow
- **Data preprocessing:** Convert the categorical variables into numeric variables with ML Pipelines and Feature Transformers

<table>
<thead>
<tr>
<th>dataset</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>age: integer (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>workclass: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>fnlgt: double (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>education: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>education_num: double (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>marital_status: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>occupation: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>relationship: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>race: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>sex: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>capital_gain: double (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>capital_loss: double (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>hours_per_week: double (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>native_country: string (nullable = true)</td>
</tr>
<tr>
<td></td>
<td>income: string (nullable = true)</td>
</tr>
</tbody>
</table>

```scala
(13) println(df.show(2))
```

```
<table>
<thead>
<tr>
<th>age</th>
<th>workclass</th>
<th>fnlgt</th>
<th>education</th>
<th>education_num</th>
<th>marital_status</th>
<th>occupation</th>
<th>relationship</th>
<th>race</th>
<th>sex</th>
<th>capital_gain</th>
<th>capital_loss</th>
<th>hours_per_week</th>
<th>native_country</th>
<th>income</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>State-gov</td>
<td>77568.0</td>
<td>Bachelors</td>
<td>3.0</td>
<td>Never-married</td>
<td>Adm-clerical</td>
<td>Not-in-family</td>
<td>White</td>
<td>Male</td>
<td>2174.0</td>
<td>0.0</td>
<td>0.0</td>
<td>United-States</td>
<td>80.0</td>
</tr>
<tr>
<td>50</td>
<td>Self-emp-not-inc</td>
<td>33616.0</td>
<td>Bachelors</td>
<td>3.0</td>
<td>Married-civ-spouse</td>
<td>Exec-managerial</td>
<td>Husband</td>
<td>White</td>
<td>Male</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>United-States</td>
<td>30.0</td>
</tr>
</tbody>
</table>
```

only showing top 2 rows
HW2 Part I Binary classification with Spark MLlib

● Workflow
  ○ Modelling:
    Logistic Regression
    KNN
    Random Forest
    Naive Bayes
    Decision Tree
    Gradient Boosting Trees
    Multi-layer perceptron
    Linear Support Vector Machine
    One-vs-Rest

https://spark.apache.org/docs/latest/ml-classification-regression.html
HW2 Part I Binary classification with Spark MLlib

- **Workflow**
  - Evaluation (Logistic Regression)

```python
plt.ylabel('Beta Coefficients')
plt.show()

print('Training set areaUnderROC: ' + str(trainingSummary.areaUnderROC))
```

![ROC Curve Diagram](image)
HW2 Part I Binary classification with Spark MLlib

- Workflow
  - Evaluation (Logistic Regression)

```
plt.ylabel('Precision')
plt.xlabel('Recall')
plt.show()
```

```
print("Accuracy: %s\nFPR: %s\nTPR: %s\nF-measure: %s\nPrecision: %s\nRecall: %s" % (accuracy, falsePositiveRate, truePositiveRate, fMeasure, precision, recall))
```

Accuracy: 0.852662929221444
FPR: 0.317288962595939
TPR: 0.852662929221444
F-measure: 0.8475083896808702
Precision: 0.8469035949642436
Recall: 0.852662929221444

```
evaluator.evaluate(predictions)
```

```
Out[54]: 0.8993574699928725
```

```
In [55]: # accuracy
correct = float(predictions.filter(pred: total = float(predictions.count()})
print(correct, total, correct/total)
```

8218.0  9729.0  0.8446911296124987
HW2 Part II Twitter Data Analysis

- Calculate the accumulated hashtags count sum for 600 seconds and sort it by descending order of the count.
- Filter the chosen 5 words and calculate the appearance frequency of them in 60 seconds for every 60 seconds (no overlap).
- Save results to google BigQuery.
- Use LDA to do classification to your streaming, see the topic distribution.
Register on Twitter Apps (Do this ASAP)

```python
credentials
TODO: replace with your own credentials
ACCESS_TOKEN = '' # your access token
ACCESS_SECRET = '' # your access token secret
CONSUMER_KEY = '' # your API key
CONSUMER_SECRET = '' # your API secret key
```

https://developer.twitter.com/en/apply-for-access.html
Socket

Use TCP, need to provide IP and Port for client to connect

```python
class twitter_client:
 def __init__(self, TCP_IP, TCP_PORT):
 self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.s.bind((TCP_IP, TCP_PORT))

 def run_client(self, self, tags):
 try:
 self.s.listen(1)
 while True:
 print("Waiting for TCP connection...")
 conn, addr = self.s.accept()
 print("Connected... Starting getting tweets.")
 sendData(conn, tags)
 conn.close()
 except KeyboardInterrupt:
 exit
```
Spark Streaming

```python
if __name__ == '__main__':
 # Spark settings
 conf = SparkConf()
 conf.setMaster('local[2]')
 conf.setAppName("TwitterStreamApp")

 # create spark context with the above config
 sc = SparkContext(conf=conf)
 sc.setLogLevel("ERROR")

 # create sql context, used for saving rdd
 sql_context = SQLContext(sc)

 # create the Streaming Context from the above spark context with batch interval size 5 seconds
 ssc = StreamingContext(sc, 5)
 # setting a checkpoint to allow RDD recovery
 ssc.checkpoint("~/checkpoint_TwitterApp")

 # read data from port 9001
 dataStream = ssc.socketTextStream("localhost",9001)
 dataStream.pprint()
```

Create a local StreamingContext with two working thread and batch interval of 5 second.

Create stream from TCP socket IP localhost and Port 9001
Spark Streaming

```python
Start streaming process, wait for 600s and then stop.
ssc.start()
time.sleep(STREAMTIME)
ssc.stop(stopSparkContext=False, stopGraceFully=True)
```

STREAMTIME = 600  # time that the streaming process runs

Start streaming context

Stop after 600 seconds (You can set STREAMTIME to a smaller value at first)

Save results to BigQuery
Start streaming

1. Run twitterHTTPClient.py
2. Run sparkStreaming.py
3. You can test sparkStreaming.py multiple times and leave twitterHTTPClient.py running
4. Stop twitterHTTPClient.py (on job page of the cluster or use gcloud command)
Task1: hashtagCount

```python
def hashtagCount(words):
 """
 Calculate the accumulated hashtags count sum from the beginning of the stream and sort it by descending order of the count.
 Ignore case sensitivity when counting the hashtags:
 """#Ab"" and ""#ab"" is considered to be a same hashtag
 You have to:
 1. Filter out the word that is hashtags.
 Hashtag usually start with ""#"" and followed by a serious of alphanumerics
 2. map (hashtag) to (hashtag, 1)
 3. sum the count of current DStream state and previous state
 4. transform unordered DStream to a ordered Dstream
 Hints:
 you may use regular expression to filter the words
 You can take a look at updateStateByKey and transform transformations
 Args:
 dstream(DStream): stream of real time tweets
 Returns:
 DStream Object with inner structure (hashtag, count)
 """

 # TODO: insert your code here
 pass
```
Task2: wordCount

WORD = ['data', 'spark', 'ai', 'movie', 'good']  # the words you should filter and do word count

# Helper functions

def wordCount(words):
    # Calculate the count of 5 special words for every 60 seconds (window no overlap)
    # You can choose your own words.
    # Your should:
    # 1. filter the words
    # 2. count the word during a special window size
    # 3. add a time related mark to the output of each window, ex: a datetime type
    # Hints:
    # You can take a look at reduceByKeyAndWindow transformation
    # Dstream is a serious of rdd, each RDD in a DStream contains data from a certain interval
    # You may want to take a look of transform transformation of DStream when trying to add a time
    # Args:
    #  dstream(DStream): stream of real time tweets
    # Returns:
    #  DStream Object with inner structure (word, (count, time))

    # TODO: insert your code here
    pass
Task 3: Save results

Create a dataset:

```
bq mk <Dataset name>
```

Replace with your own bucket and dataset name:

```python
global variables
bucket = ""
TODO: replace with your own bucket name
output_directory_hashtags = 'gs://{}/hadoop/tmp/bigquery/pyspark_output/hashtagsCount'.format(bucket)
output_directory_wordcount = 'gs://{}/hadoop/tmp/bigquery/pyspark_output/wordcount'.format(bucket)

output table and columns name
output_dataset = '"' # the name of your dataset in BigQuery
output_table_hashtags = 'hashtags'
columns_name_hashtags = ['hashtags', 'count']
output_table_wordcount = 'wordcount'
columns_name_wordcount = ['word', 'count', 'timestamp']
```
Task3: Save results

# save hashtags count and word count to google storage
# used to save to google BigQuery
# You should:
#  1. topTags: only save the last DStream
#  2. wordCount: save each DStream
# Hints:
#  1. You can take a look at foreachRDD transformation
#  2. You may want to use helper function saveToStorage
# TODO: insert your code here
### Sample Results

<table>
<thead>
<tr>
<th>Row</th>
<th>Time</th>
<th>count</th>
<th>word</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2019-10-18 23:30:10 UTC</td>
<td>2</td>
<td>ai</td>
</tr>
<tr>
<td>2</td>
<td>2019-10-18 23:30:50 UTC</td>
<td>2</td>
<td>ai</td>
</tr>
<tr>
<td>3</td>
<td>2019-10-18 23:31:30 UTC</td>
<td>3</td>
<td>ai</td>
</tr>
<tr>
<td>4</td>
<td>2019-10-18 23:31:50 UTC</td>
<td>5</td>
<td>ai</td>
</tr>
<tr>
<td>5</td>
<td>2019-10-18 23:31:10 UTC</td>
<td>8</td>
<td>ai</td>
</tr>
<tr>
<td>6</td>
<td>2019-10-18 23:30:30 UTC</td>
<td>10</td>
<td>ai</td>
</tr>
<tr>
<td>7</td>
<td>2019-10-18 23:30:10 UTC</td>
<td>1</td>
<td>data</td>
</tr>
<tr>
<td>8</td>
<td>2019-10-18 23:31:50 UTC</td>
<td>1</td>
<td>data</td>
</tr>
<tr>
<td>9</td>
<td>2019-10-18 23:30:50 UTC</td>
<td>1</td>
<td>data</td>
</tr>
<tr>
<td>10</td>
<td>2019-10-18 23:31:10 UTC</td>
<td>2</td>
<td>data</td>
</tr>
<tr>
<td>11</td>
<td>2019-10-18 23:31:20 UTC</td>
<td>2</td>
<td>good</td>
</tr>
</tbody>
</table>
Task 4: LDA Classification

- Load your streaming

```python
spark_df.show()
```

```
+-----------------------------+
| words |
+-----------------------------+
| [Hi, I, heard, ab...] |
| [I, wish, Java, c...] |
| [Logistic, regres...] |
+-----------------------------+
```
Task4: LDA Classification

- Do classification
- Check the weight of every topic distribution

```python
transformed.show(truncate=False)
```

```
<table>
<thead>
<tr>
<th>topicDistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0. 0.15507417459822004, 0.1550728393967869, 0.8580192339534809, 0.15507283495435582, 0.1550734753977979, 0.15507454092087107, 0.111611617277430928, 0.111611687576324213, 0.1438443673120081, 0.111611693199529186, 0.11611469213723304, 0.1161120037044054, 0.115507709935122908, 0.15507792523275011, 0.19206149229381127, 0.15507722462775812, 0.1550796508759411, 0.155078109498377]</td>
</tr>
</tbody>
</table>
```
Task 4: LDA Classification

- Output topic and vocabulary distribution

```
print(topics)
```

Learned topics (as distributions over vocab of 16 words):
DenseMatrix([[0.69497654, 0.6745065, 1.46407035, 0.71606946, 0.68823238, 0.83995925, 0.71709871, 1.13603813, 0.86361908, 0.88846945], [0.8478173, 0.61279355, 1.17889067, 0.73694848, 0.64281227, 0.65817783, 0.79481916, 0.8035318, 0.76980272, 0.92066953], [0.78510867, 0.77847208, 0.86279637, 0.81701682, 0.58656788, 0.79704796, 0.77827968, 1.22829593, 0.73297109, 0.76163522], [0.78489061, 0.77776822, 1.33782363, 0.74432285, 0.76384188, 0.81880924, 0.78365265, 0.81179619, 0.97346241, 0.8602109], [0.70132889, 0.81153272, 0.70012903, 0.81389106, 0.71879648, 0.80034944, 0.61262942, 1.06997399, 0.72904109, 0.6892238], [0.72429644, 0.94308907, 0.73973033, 0.74226237, 0.73192789, 0.72408692, 1.0964796, 0.66232373, 0.6901715, 0.78957828], [0.75369384, 0.90705663, 0.5635939, 0.66292691, 0.60902154, 0.76171012, 0.58526171, 1.15064891, 0.8222317, 0.66119302], [0.72804759, 0.88032802, 1.3391255, 0.63925354, 0.79383212, 0.90687066, 0.69586907, 0.68069846, 0.69006699, 0.94959428], [0.75916987, 0.73727924, 0.55095965, 0.79689776, 0.80397701, 0.73422704, 0.9370958, 0.76371326, 0.66565853, 0.6708945], [0.76248368, 0.58984395, 0.69364698, 0.71571205, 0.92289406, 0.89340239, 1.06406147, 0.81177578, 0.7188162, 0.78183528], [0.64441378, 0.68018412, 1.4021663, 0.74996672, 0.74679628, 0.72429644, 0.94308907, 0.73973033, 0.74226237, 0.73192789, 0.72408692, 1.0964796, 0.66232373, 0.6901715, 0.78957828, 0.75369384, 0.90705663, 0.5635939, 0.66292691, 0.60902154, 0.76171012, 0.58526171, 1.15064891, 0.8222317, 0.66119302, 0.72804759, 0.88032802, 1.3391255, 0.63925354, 0.79383212, 0.90687066, 0.69586907, 0.68069846, 0.69006699, 0.94959428, 0.75916987, 0.73727924, 0.55095965, 0.79689776, 0.80397701, 0.73422704, 0.9370958, 0.76371326, 0.66565853, 0.6708945, 0.76248368, 0.58984395, 0.69364698, 0.71571205, 0.92289406, 0.89340239, 1.06406147, 0.81177578, 0.7188162, 0.78183528, 0.64441378, 0.68018412, 1.4021663, 0.74996672, 0.74679628])

Topic 0:
a documents of in vectors to and feature correspond are

Topic 1:
as follows:

feature and vectors estimating function words).

using Rather

Topic 2:
a of as be follows:

topics infers algorithm documents. thought