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Demo of GPU Computing on MacBook and iPhone

Speaker: Richard Chen
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CUDA on Mac OS X oo
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<A NVIDIA CUDA TOOLKIT DOCUMENTATION

CUDA Toolkit v7.0 Getting Started Mac OS X (PDF) - v7.0
Getting Started Mac OS X

> 1. Introduction

NVIDIA CUDA Getting Started Guide for Mac OS X

[>2. Prerequisites
[>3. Installation
[> 4. Verification

1. Introduction

CUDA® is a parallel computing platform and programming model invented by NVIDIA. It enables

5. Additional Considerations harnessing the power of the graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

e Provide a small set of extensions to standard programming languages, like C, that enable
With CUDA C/C++, programmers can focus on the task of parallelization of the algorithms

e Support heterogeneous computation where applications use both the CPU and GPU. Seria
portions are offloaded to the GPU. As such, CUDA can be incrementally applied to existin
devices that have their own memory spaces. This configuration also allows simultaneous
memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing th
register file and a shared memory. The on-chip shared memory allows parallel tasks running on
system memory bus.

This guide will show you how to install and check the correct operation of the CUDA developme

1.1. System Requirements

To use CUDA on your system, you need to have:

a CUDA-capable GPU

Mac OS X 10.9 or later

the Clang compiler and toolchain installed using Xcode

the NVIDIA CUDA Toolkit (available from the CUDA Download page)
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GPU Architecture oo
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GPU Architecture
built by several streaming multiprocessors (SMs)

In each SM:
CUDA cores
Shared Memory/L1 Cache
Register File
Load/Store Units
Special Function Units
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Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)

9: v
CUDA iv Version / Runtime Version
CUDA """”’“ Ha]o‘/ﬂlfor version number:
1 global memory:
(192) CUDA Cores/MP:

MBytes
CUDA Cores
® MHz (0.90 GHz)
2508 Mhz
128-bit
262144 bytes
Dimension Size (x,y 1D=(65536), 2D=
1D Texture Size, (num) layse 1D=(16384), 2048 la
2D Texture lee‘ (num) layers (16384, 16384), 2048
constant memory:
shared memory per block:

reg isters available per

O WrE W
(oo S
N GE

S

number of thre per multiprocessor:
number of threads per block:

nsion sizo of thread block A,y,é'l
nsion s - a grid size (x,y,2):

kernel execution:
lﬁ‘* ““15‘
htccralcc U sha Host
upport host page )
Alignment requirement
Jevice has ECC support:
evice supports Unified Addressing (UVA
vice PCI Domain ID / Bus ID lo
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Example: Matrix Addition on CPU S
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Problem: Sum two matrices with M by N size.
Crmxn = Amxn + Bmxn

In traditional C/C++ implementation:
« A, B are input matrix, N is the size of A and B.
* C is output matrix
» Matrix stored in array is row-major fashion

void sumArraysOnHost(float *A, float xB, float *C,
{

(int idx = 0; idx < N; idx++)

Cl[idx] = Al[idx] + B[idx];
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Example: Matrix Addition on GPU - 2D grid with 2D blocks 7,
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Problem: Sum two matrices with M by N size.
Crmxn = Amxn + Bmxn

CUDA C implementation:
« matA, matB are input matrix, nx is column size, and ny is row size
* matC is output matrix

void sumMatrixOnGPU2D(float *MatA, float xMatB, float *MatC, int nx,
int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.Xx;
unsigned int iy = threadIdx.y + blockIdx.y * blockDim.y;
unsigned int idx = iy * nx + ix;
(ix < nx && iy < ny)
MatC[idx] = MatA[idx] + MatB[idx];

int dimx = 32;

int dimy = 32;

dim3 block(dimx, dimy);

dim3 grid((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y);

iStart = seconds();
sumMatrixOnGPU2D (d_MatA, d_MatB, d_MatC, nx, ny);
CHECK(cudaDeviceSynchronize());
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Example: Matrix Addition on GPU - 2D grid with 2D blocks 8@

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)

void sumMatrixOnGPU2D(float *MatA, float xMatB, float *MatC, int nx,
int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.Xx;

unsigned int iy = threadIdx.y + blockIdx.y * blockDim.y;
unsigned int idx = iy * nx + ix;

(ix < nx && iy < ny)

MatC[idx] = MatA[idx] + MatB[idx];

blockDim.x nx
>
S
)
~
io) Block (0,0) Block (1,0) Block (2,0) Block (3,0)
Q y3
& threadjdx.y
(ix,iy)
threaflldx.x
Block (0,1) Block (1,1) Block (2,1) Block (3,1)
ny Block (0,2) Block (1,2) Block (2,2) Block (3,2)

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix
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Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

void sumMatrixOnGPU1D(float xMatA, float xMatB, float *MatC, int nx,
int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
(ix < nx )

(int iy = 0; iy < ny; iy++) {
int idx = 1y * nx + ix;
MatC[idx] = MatA[idx] + MatB[idx];

blockDim.x nx
Block (0) Block (1) ock (2) Block (3)
)%
(ix, iy)
threadldx.x
ny Y

global linear memory index: idx = iy*nx + ix
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Example: Matrix Addition on GPU - 2D grid with 1D blocks 7,
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Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)

void sumMatrixOnGPUMix(float *MatA, float xMatB, float *MatC, int nx,

int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int iy = blockIdx.y;
unsigned int idx = iy * nx + 1ix;
(ix < nx && iy < ny)
MatC[idx] = MatA[idx] + MatB[idx];

blockDim.x nx
1 Block (0,0) ] Block (1,0) I Block (2,0) ] Block (3,0) I
Block (0,1) ] Block (1,1) ]| Block(2,1) | Block(3,1) ]
J J&—o (x iy) J
| ] threadldx.x ] |
J J J J
J J J J
J J J J
J J J J
J J J J
J J J J
ny Block (O,ny) | Block(1,ny) | Block(2,ny) | Block(3,ny) |

global linear memory index: idx = iy*nx + ix
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Example: Matrix Transpose on CPU 2

UNIVERSITY

Problem: Transpose one matrix with M by N to one matrix with N by

Amxn = Bnxm

0 4 8
0 1 2 3

1 5 9
4 5 6 7

2 6 10
8 9 10 11

In traditional C/C++ implementation:
* in is input matrix, nx is column size, and ny is row size.
* out is output matrix
» Matrix stored in array is row-major fashion

- 3 7 11
matrix

transposed

void transposeHost(float *out, float *in, int nx,
( int iy = 0; iy < ny; ++iy) {
( int ix = 0; ix < nx; ++ix) {

out[ix * ny + iyl = in[iy * nx + ix];
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Example: Matrix Transpose on GPU 2
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void transposeNaiveRow(float *out, float xin,
int ny) {
unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
(ix < nx && iy < ny) {
out[ix * ny + iy] = in[iy * nx + ix];

void transposeNaiveCol(float *out, float *in,
int ny) {
unsigned int ix = blockDim.x * blockIdx.x + threadIdx.Xx;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
(ix < nx && iy < ny) {
out[iy * nx + ix] = in[ix * ny + iy];
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Example: Matrix Transpose on GPU 2
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void transposeUnroll4Row(float *out, float xin, int nx,
int ny) {
unsigned int ix = blockDim.x * blockIdx.x * 4 + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

unsigned int ti = iy * nx + ix;

unsigned int to = ix * ny + 1iy;
(ix + 3 * blockDim.x < nx && iy < ny) {
out[to] = in[til;
out[to + ny *x blockDim.x] = in[ti + blockDim.x];
out[to + ny *x 2 *x blockDim.x] = in[ti + 2 x blockDim.x];
out[to + ny * 3 * blockDim.x] = in[ti + 3 x blockDim.x];

void transposeUnroll4Col(float *out, float xin,
int ny) {

unsigned int ix = blockDim.x * blockIdx.x * 4 + threadIdx.Xx;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
unsigned int ti = 1y * nx + ix;
unsigned int to = ix * ny + iy;

(ix + 3 * blockDim.x < nx && iy < ny) {

out [til = in[tol;

out[ti + blockDim.x] = in[to + blockDim.x * ny]l;

out[ti + 2 % blockDim.x] = in[to + 2 * blockDim.x * nyl;

out[ti + 3 * blockDim.Xx] in[to + 3 x blockDim.x * nyl;
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Example: Concurrent Processing

o

COLUMBIA
UNIVERSITY

Concurrent handle data transfer and computation

For NVIDIA GT 650M (laptop GPU), there is one copy engine.

For NVIDIA Tesla K40 (high-end GPU), there are two copy engines
The latency in data transfer could be hidden during computing

To handle two tasks, which both are matrix multiplications.

Copy two inputs to GPU, copy one output from GPU

04s 05s 06s 07s

[l [
[—r— [ Memc... | Memcpy Hto... |
Memcpy DtoH...
— ——
— —

[T T Il venc._Memcpy Hio. T~ Vemopy DioH.|
No concurrent processing

1 4 E6895 Advanced Big Data Analytics — Lecture 8

04s 045s 05s 0.55s 06s 065s

[ _____cudaMalloc | [u—
u (N |

_::_

Concurrent processing
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GPU on iOS devices
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GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the
graphics and compute potential of iOS 8 app.*

Metal could be used for:
Graphic processing = openGL

General data-parallel processing = open CL and CUDA
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https://developer.apple.com/metal/
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* Low-overhead interface

* Memory and resource management

* Integrated support for both graphics and compute operations
* Precompiled shaders
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GPU Programming in iPhone/iPad - Metal -
Programming flow is similar to CUDA
Copy data from CPU to GPU y
Computing in GPU . L I
Send data back from GPU to CPU === - -
Example: kernel code in Metal, sigmoid function: 1

kernel void sigmoid(const device float *inVector [[ buffer(®) ]].
kernel code ==sv=s s
) device float *outVector [[ buffer(l) ]].
device memory =weves
uint id [[ thread_position_in_grid ]]) {

thread_id for data parallelization
// This calculates sigmoid for _one_ position (=id) in a vector per call on the

GPU
outVector[id] = 1.0 / (1.0 + exp(-inVector[id])):

source:
18 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University
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Metal Object Relationships

p N A ™) N
Buffer Buffer Buffer
N\ [ \\
Texture Texture Texture
A J o J
Sampler Sampler Sampler
State State State ———
A\ S o —
4 Y 'd ™\
Depth Stencil| |Depth Stencil | Depth Stencil Buffer
State State State
. J - S—
" Render | [ Render ) Render | [
Pipeline Pipeline Pipeline Texture
. State State State L )
1 I I
Y Y Y ‘
Render Render Render Blit
Command Command Command Command
Encoder Encoder Encoder Encoder
i i i ‘
Y Y \/
[ Command Buffer }

:

Command Queue

" cbuf | | cbuf | | cbuf |

19
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Metal Command Buffers with Multiple Threads

CPU Thread 1 CPU Thread 2 CPU Thread 3
Buffer ” Buffer “ Buffer
(. J (. J/ \ J
Texture “ Texture H Texture
(. J - / S < J O
e N\ I
Sampler Sampler Buffer Sampler Buffer
State State State —
p J - 7 - >y
Depth Stencil  Depth Stencil Buffer Texture Buffer Depth Stencil | Texture
State State State
- — - J/ - A J
Render " Render Compute | Render Compute
Pipeline Pipeline Texture Pipeline Texture Pipeline Pipeline
State State State State State
| | i l | i
\ ! ! J \ ! Y J (. ! ! 7
Render Render Blit Compute Blit Render Compute
Command Command Command Command Command Command Command
Encoder Encoder Encoder Encoder Encoder Encoder Encoder

v v ' v ' v v
[ Command Buffer ] { Command Buffer J [ Command Buffer ]
|

Command Queue
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It integrates the support for both graphics and compute operations.

Three command encoder:
Graphics Rendering: Render Command Encoder
Data-Parallel Compute Processing: Compute Command Encoder

Transfer Data between Resource: Blitting Command Encoder

Multi-threading in encoding command is supported CPU Thread CPU Thresd 2 CPU Thread 3
Typical flow in compute command encoder Bufer ||| utr Buter
Prepare data
Put your function into pipeline Sanplr || Sampler Sanplr || Bullr
Command enCOder Dm;‘;:’"“" o"p‘s"ms(z’”' G Texture HnS D"pgasl':"c" Texture
Put command into command buffer oo || Pouie | | Totue Foome | | T Poows | Ppone
Commit it to command queue \ ' ' \ ' ' v
Gl o B oot | Bl oo
Execute the command St S § R o
\J \J \J \J \J
Get reSUIt baCk Command Buffer Command Buffer Command Buffer
I
l v
Command Queue

21
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Metal Programming, Kernel Function 2
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Compute command

* Two parameters, threadsPerGroup and numThreadgroups, determines number of
threads. = equivalent to grid and thread block in CUDA. They are all 3-D variable.

* The total of all threadgroup memory allocations must not exceed 16 KB.

» Kernel function: sigmoid function 1-/'

sigmoid( *inVector [[ buffer(9) 1],
*outVector [[ buffer(1) 1],
id [[ thread_position_in_grid 1]) {

O1Q T1C }

}
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Example 2
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initMetal() — ( ’ ’
)

device #bMTLCreatéSysfemDefaultDevice()
commandQueue = device.newCommandOuéue(f
deféultLibrary = device.newDefaultLibféfy()

rel 18 ri { man

vcommandBuffer = éomméndoﬁeué.commandBuffer()‘

”computeCommandEhCodef = commandBuffer.computeCommandEncoder()

(device, commandQueue, defaultLibrary!, commandBuffer, computeCommandEncoder)

sigmoidProgram = defaultLibrary.newFunctionWithName( )

pipelineErrors = ()

computePipelineFilter = device.newComputePipelineStateWithFunction(sigmoidProgram!, error: pipelineErrors)
computeCommandEncoder.setComputePipelineState(computePipelineFilter!)

N I il ) ) I ) n ( ] 4
inVectorBufferNoCopy = device.newBufferWithBytesNoCopy(memory, length: (size), options: , deallocator:
computeCommandEncoder.setBuffer(inVectorBufferNoCopy, offset: @, atIndex: @)

outVectorBufferNoCopy = device.newBufferWithBytesNoCopy(outmemory, length: (size), options: , deallocator:
computeCommandEncoder.setBuffer(outVectorBufferNoCopy, offset: 0, atIndex: 1)
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/ hardcoded to 32 for now (recommendation: read about threadExecutionWidth)
threadsPerGroup = MTLSize(width:32,height:1,depth:1)
numThreadgroups = MTLSize(width: ( (maxcount)+31)/32, height:1, depth:1)

computeCommandEncoder.dispatchThreadgroups(numThreadgroups, threadsPerThreadgroup: threadsPerGroup)

computeCommandEncoder.endEncoding()

commandBuffer.commit()
commandBuffer.waitUntilCompleted()

24
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Speaker: Eric Johnson
GPU Programming with
Python + CUDA on AWS EC2
Lev E. Givon
Bionet Group
Department of Electrical Engineering
Columbia University
amazon [EC 2 A thon Bl SAnvIDIA.
webservices | p g C U D A
Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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€ Setting Up a GPU Instance on EC2

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Creating an EC2 Instance

@ Note: EC2 GPU instances are not free (on-demand hourly fee
is currently $0.65/hour while the instance is running).

@ Create account on https://aws.amazon.com, sign in, and
go to the AWS EC2 console
(https://console.aws.amazon.com/ec2)

Select Launch Instance and select Ubuntu Server 14.04
LTS (HVM), SSD Volume Type.

Choose the g2.2xlarge instance type.
Add storage - choose something like 20 Gb.

Configure a security group; if you have a fixed IP address,
restrict access to that address.

© 0006 O

Click Review and Launch and generate/download an SSH
key to access the instance; you need this to login to the
running image.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Accessing the Instance

© Wait until the instance is listed as running on the EC2 console.

@ Find the instance’s public IP address; if the SSH key you
generated is saved as gpu.pemn, login to the instance from

Linux/MacOSX as follows:

1 ssh -i gpu.pem ubuntu@ec2—XXX—XXX-XXX-XXX.compute-l.amazonaws.comJ

© Before you install CUDA, you need to update the image's
kernel and restart it, otherwise the GPU driver will not work:

sudo -s

apt-get update

apt-get install linux-generic
reboot

W N =

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Installing CUDA

© Download/install CUDA 7.0 and some other useful packages:

1 wget http://developer.download.nvidia.com/compute/cuda/repos/\

2 ubuntul404/x86_64/cuda-repo-ubuntul404_7.0-28_amd64.deb

3 sudo -s

4 dpkg -i cuda-repo-ubuntul404_7.0-28_amd64.deb

5 apt-get update

6 apt-get install cuda-7-0 build-essential )

© Make sure /usr/local/cuda/bin is in your PATH:

1 echo $PATH )
If not, add the following line to your ~/.bashrc file, logout,
and login:

1 export PATH=/usr/local/cuda/bin:$PATH )

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Checking that Things Work

@ Sample code from the CUDA SDK is installed in
/usr/local/cuda/samples. Try to build one of the simple
examples as follows:

cd ~/

cp -rp /usr/local/cuda/samples .
cd samples/1_Utilities/deviceQuery
make

_Ww N =

v

The compilation should complete without any errors. Run the
compiled program in the above directory as ./deviceQuery;
it should print information about the GPU.
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© Setting up Python and PyCUDA

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Local Python Environment Management

© Ubuntu ships many Python packages that can be installed
directly using its package manager.

@ Installing newer versions (and their dependencies) manually
can be a hassle.

© One solution (others exist): conda
(http://conda.pydata.org/)

© Enables local (non-root) installation/management of prebuilt
Python packages and their dependencies.

© Can create multiple independent Python environments - useful
for trying things out without breaking one’s environment.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Installing /Using Miniconda

© Miniconda (http://conda.pydata.org/miniconda.html)
is a minimal combination of conda and Python.

@ Download and install as follows; let the installer use
miniconda as the installation directory and let it add
miniconda/bin to your PATH:

cd ~/

wget http://repo.continuum.io/miniconda/\
Miniconda-latest-Linux-x86_64.sh
./Miniconda-latest-Linux-x86_64.sh

BWwW N =

© Logout, log back in, and try installing some Python packages:

1 conda install ipython |

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Non-Conda Packages

© If a package hasn't been built for conda, you can try installing
it from the Python Package Index
(http://pypi.python.org):

1 conda install pip
2 pip install some_interesting_package J

@ You can examine both your conda and pip packages as
follows:

1 conda list )

© Other useful commands available - see conda help and the
package website.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Installing PyCUDA

© Download the latest PyCUDA tarball from PyPI (don't try to
install it using pip), unpack, configure it to look for CUDA in
the right location, build, and install:

wget https://pypi.python.org/packages/source/p/\
pycuda/pycuda-2014.1.tar.gz

tar zxf pycuda-2014.1.tar.gz

cd pycuda-2014.1

./configure.py --cuda-root=/usr/local/cuda
python setup.py install

S Ot W =

@ Try running one of the included examples:

1 cd ~/pycuda-2014.1/examples
2 python dump_properties.py J

This should print information about the instance’'s GPU.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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|IPython Notebook

@ Don't like working at the command line? Try the IPython
Notebook (http://ipython.org/notebook.html). Install
the following packages in your instance and then start the
notebook server. Make note of the port used by the server:

1 conda install ipython pyzmq jinja2 tornado mistune \
2 jsonschema pygments terminado
3 ipython notebook —--no-browser

@ Create an ssh tunnel to your EC2 instance that forwards to
the above port (e.g., 8888):

1 ssh -i gpu.pem -L 8888:1localhost:8888 \
2 ubuntu@ec2-XXX-XXX-XXX-XXX.compute-1.amazonaws.com J

© Open http://localhost:8888 in your web browser.
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What it Looks Like

Py IPython Dashboard %/ 1Py spectrogram

127.0.01 23 *

IPIyl: Notebook spectrogram  Last saved: Mar 07 11:14 PM
File Edit View Insert Cell Kernel Help

€

8 x & 0O t . ¥ % > = Markdown ¥

Simple spectral analysis

An illustration of the Discrete Fourier Transform

using windowing, to reveal the frequency content of a sound signal.

We begin by loading a datafile using SciPy’s audio file support:

In [1]: from scipy.io import wavfile
rate, x = wavfile.read('test_mono.wav') H

And we can easily view its spectral structure using matplotlib’s builtin specgram routine:

In [2]: fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(12, 4))
ax1.plot(x); axl.set_title( 'Raw audio signal')
ax2.specgram(x); ax2.set_title('Spectrogram');

2000 Raw audio signal " se;-«pgvam
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10000 5 10000 20000 0000 40000 w00 ° aoL 5000 10000 15000 20000 25000

Lev E. Givon GPU Programming with Python 4+ CUDA on AWS EC2
37 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University



a2

COLUMBIA
UNIVERSITY

© GPU Programming with Python

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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General Problem

@ Many problem scenario parameters to address: different types,
array dimensions, etc.

@ Many possible hardware scenarios: number of threads, blocks,
compute capability, etc.

@ Python reduces (but does not eliminate) the need to think
about computer architecture and hardware. Can it do the

same for GPUs?

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Human Idea — Scripting Code

— GPU Code — GPU Compilerr — GPU Binary — GPU'  — Result Machine
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Runtime Code Generation

@ With PyCUDA, code does not need to be fixed at compile
time.

@ Kernels may be constructed and tuned as Python strings
before being launched.

@ Classes for facilitating construction of certain types of kernels

included.
¢ Edit ) — Cache? L=
| [ro !
Run GPU Compiler —— GPU Binary
GPU Source Module —— Upload to GPU «———+—
l | PyCUDA
Run on GPU
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ndarray - Multidimensional Arrays in Python

e Unlike MATLAB, Python contains no native vector data type.

@ numpy.ndarray: can be used to define vectors, matrices,
tensors, etc.

@ Binds multidimensional data with information about dtype,
shape, and strides.

@ Supports operation broadcasting, e.g., A+B, sin(A), A**2

@ Serves as basis for other scientific computing packages: scipy,
matplotlib, etc.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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GPUArray - Multidimensional Arrays in GPU Memory

@ pycuda.gpuarray.GPUArray - ndarray-like class for
managing GPU memory.

@ Array info resides in PC memory, data in GPU memory.
@ Similar attributes to ndarray: dtype, shape, strides
@ Compatible with ndarray:

1 import pycuda.gpuarray as gpuarray

2 X_gpu = gpuarray.to_gpu(numpy.random.rand(3))
3 y = x_gpu.get()

@ print x_gpu works automatically.

e Implicit generation of kernels for vectorized (elementwise)
operations, e.g., x_gpu+y_gpu.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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1 import atexit

2 import numpy as np

3 import pycuda.driver as drv

4 import pycuda.gpuarray as gpuarray

5

6 drv.init()

7 dev = drv.Device(0) # initialize GPU O
8 ctx = dev.make_context()

9 atexit.register(ctx.pop) # clean up on exit
10

11 x = np.random.rand(2, 3).astype(np.double)
12 X_gpu = gpuarray.to_gpu(x)

Lev E. Givon GPU Programming with Python 4+ CUDA on AWS EC2
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Single-Pass Expressions

@ Implicitly generated kernels are cached to improve
performance. However..

@ .. elementwise expressions involving GPUArray instances (e.g.,
x+y*z) compile/launch new kernels for each intermediate
step.

@ To improve efficiency, PyCUDA enables construction of
complex single-pass elementwise expressions computed using a
single kernel.

@ Classes also provided that facilitate construction of other
types of kernels:

o Reductions (e.g., sum, product, dot product)
o Scans (e.g., cumulative sum)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Elementwise Operations

1 import numpy as np

2 import pycuda.autoinit

3 import pycuda.gpuarray as gpuarray

4 from pycuda.elementwise import ElementwiseKernel

5 from pycuda.curandom import rand

6

7 x_gpu = rand(10, np.double); y_gpu = rand(10, np.double)

8 z_gpu = gpuarray.empty_like(x_gpu)

9 func = ElementwiseKernel("double x*, double y*, double zx",
10 "z[i] = 2*x[i]+3xy[i]")

11 func(x_gpu, y_gpu, z_gpu)

12 print ’Success: ’, np.allclose(2*x_gpu.get()+3*y_gpu.get(),
13 z_gpu.get())

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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1 import numpy as np

2 import pycuda.autoinit

3 import pycuda.gpuarray as gpuarray

4 from pycuda.reduction import ReductionKernel

5 from pycuda.curandom import rand

6

7 x_gpu = rand(10, np.double); y_gpu = rand(10, np.double)
8 func = ReductionKernel (dtype_out=np.double,

9 neutral="0",

10 reduce_expr="a+b",

11 map_expr="x[i]*y[i]",

12 arguments="double *x, double *y")

13 result = func(x_gpu, y_gpu).get()

14 print ’Success: ’, np.allclose(np.dot(x_gpu.get(), y_gpu.get()),
15 result)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Scans

© 00 N O Ot b W N =
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import numpy as np

import pycuda.autoinit

import pycuda.gpuarray as gpuarray

from pycuda.scan import InclusiveScanKernel
from pycuda.curandom import rand

x_gpu = rand(10, np.double); x = x_gpu.get()

func = InclusiveScanKernel(np.double, "a+b")

result = func(x_gpu) .get()

print ’Success: ’, np.allclose(np.cumsum(x), result)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Creating Your Own Kernels

1 import numpy as np

2 import pycuda.autoinit

3 import pycuda.gpuarray as gpuarray

4 from pycuda.compiler import SourceModule

5 from pycuda.curandom import rand

6

7 x_gpu = rand(10,np.double); x = x_gpu.get()
8 mod = SourceModule("""

9 __global__ void func(double *x) {

10 int idx = threadldx.x;

11 x[idx] *= 3;

12}

13 ")

14 func = mod.get_function(’func’)

15 func(x_gpu, block=(10, 1, 1))

16 print ’Success: ’, np.allclose(3*x, x_gpu.get())

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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Using GPU-based Libraries

@ Optimizing common algorithms for GPUs can be nontrivial -
why reinvent the wheel?

@ Increasing number of mathematical libraries available for
GPUs: linear systems (CUBLAS, CUSOLVER), signal
processing (CUFFT, CULA), sparse data (CUSPARSE) etc.

@ Most of these libraries only have C/C++ interfaces, however.

@ Can we use them from Python?

@ Solution: CUDA SciKit
(http://scikit-cuda.readthedocs.org)

@ Provides both low level (C-like) and high level (numpy-like)
interfaces to libraries.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
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CUDA SciKit Example

import pycuda.gpuarray as gpuarray
import pycuda.autoinit

import numpy as np

import scikits.cuda.linalg as linalg

linalg.init ()

a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)

a = np.asarray(a, np.complex64)

a_gpu = gpuarray.to_gpu(a)

u_gpu, s_gpu, vh_gpu = linalg.svd(a_gpu, ’S’, ’S’)

print ’Success: ’, np.allclose(a, np.dot(u_gpu.get(),
np.dot(np.diag(s_gpu.get()), vh_gpu.get())), le-4)
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PyCUDA Resources

@ http://mathema.tician.de/software/pycuda
@ http://lists.tiker.net/listinfo/pycuda

@ http://wiki.tiker.net/PyCuda

@ http://scikit-cuda.readthedocs.org
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