
EECS E6893 Big Data Analytics
HW2: Steaming Big Data Analytics & Data Analytics
Pipeline
TUTORIAL 1

Apurva Patel
amp2365@columbia.edu

October 04, 2024

1

mailto:amp2365@columbia.edu

Agenda

● Streaming Analytics on Polygon stock data

● Data pipeline orchestration using Apache Airflow

2

STREAMING ANALYTICS

Spark Streaming

https://spark.apache.org/docs/latest/streaming-programming-guide.html

https://spark.apache.org/docs/latest/streaming-programming-guide.html

Streaming Analytics Setup
● Step 1: Create your account using your Columbia email ID on Polygon

https://polygon.io/dashboard

● Step 2: Login and Save your API Key from Dashboard (You will use your own unique
API key in the following exercise)

Streaming Analytics Setup

● Step 3: Pull data from Polygon

Streaming Analytics Setup

● Step 4: Create your GCP Dataproc Cluster as done for previous assignments and setup
the Polygon API

Streaming Analytics Setup

TO DO
1. Pull the stock data of “AAPL” at 1-minute level resolution every 5 minutes. Each such pull made
once every 5 minutes should have data from the (current timestamp - one hour) to the current
timestamp when you hit the api i.e. one hour's worth of data in each pull. Let this entire process run
for 30 minutes. At the end of your program, your code should have generated ~1.5 hours worth of
data for the stock and the api should have been called 7 times (once every 5 minutes, over a period of
30 minutes).

TO DO
2. In each data pull, the data should be incrementally loaded into a Spark data frame where the data
frame schema will be [‘Stock Name’, “UTC Timestamp”, “c”, “l”, ”h”, ”o”, ”v”]

Sample flow of incremental update operation:

Data Currently in dataframe Data from latest api pull
Final dataframe state after
incremental update

TO DO
3. Every 5 minutes, after inserting data into the dataframe, compute the 30-minute moving averages
for the stock's "c", "l", "h", "o", and "v" values. Store these moving averages incrementally in a
separate PySpark dataframe with the schema [“Datetime", “c_MA", "l_MA", "h_MA", "o_MA",
"v_MA"], where “Datetime" represents the end timestamp of the moving average window.

Moving Averages for the data
called till 2023-10-02 22:42:00

Moving Averages for all the data present
after next api call at 2023-10-02 22:46:00

To Submit:
- PDF with screenshots of your code, brief explanation of the code worflow and the

results i.e. dataframe holding the streamed data and the dataframe holding the
moving averages.

- Code file for Streaming Analytics section

Important Notes:
- The data should be pulled anytime between 12pm – 4pm on Monday – Friday since that is the only
time you will get real-time stock data when the markets are operational so plan your assignment
timeline well. You will most probably not be able to pull data outside these timings accurately and on
weekends.
- You may not get the data for each minute level timestep, there may be a few data points missing
here and there which is fine but ensure that the majority of the expected timestamps are present in
each pull.

AIRFLOW DATA PIPELINING

Workflow

● A sequence of tasks involved in moving from the beginning to the end of a
working process

● Started on a schedule or triggered by an event

14

● A platform that lets you create, schedule, monitor and manage workflows

15

Principles:

● Scalable
● Dynamic
● Extensible
● Elegant

Features:

● Pure Python
● Useful UI
● Robust Integrations
● Easy to Use
● Open Source

DAG (Directed Acyclic Graph)

16

● In Airflow, workflows are created using DAGs
● A DAG is a collection of tasks that you want to schedule and run, organized in

a way that reflects their relationships and dependencies
● The tasks describe what to do, e.g., fetching data, running analysis, triggering

other systems, or more
● A DAG ensures that each task is executed at the right time, in the right order,

or with the right issue handling
● A DAG is written in Python

A

B

D

C

Airflow architecture

● Scheduler: handles both triggering scheduled workflows, and submitting tasks to the executor to run.
● Executor: handles running tasks.
● Webserver: a handy user interface to inspect, trigger and debug the behavior of DAGs and tasks.
● A folder of DAG files: read by the scheduler and executor
● A metadata database: used by the scheduler, executor and webserver to store state

17

Workflow

● Cook a pizza

18

Airflow installation

19

Three choices

1. Install and use Airflow in the VM of GCP
2. Install and use airflow in your local machines
3. Google composer

20

Set up the firewall

● VPC network → Firewall → Create Filewall rule
● Set service account scope and protocols and ports

21

Create a VM instance

22

Create a VM instance

23

Create a VM instance

24

Connect to your VM using SSH

25

Connect to your VM using SSH

26

Install and update packages

27

1. sudo apt update
2. sudo apt -y upgrade
3. sudo apt-get install wget
4. sudo apt install -y python3-pip

Download miniconda and create a virtual environment

28

1. mkdir -p ~/miniconda3
2. wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O
~/miniconda3/miniconda.sh
3. bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
4. rm -rf ~/miniconda3/miniconda.sh
5. ~/miniconda3/bin/conda init bash
6. ~/miniconda3/bin/conda init zsh
reopen (or we say reconnect) your terminal and create a new environment
7. conda create --name airflow python=3.8
activate the environment (everytime you open a new terminal, you should run this)
8. conda activate airflow
optional but in case you don’t like warnings
9. (optional) pip install virtualenv
10. (optional) pip install kubernetes

Install Airflow

29

Airflow needs a home. `~/airflow` is the default, but you can put it
somewhere else if you prefer (optional)
export AIRFLOW_HOME=~/airflow
Install Airflow using the constraints file
AIRFLOW_VERSION=2.2.1
PYTHON_VERSION=3.8
For example: 3.8
CONSTRAINT_URL="https://raw.githubusercontent.com/apache/airflow/constraints-${AIRFLOW_VERSION}/constraints-${PYTHON_VERSION}.txt"
For example: https://raw.githubusercontent.com/apache/airflow/constraints2.2.1/constraints-3.6.txt
pip install "apache-airflow==${AIRFLOW_VERSION}" --constraint "${CONSTRAINT_URL}"
run airflow version to check if you install it successfully
airflow version
The Standalone command will initialise the database, make a user,
and start all components for you.
airflow standalone
Visit localhost:8080 in the browser and use the admin account details
shown on the terminal to login.
Enable the example_bash_operator dag in the home page

Initialize the database, make a user (enter your own
details), and start webserver

30

Initialize the database, after this you will see a new folder airflow in your
$AIRFLOW_HOME which contains configuration file airflow.cfg
1.airflow db init
2.airflow users create \

--username yunhang \
--password 123456 \
--firstname yunhang \
--lastname lin \
--role Admin \
--email yl4860@columbia.edu

3.airflow webserver --port 8080

Airflow UI on your web browser

31

● Open your browser
● Visit “http://<External IP>:8080”
● login

Start scheduler

32

Open a new terminal (you can use screen if you prefer to open only one
terminal)

1. conda activate airflow
2. airflow db init
3. airflow scheduler

Airflow examples

33

Helloworld

34

Download helloworld.py from Coursework/Files
Open a new terminal
conda activate airflow
Create dags folders
cd airflow
mkdir dags
cd dags
Upload helloworld.py here
Check if the script is correct, no errors if it’s correct
python helloworld.py
Initialize db again and you will see “helloworld” on the website after refreshing it
airflow db init

Helloworld

35

Tree Graph

Two ways to trigger a DAG

36

1. Trigger manually
2. Trigger on a schedule

Trigger manually

Scheduler

37

● The scheduler won't trigger your tasks until the
period it covers has ended.

● The scheduler runs your job one
schedule_interval after the start date, at the
end of the interval.

References

https://airflow.apache.org/docs/apache-airflow/stable/concepts/scheduler.html

https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html

https://cloud.google.com/composer/docs/triggering-dags

https://airflow.apache.org/docs/apache-airflow/stable/concepts/scheduler.html
https://airflow.apache.org/docs/apache-airflow/stable/dag-run.html
https://cloud.google.com/composer/docs/triggering-dags

Tasks

38

Operators

39

1. PythonOperator
2. BashOperator
3. branch_operator
4. email_operator
5. mysql_operator
6. DataprocOperator

…

...

PythonOperator:

def function():
print(123)

task = PythonOperator(
task_id='task_id',
python_callable=function,

)

BashOperator:

task = BashOperator(
task_id='task_id',
bash_command='sleep 2',

)
other examples
bash_command='python python_code.py’
bash_command='bash bash_code.sh ‘

(must have a space to
satisfy Jinja template !!)

Dependencies

40

t2_1 will depend on t1 running #
successfully to run. The following ways # are
equivalent:

t1 >> t2_1

t1 << t2_1

t1.set_downstream(t2_1)

t2_1.set_upstream(t1)

you can write in a chain

t1 >> t2_1 >> t3_1 >> t4_1

Trigger the dag

41

Start scheduling the DAG

Tree Gantt

Example 2

42

Example 2

43

Example 2

44

{logging_mixin.py:109} INFO - count_function output: 1

...

{logging_mixin.py:109} INFO - wrong_sleeping_function output: 0

...

assert count == 1

AssertionError

Why?

45

● Airflow Python script is just a configuration file specifying the DAG's structure as code.
● Different tasks run on different workers at different points in time
● Script cannot be used to cross communicate between tasks (Xcoms can)

Why sequential?

46

Executors

47

● SequencialExecutor
● LocalExecutor
● CeleryExecutor
● KubernetesExecutor

Take home

● DAG
● Scheduler
● Executor
● Database
● Operator

● Cross communication between tasks
● Schedule a job !! start data and schedule interval

48

Some potential error

49

1. airflow.exceptions.AirflowException: The webserver is already running under PID 20243.
Using the Command line

sudo lsof -i tcp:8080

Then, Kill all related PID
Sudo kill -9 xxxx

Or,
using the Command line

killall -9 airflow

Homework

50

Three tasks

● Helloworld
● Build sample workflow
● Design your own workflow for Yahoo Finance data

51

52

Task 1 Helloworld

Q1.1 Install Airflow (20 pts)

Q1.2 Run helloworld (15 pts)

○ SequentialExecutor
○ Explore other features and visualizations you can find in the Airflow UI. Choose two

features/visualizations to explain their functions and how they help monitor and troubleshoot the
pipeline, use helloworld as an example.

53

Task 2 Build workflows

Q2.1 Implement this DAG (20 pts)

○ Tasks and dependencies (5 pts)
○ Manually trigger it (10 pts)
○ Schedule the first run immediately and then running the program every 30 minutes (5 pts)

54

Task 3 Build workflows

Q2.2 Stock price fetching, prediction, and storage every day (25 pts)

○ Schedule fetching the stock price of [AAPL, GOOGL, FB, MSFT, AMZN].
○ Preprocess data if you think necessary
○ Train/update 5 linear regression models for stock price prediction for these 5 corporates. Each linear

model takes the “open price”, “high price”, “low price”, “close price”, “volume” of the corporate in the
current day as the feature and predicts the “high price” for the next day

○ Calculate the relative errors for the last 5 days, i.e., (prediction made from yesterday’s data for today
- actual price today) / actual price today, and update the prediction date and 5 errors into a table,
e.g., a csv file.

https://pypi.org/project/yfinance/

References

56

https://airflow.apache.org/docs/apache-airflow/stable/index.html

https://cloud.google.com/composer/docs

https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://cloud.google.com/composer/docs

