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Steps of Drug Development -- Graphen 27x faster and 1/1335 cost to create a verified effective drug

®
compound; and is high effective, low side effects and no toxicity
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Tar_g-e‘lh-»ti-_l'-\lt Hit;fi):lead lo-':)a:‘jmlzanon N Based on 2024 Dollar value
= o —— — Phase | Phase II Phase i Submission
to 'Aupch
— - | — ‘—» D j—»l\ ]—»[_J Launch
p(TS) 80% 75% 85% 69% 54% 34% 70% 91%
WIP in
General Launch 6.65 5.32 3.99 3.39 2.34 1.26 0.43 0.3 0.27
Pharmaceutical Cycle Time Graphen Drugomics’s
Companies (Year) 1.0 1.5 2.0 1.0 1.5 2.5 2.5 1.5 Total cost saving of
P clgztn'Zf‘r $37 $66 $164 $60 $108 $127 $122 $19 $483M per 0.27
(capitalized, T — Y ) Total — launch
M) $267 S60 $376 $703 (S703M vs $220M)
p(TS) 90.9% 80% 75% 60% 80% 95%
WIP in Graphen Drugomics’s
. 1.1 1 . . 0.36 03 27
Graphen Drugomics taunch = - . IND-readies cost
Cycle Ti )
yffeai?‘e Olor =0 15 2.5 2.5 1.5 Total saving of $324M per
Cost per 0.27 launch
launch $0.2 S3 S37 S60 $102 $18 5220 _
(capitalized, ' ) ) (5327M vs 53.2M)
M) ' Y
$0.2 $3 $217

=» Potential Leads: 1/1335 of Cost & 27x faster. Up to IND-Ready: 1/102 of Cost & Time: 4.7x faster
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Generative Models o8

UNIVERSITY

» Generative models produce a sample as output.

* You might train the model on a library of photographs of cats, and it would learn to produce new images
that look like cats.

* You might train it on a library of known drug molecules, and it would learn to generate new “drug-like”
molecules for use as candidates in a virtual screen.

« Formally speaking, a generative model is trained on a collection of samples that are drawn from some
(possibly unknown, probably very complex) probability distribution.

» Its job is to produce new samples from that same probability distribution.
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Variational Autoencoders
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An autoencoder is a model that tries to make its output equal to its
input.

You train it on a library of samples and adjust the model parameters so
that on every sample the output is as close as possible to the input.

That sounds trivial. Can't it just learn to pass the input directly through
to the output unchanged?

If that were actually possible it would indeed be trivial, but
autoencoders usually have architectures that make it impossible. Most
often this is done by forcing the data to go through a bottleneck, as
shown at right.

For example, the input and output might each include 1,000 numbers,
but in between would be a hidden layer containing only 10 numbers.

This forces the model to learn how to compress the input samples. It
must represent 1,000 numbers worth of information using only 10
numbers.

Latent Space Qutput

Y

Encoder Decoder
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Generatlve Adversarial Networks o8
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A generative adversarial network (GAN) has much in common with a VAE.

* It uses the same exact decoder network to convert latent vectors into
samples (except in a GAN, it is called the generator instead of the
decoder).

Latent Space Output Input Probability

« But it trains that network in a different way. It works by passing random v Y
vectors into the generator and directly evaluating the outputs on how well (] ]
they follow the expected distribution. — _

: : Y
- Effectively, you create a loss function to measure how well the generated @ - o ]
samples match the training samples, then use that loss function to
optimize the model. - -

« That sounds simple for a few seconds, until you think about it and realize it — _ — S

isn’t simple at all. Could you write a loss function to measure how well an Generator Discriminator
image resembles a cat?

* No, of course not! You wouldn’t know where to begin. So, instead of asking
you to come up with that loss function yourself, a GAN learns the loss
function from the data.
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Generative Adversarial Networks o8
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« As shown at the right, a GAN consists of two parts.

» The generator takes random vectors and generates synthetic samples.

« The second part, called the discriminator, tries to distinguish the Latent Space  Output  Input Probability
generated samples from real training samples. i i
« Ittakes a sample as input and outputs a probability that this is a real m =
training sample. It acts as a loss function for the generator. Y
—— — — — —-D
— —~— _ — —
Generator Discriminator
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Applications of Generative Models in the Life Science e o
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« Broadly speaking, generative models bring a few superpowers to the table.
» First, they allow for a semblance of “creativity.”
* New samples can be generated according to the learned distribution.

» This allows for a powerful complement to a creative process that can tie into existing efforts in drug or
protein design.

« Second, being able to model complex systems accurately with generative models could allow
scientists to build an understanding of complex biological processes.
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Generating New ldeas for Lead Compounds oo
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* A major part of a modern drug discovery effort is coming up with new
compounds.

» This is mostly done semiannually, with expert human chemists
suggesting modifications to core structures.

« Often, this will involve projecting a picture of the current molecular
series on a screen and having a room full of senior chemists suggest
modifications to the core structure of the molecule.

« Some subset of these suggested molecules are actually synthesized
and tested, and the process repeats until a suitable molecule is
found or the program is dropped.

« This process has powerful advantages since it can draw upon the
deep intuition of expert chemists who may be able to identify flaws
with a potential structure (perhaps it resembles a compound they’'ve
seen before which caused unexplained liver failure in rats) that may

not be easy to identify algorithmically.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.



Generating New ldeas for Lead Compounds oo
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» At the same time, though, this process is very human-limited.

« There aren’t that many talented and experienced senior chemists in the world, so the process can’t
scale outward.

» In addition, it makes it very challenging for a pharmaceutical division in a country that has historically
lacked drug discovery expertise to bootstrap itself.

* A generative model of molecular structures could serve to overcome these limitations.

» |f the model were trained on a suitable molecular representation, it might be able to rapidly suggest
new alternative compounds.

« Access to such a model could help improve current processes by suggesting new chemical directions
that may have been missed by human designers.

* It's worth noting that such design algorithms have serious caveats.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.



Training Generative Models to create new molecules oo
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* We will train a VAE to generate new molecules.
» More specifically, it will output SMILES strings.

» This choice of representation has distinct advantages and disadvantages compared to some of the
other representations we have discussed.

* Onthe one hand, SMILES strings are very simple to work with.

« Each one is just a sequence of characters drawn from a fixed alphabet.

» That allows us to use a very simple model to process them.

* On the other hand, SMILES strings are required to obey a complex grammar.

» |If the model does not learn all the subtleties of the grammar, then most of the strings it produces will be
invalid and not correspond to any molecule.
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Training Generative Models to create new molecules - | = 5
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» The first thing we need is a collection of SMILES strings on which to train the model.
» Fortunately, MoleculeNet provides us with lots to choose from.

» For this example, we will use the MUV dataset.

« The training set includes 74,469 molecules of varying sizes and structures.

» Let's begin by loading it:

import deepchem as dc

tasks, datasets, transformers = dc.molnet.load muv()
train_dataset, valid_dataset, test dataset = datasets
train_smiles = train_dataset.ids
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Training Generative Models to create new molecules - Il e on
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* Next, we need to define the vocabulary our model will work with.
« What is the list of characters (or “tokens”) that can appear in a string?
 How long are strings allowed to be?

« We can determine these from the training data by creating a sorted list of every character that appears
in any training molecule:

tokens = set()
for s in train_smiles:
tokens = tokens.union(set(s))
tokens = sorted(list(tokens))
max_length = max(len(s) for s in train_smiles)
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Training Generative Models to create new molecules - = 5
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« Now we need to create a model. What sort of architecture should we use for the
* encoder and decoder? This is an ongoing field of research.

» For this example, we will use DeepChem’s AspuruGuzikAutoEncoder class, which implements a particular
published model.

* It uses a convolutional network for the encoder and a recurrent network for the decoder. You can consult the
original paper if you are interested in the details, but they are not necessary to follow the example.

» Also notice that we use ExponentialDecay for the learning rate. The rate is initially set to 0.001, then decreased by
a little bit (multiplied by 0.95) after every epoch. This helps optimization to proceed more smoothly in many
problems:

from import ExponentialDecay
from import AspuruGuzikAutoEncoder
batch_size = 100

batches_per_epoch = len(train_smiles)/batch_size

learning_rate = ExponentialDecay(0.001, 0.95, batches_per_epoch)

model = AspuruGuzikAutoEncoder(tokens, max length, model dir='vae',
batch_size=batch_size,
learning_rate=learning_rate)
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Training Generative Models to create new molecules - IV e on
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« We are now ready to train the model.

» Instead of using the standard fit() method that takes a Dataset, AspuruGuzikAutoEncoder provides its own
fit_sequences() method.

It takes a Python generator object that produces sequences of tokens (SMILES strings in our case). Let'’s train for
50 epochs:

def generate_sequences(epochs):
for 1 in range(epochs):
for s in train_smiles:
yield (s, s)

model.fit_sequences(generate_sequences(50))

» |If everything has gone well, the model should now be able to generate entirely new molecules.
« We just need to pick random latent vectors and pass them through the decoder.

» Let's create a batch of one thousand vectors, each of length 196 (the size of the model’'s latent space).
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Training Generative Models to create new molecules -V = 5
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» As noted previously, not all outputs will actually be valid SMILES strings.
* In fact, only a small fraction of them are.

» Fortunately, we can easily use RDKIit to check them and filter out the invalid ones:

import numpy as np
from rdkit import Chem
predictions = model.predict_from_embeddings(np.random.normal(size=(1000,196)))
molecules = []
for p in predictions:

smiles = ''.join(p)

if Chem.MolFromSmiles(smiles) is not None:

molecules.append(smiles)

for m in molecules:

print(m)
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Training Generative Models to create new molecules -
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Several recent generative model publications use |
calculated molecular properties to determine which of ‘C? QJL/\
the generated molecules to retain or discard.

0.60 0.63
One of the more common methods for determining
whether molecules are similar to known drugs, or
“drug-like,” is known as the quantitative estimate of o \JNY"
drug-likeness (QED).

0.54 0.67
The QED metric, which was originally published by
Bickerton and coworkers,1 scores molecules by

comparing a set of properties calculated for each | \_“jI;:) "’%
molecule with distributions of the same properties in
marketed drugs. 0.83 077

This score ranges between 0 and 1, with values
closer to 1 being considered more drug-like. 'CC?\

0.67

0.83 0.61
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Training Generative Models to create new molecules - Vi = 5
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» While generative models provide an interesting means of producing ideas for new molecules, some
key issues still need to be resolved to ensure their general applicability.

» The first is ensuring that the generated molecules will be chemically stable and that they can be
physically synthesized.

« One current method to assess the quality of molecules produced by a generative model is to
observe the fraction of the generated molecules that obey standard rules of chemical valence—in
other words, ensuring that each carbon atom has four bonds, each oxygen atom has two bonds,
each fluorine atom has one bond, and so on.

» These factors become especially important when decoding from a latent space with a SMILES
representation.

» While a generative model may have learned the grammar of SMILES, there may be nuances that
are still missing.
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Training Generative Models to create new molecules - VI
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The fact that a molecule obeys standard rules of valence does not necessarily ensure
that it will be chemically stable.

In some cases, a generative model may produce molecules containing functional
groups that are known to readily decompose.

As an example, consider the molecule at the right. The functional group highlighted in
the circle, known as a hemiacetal, is known to readily decompose.

In practice, the probability of this molecule existing and being chemically stable is
very small.

There are dozens of chemical functionalities like this which are known to be unstable
or reactive.

When synthesizing molecules in a drug discovery project, medicinal chemists know to
avoid introducing these functional groups.

One way of imparting this sort of “knowledge” to a generative model is to provide a
set of filters that can be used to postprocess the model output and remove molecules
that may be problematic.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.

A molecule containing an unstable group.
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Virtual Screening -- | = 5
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 Virtual screening can provide an efficient and cost-
effective means of identifying starting points for drug
discovery programs.

Stage Compounds

* Rather than carrying out an expensive, experimental
high-throughput screen (HTS), we can use

_ ) . Discovery Tens of thousands

computational methods to virtually evaluate millions,

or even tens of millions, of molecules.

_ _ _ Preclinical Hundreds

 Virtual screening methods are often grouped into two

categories, structure-based virtual screening and

ligand-based virtual screening. Clinical

Approval
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Structure-based Virtual Screening 5
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* In a structure-based virtual screen, computational methods are
used to identify molecules that will optimally fit into a cavity,
known as a binding site, in a protein.

* The binding of a molecule into the protein binding site can often
inhibit the function of the protein.

» For instance, proteins known as enzymes catalyze a variety of
physiological chemical reactions.

» By identifying and optimizing inhibitors of these enzymatic
processes, scientists have been able to develop treatments for a
wide range of diseases in oncology, inflammation, infection, and ‘7‘
other therapeutic areas.
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Ligand-based Virtual Screening = 5

Ligand-Based Structure-Based
] ] Virtual Screening (LBVS) Virtual Screening (SBVS)
 In aligand-based virtual screen, we search for EhGReE

molecules that function similarly to one or more mapping
known molecules.

 We may be looking to improve the function of an |
existing molecule, to avoid pharmacological liabilities !
associated with a known molecule, or to develop Similarity
novel intellectual property.

| | | | o3 &
« Aligand-based virtual screen typically starts with a set e
of known molecules identified through any of a variety !
of experimental methods. Binding model

« Computational methods are then used to develop a M
model based on experimental data, and this model is |

4 N

gsed to virtuaII_y screen a Iarg_e set of molecules to Inviro and clncal tsts
find new chemical starting points. U

~ )

Best drug proposal

{
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Example: COVID-19 Alpha Variant oo
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Example: COVID-19 Beta Variant oo
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Positive <> Negative = Positive <> Positive
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Example of Predicting Molecules to inhibit a protein - | = 5
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« We will build a graph convolution model to predict the ability
of molecules to inhibit a protein known as ERK2.

« This protein, also known as mitogen-activated protein kinase
1, or MAPK1, plays an important role in the signaling
pathways that regulate how cells multiply.

« ERK2 has been implicated in a number of cancers, and
ERK2 inhibitors are currently being tested in clinical trials for
non-small-cell lung cancer and melanoma (skin cancer).
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Graphen Proteogenomics Pathway Analyzer -- Non-small cell lung cancer % 7,
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Graphen’s drugs can potentially cover around 70% of disease fields
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Example of Predicting Molecules to inhibit a protein - I
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We will train the model to distinguish a set of ERK2 active compounds from a set
of decoy compounds.

The active and decoy compounds are derived from the DUD-E database, which is
designed for testing predictive models.

In practice, we would typically obtain active and inactive molecules from the
scientific literature, or from a database of biologically active molecules such as the
ChEMBL database from the European Bioinformatics Institute (EBI).

In order to generate the best model, we would like to have decoys with property
distributions similar to those of our active compounds.

Let's say this was not the case and the inactive compounds had lower molecular
weight than the active compounds.

In this case, our classifier might be trained simply to separate low molecular
weight compounds from high molecular weight compounds.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.
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Example of Predicting Molecules to inhibit a protein - Il e on

* |n order to better understand the dataset, let's examine a few calculated
properties of our active and decoy molecules.

« To build a reliable model, we need to ensure that the properties of the active
molecules are similar to those of the decoy molecules.
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Example of Predicting Molecules to inhibit a protein - IV o

Predicted False Negative Modules

neg pos active SMILES Mol

4 0.723421 0.27658 1 ciccee(cet)c2ce(c3cceen3n2)cdceSe(n[nH]e5nnd)N 4 \
) =

Y X

5 0910040 0.08996 1 CCNC(=O)Nc1cee(en1)CNce2ce(scn2)C(=0)Nc3cecdc(c3)0OC(04) T CS
BF Ly

Predicted False Positive Module

neg pos active SMILES Mol

c1ccc2c(c1)c(nc(n2)c3cencc3)N4CCO[C@Q@H]

296 0.564975 0.435025 0 (C4)c5ccec(c5)F
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Training a Predictive Model 2
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« Let’'s define a function to create a GraphConvModel.
* In this case, we will be creating a classification model.

« Since we will apply the model later on a different dataset, it's a good idea to create a directory in
which to store the model.

def generate_graph_conv_model():

batch_size = 128

model = GraphConvModel(1l, batch_size=batch_size,
mode="'classification’,

model _dir="/tmp/mk01/model_dir")

return model

« We will create training and test sets to evaluate the model’s performance.

* In this case, we will use the Random

« Splitter (DeepChem offers a number of other splitters too, such as the ScaffoldSplitter, which divides
the dataset by chemical scaffold, and the ButinaSplitter, which first clusters the data then splits the
dataset so that different clusters end up in the training and test sets)
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Filtering from available compounds o

UNIVERSITY

« The GraphConvMdel we created can now be used to search the set of commercially available compounds
we just filtered.

ey O ‘%:)_/ 8 oA ol D

0.99 0.99 0.96 0.94 0.94

T P Gegie o RO

-~

0.93 0.93 0.93 0.92 0.91

* Indeed, many of the molecules are very similar and might end up being redundant in our screen. One way
to be more efficient would be to cluster the molecules and only screen the highest-scoring molecule in

each cluster.

« RDKIit has an implementation of the Butina clustering method, one of the most highly used methods in
cheminformatics.

* |In the Butina clustering method, we group molecules based on their chemical similarity, which is calculated
using a comparison of bit vectors (arrays of 1 and 0), also known as chemical fingerprints that represent
the presence or absence of patterns of connected atoms in a molecule.
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A small amount of code is necessary to cluster a
set of molecules.

The only parameter required for Butina clustering
IS the cluster cutoff.

If the Tanimoto similarity of two molecules is
greater than the cutoff, the molecules are put into
the same cluster.

If the similarity is less than the cutoff, the
molecules are put into different clusters.

EECS 6895 ADV. BIG DATA AND Al

def butina_cluster(mol_list, cutoff=0.35):
fp_list = [
rdmd.GetMorganFingerprintAsBitVect(m, 3, nBits=2048)
for m in mol_list]
dists = []
nfps = len(fp_list)

for 1 in range(1, nfps):
sims = DataStructs.BulkTanimotoSimilarity(
fp_list[i], fp_list[:1])
dists.extend([1 - x for x in sims])
mol_clusters = Butina.ClusterData(dists, nfps, cutoff,
isDistData=True)
cluster_id_list = [0] * nfps
for idx, cluster in enumerate(mol_clusters, 1):
for member in cluster:
cluster_1id_list[member] = idx
return cluster_1id_list

COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.




Choose representative compounds in clusters S
» Before clustering, we will create a new dataframe with
only the 100 top-scoring molecules. Name v Neg _Pos
best_100_df = combo_df.head(100).copy()
. 63669 O=C(NC[C@@H](CO)NC(=O)c1ccnen 1)eteenen 1 ZINCOOOB81745616 0 0.438505 0.561404 \l\’ /‘\ ITYG 55

We can then create a new column containing the cluster
identifier for each compound:

best_100_df["Cluster"] = butina_cluster(best_100_df.Mol)
best_100_df.head()

We now see that in addition to the SMILES string,
molecule name, and predicted values, we also have a
cluster identifier as in the right figure.

We can use the Pandas unique function to determine that
we have 55 unique clusters:

len(best_100_df.Cluster.unique())

Ultimately, we would like to purchase these compounds
and screen them experimentally. In order to do this, we

need to save a CSV file listing the molecules we plan to
best_cluster_rep_df = best_100_df.drop_duplicates("Cluster")

EECS 6895 ADV. BIG DATA AND Al
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We have followed the steps of a ligand-based virtual screening work-flow.

We used deep learning to build a classification model that was capable of distinguishing active from inactive
molecules.

The process began with evaluating our training data and ensuring that the molecular weight, LogP, and charge
distributions were balanced between the active and decoy sets.

Once we’d made the necessary adjustments to the chemical structures of the decoy molecules, we were ready
to build a model.

The first step in building the model was generating a set of chemical features for the molecules being used.
We used the DeepChem GraphConv featurizer to generate a set of appropriate chemical features.

These features were then used to build a graph convolution model, which was subsequently used to predict the
activity of a set of commercially available molecules.

In order to avoid molecules that could be problematic in biological assays, we used a set of computational rules
encoded as SMARTS patterns to identify molecules containing chemical functionality previously known to

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.
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With our list of desired molecules in hand, we are in a position to test these molecules in biological assays.
Typically the next step in our workflow would be to obtain samples of the chemical compounds for testing.

If the molecules came from a corporate compound collection, a robotic system would collect the samples and
prepare them for testing.

If the molecules were purchased from commercial sources, additional weighing and dilution with buffered water
or another solvent would be necessary.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV. 40
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* Once the samples are prepared, they are tested in biological assays.

« These assays can cover a wide range of endpoints, ranging from inhibiting bacterial growth to preventing the
proliferation of cancer cells.

» While the testing of these molecules is the final step in our virtual screening exercise, it is far from the end of the
road for a drug discovery project.

« Once we have run the initial biological assay on the molecules we identified through virtual screening, we
analyze the results of the screen.

» |If we find experimentally active molecules, we will typically identify and test other similar molecules that will
enable us to understand the relationships between different parts of the molecule and the biological activity that
we are measuring.

« This optimization process often involves the synthesis and testing of hundreds or even thousands of molecules
to identify those with the desired combination of safety and biological activity.

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.



Y : < —— A4 A
U =N
of R : .
- Advanced Techniques
NSNS Vs
o \ ‘4_\‘/ ’) m_“ 5 g

—— o A
—Q ~
‘F\ A




6 7

COLUMBIA
UNIVERSITY

m m m Alin BioMedical

Before Design, needs

Target Structure

ﬁ

Structural based drug design
Fragment screening Synthesis

A

Hit Identification =~ Hit to Lead

In-vitro characterization

Virtual screening
DEL

Hypothesis
Structural Biology

Property prediction &—— m @

SAR 7/ SPR
analysis



LLMs in Bio-Medicine Field - o

UNIVERSITY

s 2022: 14 LLMs _
yp— 2023: ~40 LLMs « Hugging Face open source:

& ClinicalBERT o scifive
- A BioMegatron

a7
= 2" PubMedBERT © ‘siom-2cir & Gatorton |4 MorTs
| | - Text2Mol ) KV-PLM =
T — ! 5 BioLinkBERT Lr L _
2021 —— 505 ceh | = ProTranslator ScholarBERT > P G PT2 1
'____""“'Mar.—-.__________________ | | o rot
sm (FAGHAIRGES Ao Ty, ) MoMy
= B |
§ ) T T »738M params
EPFL ChemCrow o mm (BoGETT —_
¥ GatorTronGPT . yepp & ProtsT Now —
r“':"“ . J¥U cLamp :\@,: AMAN | — Dec. — ~
% MolxpT £ chatorug | s — 2023 | OX) Galactica

ChemiLMBench | M !I - 5 Med-paLm . 2
Qo  —~ S e > AntibodyGPT

K e Wisam =~ O B »151M, 764M, 2.7B, 6.4B

) Molfm r@q GIMLET EPFL [MEDITRON _ SAGIM 2. MotTailor
m— r )( Prot2Text o DrugChat Yale Molm 'g' —t
- I il @ Ada/Aug-TS idea InstructMol |\: ChemDFM .. 3
3 ClinicalGPT HH“T"“-—-.._.,__‘__‘ Selp. < i Tencens DrugAssist F\%I :Dl::l . > C h e m G PT
% MolReGPT -} BioMedGPT-LM j" H""‘“—-—'-.—N-_‘.._:NL“ . == HI-Mol oBmina
T L. T o | »>4.7M. 19M. 1.2B
_.::-_.:-.,: BloMedGPT % e @ PYRIC Jon, e . 7 b}
i oarwin ¥ Instructproteln 1T Texteact —— | :
_ N ©) Rewm ProtChatGPT (v ChatCell 4
() siors rg| “U:SMmol IIiT protagents (41} BioTs > D NA G PT
Biotext Text + Protein ) = o z

S ProllaMA  (¥* Mol-instruction
@ romoim @ iMa g

Text + Molecule More Modalities Drug-to-indication > 1 OO M y 3 B



https://huggingface.co/AntibodyGeneration
https://huggingface.co/ncfrey

Protein Structure The logics of Protein Structure Model 2

UNIVERSITY

[\, DR I |
vViouci

Orientation

Template for similar secondary structure features Model training

Hh le lL 11

ﬁ_' ;“*‘%E
8 % [nput
}q" P

. \‘-.

MSA for co-evolution features in different species

' Multiple Sequence Alignment

mediated by ligand
LYt
g i" LYY o
o * T *
\|< E‘y—b@ due to co-evolution T Y

conformational change '



Protein Structure Model
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Protein to Drug Development COEEM
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* Protein is crucial for drug development, and the AlphaFold database has deciphered
the structures of over 200 million proteins.

* AlphaFold can effectively interpret binding between different structures but cannot 'y |
guantify the binding affinity. ) I =

* Indrug development, aside from efficacy, approximately 20% of clinical trial failures
are due to safety issues. AlphaFold cannot assess the safety and manufacturability of
drugs.

0
* AlphaFold completes the first step in computational drug science, but there is still a N)H/D
long journey ahead... :
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Protein Structure AIphafoIdZ CO‘EEM
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Graphen Dynamic Structure Simulation
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* Non-Covelent Force simulation via atom
position and rotation by Atom Quantum Force
Model

* RL-base Learning for Structure-Structure
interaction dynamic simulation and
accumulate Quantum Force Path

Ground True

Simulatio

Graphen
1st:0.77

Graphen
LDDT: 0.828 4

More reasonable distance
between ligands




NVIDIA LLM services for drug discovery 2
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» AlphaFold2: A deep learning model developed by DeepMind and used by over a million researchers

» DiffDock: This model predicts the 3D orientation and docking interactions of small molecules with high accuracy and computational
efficiency

» MoFlow: This generative chemistry model builds molecules from scratch for molecular optimization and small molecule generation

» ProtGPT-2: This language model generates novel protein sequences, helping researchers design proteins with unique structures, properties,

and functions
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Protein Design (ESM3)

Proteins with ESM

Predict the whole sequence and 3D structure of masked protein sequences!
Support this space with a " on GitHub

Support Evolutionary Scale's ESMwitha '+ on GitHub

Masked protein sequence
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AVLGIFLRVGSAKPGLOKYVDVLDSIKT KGKSADF TNF DPRGLLPES LOYWTYPGSLTTPP.

werse folding predicted sequence

verse-folding preclicted molecular structure

Clear Submit
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Sequential model Problem
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How Graphen Solved the Problem X2,
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Sequential tool for drug development ‘ End to End in single step by Multi-modal

* Reduce accumulative errors caused by sequential multiple models
* Increase the efficiency of accurate generation of new drugs
* Expand the drug features
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4 Types of Multi-Modal o,
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Not Multi-modal (only string input)
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Graphen Atom Toolkits
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Quantum Physics
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Function Prediction
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Molecular Force Field Antibody Developability

Protein
Structure Prediction

Atom Network
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Biological Network

Mutation Identification
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Mutation Intelligence

Disease Risk Evaulation
Drug Resistance
Genome Variant Reasoning

Drug Development

New Drug Generation
Drug Synthesis Reaction Simulation
ADME Prediction

Immunal formation

I Antibody-Antigen contact Prediction
Antibody-Antigen Affinity Prediction

Progress Prediction

I Disease Progression
Race Differentiation

Multi-Omics Analysis

I Multi-Omics Network
Single-Cell Analysis
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Graphen Atom —
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* Dynamic Graphs

Al drug platform

Learn More =

QD

Affinity Prediction

The world’s only ey Chanae
complete Al Drug

design platform
that includes 143
tools in 12
categories

Learn More =

Drug Generation

. * Multi-Goals
https://www.graphen.ai/p « Specific Target

roducts/atom.html

Learn More =

Protein Structure

* Protein
Sequence
* Equivalent Graph

Learn More =

Biology Networks

* Protein Networks
* Pathway
Networks

Learn More =

[

Mutation
Intelligence

* Virus & Human
Genome
* Function
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Protein Function

* Biological
Process
« Molecular

Function
Learn More =

ADME Prediction

* Drug
Pharmacokinetics
* ADME Score

Learn More —>

=
Progress

Prediction

* Disease Progress
* Drug Resistence

Learn More =
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Molecular
Interaction

* Reaction
Simulation

¢« Energy Score
Learn More

@

Antibody
Developability

* Antibody PDB
* TAP Score

Learn More =

Multi-Omics
Analytics

* Cross-Omics
Networks

¢+ Single-Cell

Leaknaidies -
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Final Project (start forming teams) 2,

UNIVERSITY

* Each team is composed of up to 3 people.

* Choose among these two areas.

» Advanced Al Technology: > Advanced Al for Bio Science:
* Multi-Modality Al < Protein-Ligan Interaction
“* Perception Al ¢ RNA Structure Prediction

¢ Expression Al
** Reasoning Al
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