
EECS E6893 Big Data Analytics
GPU Programming 

Linyang He, linyang.he@columbia.edu

1



Outline

• GPU vs. CPU
• Overview of CUDA
• Numba
• GPU Programming in Python



GPU on Colab



CPU vs GPU

• CPUs execute tasks sequentially
• GPUs execute tasks in parallel.



CUDA

• CUDA is an extension to C++ which 
allows us to compile GPU code and 
interact with the GPU.

• Nvidia has invested in bring CUDA 
functionality to Python

• A lot of Python CUDA packages
• Numba
• CuPy
• cuDF
• cuML
• cuGraph



Numba

• Numba• Numba is an open source JIT (just in time) compiler translating 
Numpy code into fast machine code.

• Kernels written in Numba have direct access to NumPy arrays.
• NumPy arrays are transferred between the CPU and the GPU 

automatically 



Kernel

• A kernel is similar to a function, it is a block of code which takes 
some inputs and is executed by a processor.

• The difference between a function and a kernel is:
• A kernel cannot return anything, it must instead modify memory
• A kernel must specify its thread hierarchy (threads and blocks)



Grids, threads and blocks

• Threads and blocks are how you instruct you 
GPU to process some code in parallel.

• We need to specify the number of times we 
want our kernel to be called.
• number of threads should be a multiple of 32 

(warp size)
• a warp is a minimal execute unit in CUDA, 

containing 32 threads
• start from 128-512 threads per block



HW4 Part 2

• Go through Numba tutorials provided in the assignment.
• Finish two labs.


	Slide 1: EECS E6893 Big Data Analytics GPU Programming 
	Slide 2: Outline
	Slide 3: GPU on Colab
	Slide 4: CPU vs GPU
	Slide 5: CUDA
	Slide 6: Numba
	Slide 7: Kernel
	Slide 8: Grids, threads and blocks
	Slide 9: HW4 Part 2

