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EECS E6893 Big Data Analytics - Fall 2023 

Homework Assignment 2: Steaming Big Data 

Analytics & Data Analytics Pipeline 
 

Due Friday, October 20th, 2023, by 5:00pm 

 

Streaming Analytics 
 

 
Abstract: In this section, we will demonstrate how to handle live streaming data, where information is 

received in real-time. Here, analytical operations need to be performed dynamically as the data arrives, 

without having a central repository of all the data to refer to. While the ideal choice would have been 

Twitter Streaming, due to recent organizational changes and the complexity of accessing the data, we will 

instead use the Finnhub API. By making frequent requests to this API for stock price data, we will simulate 

streaming analysis and showcase the process of handling real-time data. 

 

Setup: 

Step 1: Create your account using your Columbia email ID on Finnhub 

Step 2: Login and Save your API Key (You will use your own unique API key in the following exercise) 

Step 3: Create your GCP Dataproc Cluster as done for previous assignments. 

Step 4: In your Dataproc cluster’s Jupyter notebook run the following to install the Finnhub api 

 
 

Skeleton Code: 

To pull data from Finnhub for a particular stock – the syntax is as follows: 

 
 

This code needs to be modified as per the requirements of the question. A detailed explanation of the 

parameters can be found at this link under the “Stock Candles” section. 

 

 

Tasks (20 points)  

Read all 3 parts collectively to decide the approach to be taken. 

(1) Pull the stock data of “AAPL” at 1-minute level data resolution every 5 minutes. Each such pull 

made once every 5 minutes should have data from the (current timestamp - one hour) to the current 

timestamp when you hit the api i.e. one hour's worth of data in each pull. Let this process run for 30 

minutes. At the end of your program, your code should have generated ~1.5 hours’ worth of data for 

the stock and the api should have been called 7 times (once every 5 minutes, over a period of 30 

minutes). 

 

(2) In each data pull, the data should be incrementally loaded into a Spark data frame where the 

dataframe schema will be [‘Stock Name’, “UTC Timestamp”, “c”, “l”, ”h”, ”o”, ”v”] where UTC 

timestamp will be obtained by converting the UNIX timestamps of each entry the api call will 

return under the “t” key. 

 

https://finnhub.io/
https://finnhub.io/register
https://finnhub.io/docs/api/quote
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Incremental loading entails fetching data in stages. Initially, data covering an hour, say from 

timestamp x to x+60 minutes, is retrieved and stored in a dataframe. In the subsequent pull, fetch 

data from x+5 minutes to x+65 minutes. The data from x+5 to x+60 minutes, already present in the 

dataframe, gets replaced by the new pull (though it might remain the same in our exercise, real-

world scenarios could witness changes in the same data points pulled at different intervals. HINT: 

To do this filtering operation explore the concept of antijoins). The data points from x+60 to x+65 

minutes are directly added. This process is repeated for all pulls within the next 30 minutes, 

resulting in a data frame containing data from x to x+1.5 hours. (It may exactly not be 1.5hours 

since the api sometimes may not return the exact timestamp till which you request due to lags and a 

few datapoints maybe missing here and there which is fine) 

 

 
 

 

(3) Every 5 minutes, after inserting data into the dataframe created in part (2), compute the 30-minute 

moving averages for each stock's "c", "l", "h", "o", and "v" values. Store these moving averages 

incrementally in a separate PySpark dataframe with the schema ["Datetime", "c_MA", "l_MA", 

"h_MA", "o_MA", "v_MA"], where "Datetime" represents the end timestamp of the moving 

average window. 

 

 
 

 

IMPORTANT NOTE: The data should be pulled anytime between 12pm – 4pm between Monday – Friday 

since that is the only time you will get real time stock data from this API, when the markets are operational. 

Plan your assignment timeline accordingly. You will most probably not be able to pull data outside these 

timings accurately and on weekends. 
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Airflow Data Pipelining: 
 

Task 1 Helloworld (35 pts) 

 

Q1.1 Read through the tutorial slides and install Airflow either on your local laptop or on a VM of GCP. 

You can also use google cloud composer if you know how to use that. (20 pts) 

(1) Provide screenshots of terminals after you successfully start the webserver and scheduler. 

(2) Provide screenshots of the web browser after you successfully login and see the DAGs. 

 

Q1.2 Run helloworld with SequentialExecutor (15 pts) 

(1) Provide screenshots of Tree, Graph, and Gantt charts after execution. (10 pts) 

(2) Explore other features and visualizations you can find in the Airflow UI. Choose two 

features/visualizations (other than tree, graph, and Gantt), explain their functions and how they 

help monitor and troubleshoot the pipeline, use helloword as an example. (5 pts) 

 

Task 2 Build workflows (45 pts) 

 

Q2.1 Implement the DAG below (20 pts) 

 

 

 

For each kind of operator, use at least 3 different commands. For example, you can choose sleep, print, 

count functions for Python operators, and echo, run bash script, run python file for Bash operators. 

(1) Provide screenshots of Tree and Graph in airflow. (5 pts) 

(2) Manually trigger the DAG and provide screenshots of Gantt. (10 pts) 

(3) Schedule the first run immediately and then schedule running the program every 30 minutes. 

Describe how you decide the start date and schedule interval. Provide screenshots of running 

history after two repeats (first run + 2 repeats). On your browser, you can find the running 

history. (5 pts) 
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Q2.2 Stock price fetching, prediction, and storage every day (25 pts) 

(1) Schedule fetching the stock price of [AAPL, GOOGL, META, MSFT, AMZN]. Use Yahoo! 

Finance data downloader https://pypi.org/project/yfinance/. 

(2) Preprocess data if you think necessary. 

(3) Train/update 5 linear regression models for stock price prediction for these 5 corporates. Each 

linear model takes the “open price”, “high price”, “low price”, “close price”, “volume” of the 

corporate in the current day as the feature and predicts the “high price” for the next day. 

(4) Calculate the relative errors for the last 5 days, i.e., (prediction made from yesterday’s data 

for today - actual price today) / actual price today, and update the prediction date and 5 errors 

into a table, e.g., a csv file. 

(5) Provide screenshots of your code, the resultant errors csv, and the Airflow DAG. Describe with 

screenshots briefly how to build this workflow, e.g., what the DAG is with the various tasks, how 

you manage the cross tasks communication, how you setup the airflow scheduler… 

 

 

Pointers for Q2.2: (You have to think how to create the different tasks and the overall Airflow 

execution DAG based on the question requirements, below are pointers that may give you some ideas) 

- Pull historical data for each corporate till the current date and store data for each in a csv. (Set 

period in history to “max” yf.Ticker(company_tag).history(period=’max’)) 

 

- Use this csv to incrementally train the linear regression models for each corporate’s data. The 

dataset for each model X and y should be created such that each X(d) = [“open price”, “high 

price”, “low price”, “close price”, “volume”] of date d and the corresponding y = “High price” 

for date d+1 as stated in the question. 

 

- Assume current date (the date till which you have pulled the data) is d_current.  

       For each corporate, 

o Train/Update a model using data from [X,y] till (d_current – i days) and use this model 

to predict the y for the (d_current – (i-1) day). Repeat the training and prediction for i = 

5,4,3,2,1 (make predictions for last 5 days and calculate relative errors for each 

prediction) 

o For each value of i keep storing the relative errors in a csv for each model for each 

corporate on each of the 5 testing days. 

o The final errors csv should look something like below: 

If the latest date till which you pulled data was 11/30/2022 then your final errors csv 

should look like: 

 
To give an example: the value in cell C2 represents the relative error produced by the 

linear regression model trained on Apple data till 11/25/2022 and the prediction made 

for 11/26/2022. Similarly, the value in cell C3 represents the relative error produced by 

the updated linear regression model trained on Apple data till 11/26/2022 and the 

prediction made for 11/27/2022. The value in cell F6 represents the relative error 

produced by the linear regression model trained on Microsoft data till 11/29/2022 and 

the prediction made for 11/30/2022.  

https://pypi.org/project/yfinance/
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Homework Submissions 

Streaming Analytics: 

- PDF with screenshots of your code, brief explanation of the code worflow 

and the results i.e. dataframe holding the streamed data and the dataframe 

holding the moving averages.  

- Code file for Streaming Analytics section  

 

Airflow: 

- Provide your screenshots, answers and code as mentioned in the individual questions. 


