o

COLUMBIA
UNIVERSITY

E6895 Advanced Big Data Analytics Lecture 8:
GPU Examples and GPU on iOS devices

Ching-Yung Lin, Ph.D.

Adjunct Professor, Dept. of Electrical Engineering and Computer Science

IBM Chief Scientist, Graph Computing

E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, 2016 Columbia University

o

COLUMBIA
UNIVERSITY

Demo of GPU Computing on MacBook and iPhone

Speaker: Richard Chen

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

CUDA on Mac OS X oo

UNIVERSITY

<A NVIDIA CUDA TOOLKIT DOCUMENTATION

CUDA Toolkit v7.0 Getting Started Mac OS X (PDF) - v7.0
Getting Started Mac OS X

> 1. Introduction

NVIDIA CUDA Getting Started Guide for Mac OS X

[>2. Prerequisites
[>3. Installation
[> 4. Verification

1. Introduction

CUDA® is a parallel computing platform and programming model invented by NVIDIA. It enables

5. Additional Considerations harnessing the power of the graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

e Provide a small set of extensions to standard programming languages, like C, that enable
With CUDA C/C++, programmers can focus on the task of parallelization of the algorithms

e Support heterogeneous computation where applications use both the CPU and GPU. Seria
portions are offloaded to the GPU. As such, CUDA can be incrementally applied to existin
devices that have their own memory spaces. This configuration also allows simultaneous
memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing th
register file and a shared memory. The on-chip shared memory allows parallel tasks running on
system memory bus.

This guide will show you how to install and check the correct operation of the CUDA developme

1.1. System Requirements

To use CUDA on your system, you need to have:

a CUDA-capable GPU

Mac OS X 10.9 or later

the Clang compiler and toolchain installed using Xcode

the NVIDIA CUDA Toolkit (available from the CUDA Download page)

3 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

GPU Architecture oo

UNIVERSITY

GPU Architecture
built by several streaming multiprocessors (SMs)

In each SM:
CUDA cores
Shared Memory/L1 Cache
Register File
Load/Store Units
Special Function Units

Kepler Architecture, K20X

Dispatch Dispatch
* s

Register File (65,536 x 32-bit)
. > - . + &

- o .
o/sT SFU Core Core Core - Core Core Core - oS

Warp Scheduler
In each device:

L2 Cache

PCI Express 3.0 Host Interface

CMCMCM.C“CMCNI-AL’-H
CMC"CG'-CMICMCBV!-AL’-H
CannCnn-CnnCnnCwo-x
Core Core Core [BURN Core Core Coro BRI o7
CnnCchon-CnnConCon-m-xv
ConCanCon-CanCu'Con-mu
c«.mc«--mcm:m- oSt
Con&ncon-ﬁnlvconcw- oSt
Cﬁlcﬁ'cnﬂ'.mcmc&l- ovsT
Cu-ca-Cm-ca-c.mc«--mv
Eors o Cm-CenCu-Cm-mu
w(mmk‘m(&nc«--mu
c«-c«-c«-.c«-cm ’m-xbu
hmc«..c«-mc«-k‘ ovst

sru mmm-mmm-my
SFU Mmm-mmm-\ﬂx'
oisT SFU ConConCcn-C«vConCon-\:u-

55 Cors Cora Core [N Cors Core Core [FRRN o+
sfu:a-tnncmc-c«-mm [T
s‘uc«-mm.c«-mm
SfUConConCch-ConW'Cnn
SFUWIWOW'-COIIWCM
SFU Core W.m-w.m‘m

SFU CM.CMOCMO-C«.GMCCM'

B
550 o Core Core [e Cre com RN
o o o R e oo

s omcanm-c«auc«'-m«,-
o

SFU vaCo'chvv-C«vCowCon

it
Ca-vw'Cw!-waCchow-mw SFU ~ --c«vcm-wvw-c«--mv

Interconnect Network

64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Jagonuo) Kiowap

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)

9: v
CUDA iv Version / Runtime Version
CUDA """”’“ Ha]o‘/ﬂlfor version number:
1 global memory:
(192) CUDA Cores/MP:

MBytes
CUDA Cores
® MHz (0.90 GHz)
2508 Mhz
128-bit
262144 bytes
Dimension Size (x,y 1D=(65536), 2D=
1D Texture Size, (num) layse 1D=(16384), 2048 la
2D Texture lee‘ (num) layers (16384, 16384), 2048
constant memory:
shared memory per block:

reg isters available per

O WrE W
(oo S
N GE

S

number of thre per multiprocessor:
number of threads per block:

nsion sizo of thread block A,y,é'l
nsion s - a grid size (x,y,2):

kernel execution:
lﬁ‘* ““15‘
htccralcc U sha Host
upport host page)
Alignment requirement
Jevice has ECC support:
evice supports Unified Addressing (UVA
vice PCI Domain ID / Bus ID lo

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Matrix Addition on CPU S

UNIVERSITY

Problem: Sum two matrices with M by N size.
Crmxn = Amxn + Bmxn

In traditional C/C++ implementation:
« A, B are input matrix, N is the size of A and B.
* C is output matrix
» Matrix stored in array is row-major fashion

void sumArraysOnHost(float *A, float xB, float *C,
{

(int idx = 0; idx < N; idx++)

Cl[idx] = Al[idx] + B[idx];

6 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Matrix Addition on GPU - 2D grid with 2D blocks 7,

UNIVERSITY

Problem: Sum two matrices with M by N size.
Crmxn = Amxn + Bmxn

CUDA C implementation:
« matA, matB are input matrix, nx is column size, and ny is row size
* matC is output matrix

void sumMatrixOnGPU2D(float *MatA, float xMatB, float *MatC, int nx,
int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.Xx;
unsigned int iy = threadIdx.y + blockIdx.y * blockDim.y;
unsigned int idx = iy * nx + ix;
(ix < nx && iy < ny)
MatC[idx] = MatA[idx] + MatB[idx];

int dimx = 32;

int dimy = 32;

dim3 block(dimx, dimy);

dim3 grid((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y);

iStart = seconds();
sumMatrixOnGPU2D (d_MatA, d_MatB, d_MatC, nx, ny);
CHECK(cudaDeviceSynchronize());

7 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Matrix Addition on GPU - 2D grid with 2D blocks 8@

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)

void sumMatrixOnGPU2D(float *MatA, float xMatB, float *MatC, int nx,
int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.Xx;

unsigned int iy = threadIdx.y + blockIdx.y * blockDim.y;
unsigned int idx = iy * nx + ix;

(ix < nx && iy < ny)

MatC[idx] = MatA[idx] + MatB[idx];

blockDim.x nx
>
S
)
~
io) Block (0,0) Block (1,0) Block (2,0) Block (3,0)
Q y3
& threadjdx.y
(ix,iy)
threaflldx.x
Block (0,1) Block (1,1) Block (2,1) Block (3,1)
ny Block (0,2) Block (1,2) Block (2,2) Block (3,2)

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix

8 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

void sumMatrixOnGPU1D(float xMatA, float xMatB, float *MatC, int nx,
int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
(ix < nx)

(int iy = 0; iy < ny; iy++) {
int idx = 1y * nx + ix;
MatC[idx] = MatA[idx] + MatB[idx];

blockDim.x nx
Block (0) Block (1) ock (2) Block (3)
)%
(ix, iy)
threadldx.x
ny Y

global linear memory index: idx = iy*nx + ix

9 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Matrix Addition on GPU - 2D grid with 1D blocks 7,

UNIVERSITY

Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)

void sumMatrixOnGPUMix(float *MatA, float xMatB, float *MatC, int nx,

int ny) {
unsigned int ix = threadIdx.x + blockIdx.x * blockDim.x;
unsigned int iy = blockIdx.y;
unsigned int idx = iy * nx + 1ix;
(ix < nx && iy < ny)
MatC[idx] = MatA[idx] + MatB[idx];

blockDim.x nx
1 Block (0,0)] Block (1,0) I Block (2,0)] Block (3,0) I
Block (0,1)] Block (1,1)]| Block(2,1) | Block(3,1)]
J J&—o (x iy) J
|] threadldx.x] |
J J J J
J J J J
J J J J
J J J J
J J J J
J J J J
ny Block (O,ny) | Block(1,ny) | Block(2,ny) | Block(3,ny) |

global linear memory index: idx = iy*nx + ix

1 0 E6895 Advanced Big Data Analytics — Lecture 8

© 2016 CY Lin, Columbia University

Example: Matrix Transpose on CPU 2

UNIVERSITY

Problem: Transpose one matrix with M by N to one matrix with N by

Amxn = Bnxm

0 4 8
0 1 2 3

1 5 9
4 5 6 7

2 6 10
8 9 10 11

In traditional C/C++ implementation:
* in is input matrix, nx is column size, and ny is row size.
* out is output matrix
» Matrix stored in array is row-major fashion

- 3 7 11
matrix

transposed

void transposeHost(float *out, float *in, int nx,
(int iy = 0; iy < ny; ++iy) {
(int ix = 0; ix < nx; ++ix) {

out[ix * ny + iyl = in[iy * nx + ix];

11 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Matrix Transpose on GPU 2

UNIVERSITY

void transposeNaiveRow(float *out, float xin,
int ny) {
unsigned int ix = blockDim.x * blockIdx.x + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
(ix < nx && iy < ny) {
out[ix * ny + iy] = in[iy * nx + ix];

void transposeNaiveCol(float *out, float *in,
int ny) {
unsigned int ix = blockDim.x * blockIdx.x + threadIdx.Xx;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
(ix < nx && iy < ny) {
out[iy * nx + ix] = in[ix * ny + iy];

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Matrix Transpose on GPU 2

UNIVERSITY

void transposeUnroll4Row(float *out, float xin, int nx,
int ny) {
unsigned int ix = blockDim.x * blockIdx.x * 4 + threadIdx.x;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;

unsigned int ti = iy * nx + ix;

unsigned int to = ix * ny + 1iy;
(ix + 3 * blockDim.x < nx && iy < ny) {
out[to] = in[til;
out[to + ny *x blockDim.x] = in[ti + blockDim.x];
out[to + ny *x 2 *x blockDim.x] = in[ti + 2 x blockDim.x];
out[to + ny * 3 * blockDim.x] = in[ti + 3 x blockDim.x];

void transposeUnroll4Col(float *out, float xin,
int ny) {

unsigned int ix = blockDim.x * blockIdx.x * 4 + threadIdx.Xx;
unsigned int iy = blockDim.y * blockIdx.y + threadIdx.y;
unsigned int ti = 1y * nx + ix;
unsigned int to = ix * ny + iy;

(ix + 3 * blockDim.x < nx && iy < ny) {

out [til = in[tol;

out[ti + blockDim.x] = in[to + blockDim.x * ny]l;

out[ti + 2 % blockDim.x] = in[to + 2 * blockDim.x * nyl;

out[ti + 3 * blockDim.Xx] in[to + 3 x blockDim.x * nyl;

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example: Concurrent Processing

o

COLUMBIA
UNIVERSITY

Concurrent handle data transfer and computation

For NVIDIA GT 650M (laptop GPU), there is one copy engine.

For NVIDIA Tesla K40 (high-end GPU), there are two copy engines
The latency in data transfer could be hidden during computing

To handle two tasks, which both are matrix multiplications.

Copy two inputs to GPU, copy one output from GPU

04s 05s 06s 07s

[l [
[—r— [Memc... | Memcpy Hto... |
Memcpy DtoH...
— ——
— —

[T T Il venc._Memcpy Hio. T~ Vemopy DioH.|
No concurrent processing

1 4 E6895 Advanced Big Data Analytics — Lecture 8

04s 045s 05s 0.55s 06s 065s

[_____cudaMalloc | [u—
u (N |

::

Concurrent processing

© 2016 CY Lin, Columbia University

o

COLUMBIA
UNIVERSITY

GPU on iOS devices

15 E6895 Advanced Big Data Analytics — Lecture 8 ©2016 CY Lin, Columbia University

o

COLUMBIA
UNIVERSITY

GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the
graphics and compute potential of iOS 8 app.*

Metal could be used for:
Graphic processing = openGL

General data-parallel processing = open CL and CUDA

16 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

https://developer.apple.com/metal/

a2

CoLuMBIA
UNIVERSITY

* Low-overhead interface

* Memory and resource management

* Integrated support for both graphics and compute operations
* Precompiled shaders

17 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

o

Cotunnia
GPU Programming in iPhone/iPad - Metal -
Programming flow is similar to CUDA
Copy data from CPU to GPU y
Computing in GPU . L I
Send data back from GPU to CPU === - -
Example: kernel code in Metal, sigmoid function: 1

kernel void sigmoid(const device float *inVector [[buffer(®)]].
kernel code ==sv=s s
) device float *outVector [[buffer(l)]].
device memory =weves
uint id [[thread_position_in_grid]]) {

thread_id for data parallelization
// This calculates sigmoid for _one_ position (=id) in a vector per call on the

GPU
outVector[id] = 1.0 / (1.0 + exp(-inVector[id])):

source:
18 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

http://memkite.com

o

COLUMBIA
UNIVERSITY

Metal Object Relationships

p N A ™) N
Buffer Buffer Buffer
N\ [\\
Texture Texture Texture
A J o J
Sampler Sampler Sampler
State State State ———
A\ S o —
4 Y 'd ™\
Depth Stencil| |Depth Stencil | Depth Stencil Buffer
State State State
. J - S—
" Render | [Render) Render | [
Pipeline Pipeline Pipeline Texture
. State State State L)
1 I I
Y Y Y ‘
Render Render Render Blit
Command Command Command Command
Encoder Encoder Encoder Encoder
i i i ‘
Y Y \/
[Command Buffer }

:

Command Queue

" cbuf | | cbuf | | cbuf |

19

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

%0,

COLUMBIA
UNIVERSITY

Metal Command Buffers with Multiple Threads

CPU Thread 1 CPU Thread 2 CPU Thread 3
Buffer ” Buffer “ Buffer
(. J (. J/ \ J
Texture “ Texture H Texture
(. J - / S < J O
e N\ I
Sampler Sampler Buffer Sampler Buffer
State State State —
p J - 7 - >y
Depth Stencil Depth Stencil Buffer Texture Buffer Depth Stencil | Texture
State State State
- — - J/ - A J
Render " Render Compute | Render Compute
Pipeline Pipeline Texture Pipeline Texture Pipeline Pipeline
State State State State State
| | i l | i
\ ! ! J \ ! Y J (. ! ! 7
Render Render Blit Compute Blit Render Compute
Command Command Command Command Command Command Command
Encoder Encoder Encoder Encoder Encoder Encoder Encoder

v v ' v ' v v
[Command Buffer] { Command Buffer J [Command Buffer]
|

Command Queue

E6895 Advanced Big Data Analytics — Lecture 8

20

© 2016 CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

It integrates the support for both graphics and compute operations.

Three command encoder:
Graphics Rendering: Render Command Encoder
Data-Parallel Compute Processing: Compute Command Encoder

Transfer Data between Resource: Blitting Command Encoder

Multi-threading in encoding command is supported CPU Thread CPU Thresd 2 CPU Thread 3
Typical flow in compute command encoder Bufer ||| utr Buter
Prepare data
Put your function into pipeline Sanplr || Sampler Sanplr || Bullr
Command enCOder Dm;‘;:’"“" o"p‘s"ms(z’”' G Texture HnS D"pgasl':"c" Texture
Put command into command buffer oo || Pouie | | Totue Foome | | T Poows | Ppone
Commit it to command queue \ ' ' \ ' ' v
Gl o B oot | Bl oo
Execute the command St S § R o
\J \J \J \J \J
Get reSUIt baCk Command Buffer Command Buffer Command Buffer
I
l v
Command Queue

21

E6895 Advanced Big Data Analytics — Lecture 8

cbuf cbuf cbuf

© 2016 CY Lin, Columbia University

Metal Programming, Kernel Function 2

UNIVERSITY

Compute command

* Two parameters, threadsPerGroup and numThreadgroups, determines number of
threads. = equivalent to grid and thread block in CUDA. They are all 3-D variable.

* The total of all threadgroup memory allocations must not exceed 16 KB.

» Kernel function: sigmoid function 1-/'

sigmoid(*inVector [[buffer(9) 1],
*outVector [[buffer(1) 1],
id [[thread_position_in_grid 1]) {

O1Q T1C }

}

22 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example 2

UNIVERSITY

initMetal() — (’ ’
)

device #bMTLCreatéSysfemDefaultDevice()
commandQueue = device.newCommandOuéue(f
deféultLibrary = device.newDefaultLibféfy()

rel 18 ri { man

vcommandBuffer = éomméndoﬁeué.commandBuffer()‘

”computeCommandEhCodef = commandBuffer.computeCommandEncoder()

(device, commandQueue, defaultLibrary!, commandBuffer, computeCommandEncoder)

sigmoidProgram = defaultLibrary.newFunctionWithName()

pipelineErrors = ()

computePipelineFilter = device.newComputePipelineStateWithFunction(sigmoidProgram!, error: pipelineErrors)
computeCommandEncoder.setComputePipelineState(computePipelineFilter!)

N I il)) I) n (] 4
inVectorBufferNoCopy = device.newBufferWithBytesNoCopy(memory, length: (size), options: , deallocator:
computeCommandEncoder.setBuffer(inVectorBufferNoCopy, offset: @, atIndex: @)

outVectorBufferNoCopy = device.newBufferWithBytesNoCopy(outmemory, length: (size), options: , deallocator:
computeCommandEncoder.setBuffer(outVectorBufferNoCopy, offset: 0, atIndex: 1)

23 E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

Example i

COLUMBIA
UNIVERSITY

/ hardcoded to 32 for now (recommendation: read about threadExecutionWidth)
threadsPerGroup = MTLSize(width:32,height:1,depth:1)
numThreadgroups = MTLSize(width: ((maxcount)+31)/32, height:1, depth:1)

computeCommandEncoder.dispatchThreadgroups(numThreadgroups, threadsPerThreadgroup: threadsPerGroup)

computeCommandEncoder.endEncoding()

commandBuffer.commit()
commandBuffer.waitUntilCompleted()

24

E6895 Advanced Big Data Analytics — Lecture 8 © 2016 CY Lin, Columbia University

o

25

COLUMBIA
UNIVERSITY
Speaker: Eric Johnson
GPU Programming with
Python + CUDA on AWS EC2
Lev E. Givon
Bionet Group
Department of Electrical Engineering
Columbia University
amazon [EC 2 A thon Bl SAnvIDIA.
webservices | p g C U D A
Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

€ Setting Up a GPU Instance on EC2

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

26 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

Creating an EC2 Instance

@ Note: EC2 GPU instances are not free (on-demand hourly fee
is currently $0.65/hour while the instance is running).

@ Create account on https://aws.amazon.com, sign in, and
go to the AWS EC2 console
(https://console.aws.amazon.com/ec2)

Select Launch Instance and select Ubuntu Server 14.04
LTS (HVM), SSD Volume Type.

Choose the g2.2xlarge instance type.
Add storage - choose something like 20 Gb.

Configure a security group; if you have a fixed IP address,
restrict access to that address.

© 0006 O

Click Review and Launch and generate/download an SSH
key to access the instance; you need this to login to the
running image.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

27 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Accessing the Instance

© Wait until the instance is listed as running on the EC2 console.

@ Find the instance’s public IP address; if the SSH key you
generated is saved as gpu.pemn, login to the instance from

Linux/MacOSX as follows:

1 ssh -i gpu.pem ubuntu@ec2—XXX—XXX-XXX-XXX.compute-l.amazonaws.comJ

© Before you install CUDA, you need to update the image's
kernel and restart it, otherwise the GPU driver will not work:

sudo -s

apt-get update

apt-get install linux-generic
reboot

W N =

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2
28 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Installing CUDA

© Download/install CUDA 7.0 and some other useful packages:

1 wget http://developer.download.nvidia.com/compute/cuda/repos/\

2 ubuntul404/x86_64/cuda-repo-ubuntul404_7.0-28_amd64.deb

3 sudo -s

4 dpkg -i cuda-repo-ubuntul404_7.0-28_amd64.deb

5 apt-get update

6 apt-get install cuda-7-0 build-essential)

© Make sure /usr/local/cuda/bin is in your PATH:

1 echo $PATH)
If not, add the following line to your ~/.bashrc file, logout,
and login:

1 export PATH=/usr/local/cuda/bin:$PATH)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

29 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

Checking that Things Work

@ Sample code from the CUDA SDK is installed in
/usr/local/cuda/samples. Try to build one of the simple
examples as follows:

cd ~/

cp -rp /usr/local/cuda/samples .
cd samples/1_Utilities/deviceQuery
make

_Ww N =

v

The compilation should complete without any errors. Run the
compiled program in the above directory as ./deviceQuery;
it should print information about the GPU.

30 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

© Setting up Python and PyCUDA

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

31 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

Local Python Environment Management

© Ubuntu ships many Python packages that can be installed
directly using its package manager.

@ Installing newer versions (and their dependencies) manually
can be a hassle.

© One solution (others exist): conda
(http://conda.pydata.org/)

© Enables local (non-root) installation/management of prebuilt
Python packages and their dependencies.

© Can create multiple independent Python environments - useful
for trying things out without breaking one’s environment.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

32 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Installing /Using Miniconda

© Miniconda (http://conda.pydata.org/miniconda.html)
is a minimal combination of conda and Python.

@ Download and install as follows; let the installer use
miniconda as the installation directory and let it add
miniconda/bin to your PATH:

cd ~/

wget http://repo.continuum.io/miniconda/\
Miniconda-latest-Linux-x86_64.sh
./Miniconda-latest-Linux-x86_64.sh

BWwW N =

© Logout, log back in, and try installing some Python packages:

1 conda install ipython |

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

33 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Non-Conda Packages

© If a package hasn't been built for conda, you can try installing
it from the Python Package Index
(http://pypi.python.org):

1 conda install pip
2 pip install some_interesting_package J

@ You can examine both your conda and pip packages as
follows:

1 conda list)

© Other useful commands available - see conda help and the
package website.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

34 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Installing PyCUDA

© Download the latest PyCUDA tarball from PyPI (don't try to
install it using pip), unpack, configure it to look for CUDA in
the right location, build, and install:

wget https://pypi.python.org/packages/source/p/\
pycuda/pycuda-2014.1.tar.gz

tar zxf pycuda-2014.1.tar.gz

cd pycuda-2014.1

./configure.py --cuda-root=/usr/local/cuda
python setup.py install

S Ot W =

@ Try running one of the included examples:

1 cd ~/pycuda-2014.1/examples
2 python dump_properties.py J

This should print information about the instance’'s GPU.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

35 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

|IPython Notebook

@ Don't like working at the command line? Try the IPython
Notebook (http://ipython.org/notebook.html). Install
the following packages in your instance and then start the
notebook server. Make note of the port used by the server:

1 conda install ipython pyzmq jinja2 tornado mistune \
2 jsonschema pygments terminado
3 ipython notebook —--no-browser

@ Create an ssh tunnel to your EC2 instance that forwards to
the above port (e.g., 8888):

1 ssh -i gpu.pem -L 8888:1localhost:8888 \
2 ubuntu@ec2-XXX-XXX-XXX-XXX.compute-1.amazonaws.com J

© Open http://localhost:8888 in your web browser.

36 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

o

COLUMBIA
UNIVERSITY

What it Looks Like

Py IPython Dashboard %/ 1Py spectrogram

127.0.01 23 *

IPIyl: Notebook spectrogram Last saved: Mar 07 11:14 PM
File Edit View Insert Cell Kernel Help

€

8 x & 0O t . ¥ % > = Markdown ¥

Simple spectral analysis

An illustration of the Discrete Fourier Transform

using windowing, to reveal the frequency content of a sound signal.

We begin by loading a datafile using SciPy’s audio file support:

In [1]: from scipy.io import wavfile
rate, x = wavfile.read('test_mono.wav') H

And we can easily view its spectral structure using matplotlib’s builtin specgram routine:

In [2]: fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(12, 4))
ax1.plot(x); axl.set_title('Raw audio signal')
ax2.specgram(x); ax2.set_title('Spectrogram');

2000 Raw audio signal " se;-«pgvam
08
06
04
02
10000 5 10000 20000 0000 40000 w00 ° aoL 5000 10000 15000 20000 25000

Lev E. Givon GPU Programming with Python 4+ CUDA on AWS EC2
37 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

© GPU Programming with Python

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

38 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

General Problem

@ Many problem scenario parameters to address: different types,
array dimensions, etc.

@ Many possible hardware scenarios: number of threads, blocks,
compute capability, etc.

@ Python reduces (but does not eliminate) the need to think
about computer architecture and hardware. Can it do the

same for GPUs?

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

39 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Human Idea — Scripting Code

— GPU Code — GPU Compilerr — GPU Binary — GPU' — Result Machine

Lev E. Givon GPU Programming with Python 4+ CUDA on AWS EC2

40 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Runtime Code Generation

@ With PyCUDA, code does not need to be fixed at compile
time.

@ Kernels may be constructed and tuned as Python strings
before being launched.

@ Classes for facilitating construction of certain types of kernels

included.
¢ Edit) — Cache? L=
| [ro !
Run GPU Compiler —— GPU Binary
GPU Source Module —— Upload to GPU «———+—
l | PyCUDA
Run on GPU

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

41 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

ndarray - Multidimensional Arrays in Python

e Unlike MATLAB, Python contains no native vector data type.

@ numpy.ndarray: can be used to define vectors, matrices,
tensors, etc.

@ Binds multidimensional data with information about dtype,
shape, and strides.

@ Supports operation broadcasting, e.g., A+B, sin(A), A**2

@ Serves as basis for other scientific computing packages: scipy,
matplotlib, etc.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

42 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

GPUArray - Multidimensional Arrays in GPU Memory

@ pycuda.gpuarray.GPUArray - ndarray-like class for
managing GPU memory.

@ Array info resides in PC memory, data in GPU memory.
@ Similar attributes to ndarray: dtype, shape, strides
@ Compatible with ndarray:

1 import pycuda.gpuarray as gpuarray

2 X_gpu = gpuarray.to_gpu(numpy.random.rand(3))
3 y = x_gpu.get()

@ print x_gpu works automatically.

e Implicit generation of kernels for vectorized (elementwise)
operations, e.g., x_gpu+y_gpu.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

43 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

1 import atexit

2 import numpy as np

3 import pycuda.driver as drv

4 import pycuda.gpuarray as gpuarray

5

6 drv.init()

7 dev = drv.Device(0) # initialize GPU O
8 ctx = dev.make_context()

9 atexit.register(ctx.pop) # clean up on exit
10

11 x = np.random.rand(2, 3).astype(np.double)
12 X_gpu = gpuarray.to_gpu(x)

Lev E. Givon GPU Programming with Python 4+ CUDA on AWS EC2

44 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Single-Pass Expressions

@ Implicitly generated kernels are cached to improve
performance. However..

@ .. elementwise expressions involving GPUArray instances (e.g.,
x+y*z) compile/launch new kernels for each intermediate
step.

@ To improve efficiency, PyCUDA enables construction of
complex single-pass elementwise expressions computed using a
single kernel.

@ Classes also provided that facilitate construction of other
types of kernels:

o Reductions (e.g., sum, product, dot product)
o Scans (e.g., cumulative sum)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

45 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Elementwise Operations

1 import numpy as np

2 import pycuda.autoinit

3 import pycuda.gpuarray as gpuarray

4 from pycuda.elementwise import ElementwiseKernel

5 from pycuda.curandom import rand

6

7 x_gpu = rand(10, np.double); y_gpu = rand(10, np.double)

8 z_gpu = gpuarray.empty_like(x_gpu)

9 func = ElementwiseKernel("double x*, double y*, double zx",
10 "z[i] = 2*x[i]+3xy[i]")

11 func(x_gpu, y_gpu, z_gpu)

12 print ’Success: ’, np.allclose(2*x_gpu.get()+3*y_gpu.get(),
13 z_gpu.get())

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

46 0895 Advanced Big Data Analytics — Lecture 38 , bia University

00

COLUMBIA
UNIVERSITY

1 import numpy as np

2 import pycuda.autoinit

3 import pycuda.gpuarray as gpuarray

4 from pycuda.reduction import ReductionKernel

5 from pycuda.curandom import rand

6

7 x_gpu = rand(10, np.double); y_gpu = rand(10, np.double)
8 func = ReductionKernel (dtype_out=np.double,

9 neutral="0",

10 reduce_expr="a+b",

11 map_expr="x[i]*y[i]",

12 arguments="double *x, double *y")

13 result = func(x_gpu, y_gpu).get()

14 print ’Success: ’, np.allclose(np.dot(x_gpu.get(), y_gpu.get()),
15 result)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

47 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Scans

© 00 N O Ot b W N =

[uy
o

import numpy as np

import pycuda.autoinit

import pycuda.gpuarray as gpuarray

from pycuda.scan import InclusiveScanKernel
from pycuda.curandom import rand

x_gpu = rand(10, np.double); x = x_gpu.get()

func = InclusiveScanKernel(np.double, "a+b")

result = func(x_gpu) .get()

print ’Success: ’, np.allclose(np.cumsum(x), result)

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

48

E6895 Advanced Big Data Analytics — Lecture 8

© CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

Creating Your Own Kernels

1 import numpy as np

2 import pycuda.autoinit

3 import pycuda.gpuarray as gpuarray

4 from pycuda.compiler import SourceModule

5 from pycuda.curandom import rand

6

7 x_gpu = rand(10,np.double); x = x_gpu.get()
8 mod = SourceModule("""

9 __global__ void func(double *x) {

10 int idx = threadldx.x;

11 x[idx] *= 3;

12}

13 ")

14 func = mod.get_function(’func’)

15 func(x_gpu, block=(10, 1, 1))

16 print ’Success: ’, np.allclose(3*x, x_gpu.get())

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

49 E6895 Advanced Big Data Analytics — Lecture 8

© CY Lin, Columbia University

Using GPU-based Libraries

@ Optimizing common algorithms for GPUs can be nontrivial -
why reinvent the wheel?

@ Increasing number of mathematical libraries available for
GPUs: linear systems (CUBLAS, CUSOLVER), signal
processing (CUFFT, CULA), sparse data (CUSPARSE) etc.

@ Most of these libraries only have C/C++ interfaces, however.

@ Can we use them from Python?

@ Solution: CUDA SciKit
(http://scikit-cuda.readthedocs.org)

@ Provides both low level (C-like) and high level (numpy-like)
interfaces to libraries.

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

50 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

CUDA SciKit Example

import pycuda.gpuarray as gpuarray
import pycuda.autoinit

import numpy as np

import scikits.cuda.linalg as linalg

linalg.init ()

a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)

a = np.asarray(a, np.complex64)

a_gpu = gpuarray.to_gpu(a)

u_gpu, s_gpu, vh_gpu = linalg.svd(a_gpu, ’S’, ’S’)

print ’Success: ’, np.allclose(a, np.dot(u_gpu.get(),
np.dot(np.diag(s_gpu.get()), vh_gpu.get())), le-4)

© 00 N O O bk~ W N

L S
N = O

Lev E. Givon GPU Programming with Python + CUDA on AWS EC2

51 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

a2

COLUMBIA
UNIVERSITY

PyCUDA Resources

@ http://mathema.tician.de/software/pycuda
@ http://lists.tiker.net/listinfo/pycuda

@ http://wiki.tiker.net/PyCuda

@ http://scikit-cuda.readthedocs.org

Lev E. Givon GPU Programming with Python 4+ CUDA on AWS EC2

52 E6895 Advanced Big Data Analytics — Lecture 8 © CY Lin, Columbia University

