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AI in BioMedical

Patients

Khalighi, S., Reddy, K., Midya, A. et al. Artificial intelligence in neuro-
oncology: advances and challenges in brain tumor diagnosis, prognosis, 
and precision treatment. npj Precis. Onc. 8, 80 (2024). 

https://doi.org/10.1038/s41698-024-00575-0

a) Through imaging, slicing, and blood-
related patient information, AI 
interprets the lesion and prognosis

b) Image quantization and 
segmentation

c) Surgical guidance

d) Disease clustering

e) Optimization of drug strategies, 
finding druggable target
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Traditional Drug Development Funnel



Steps of Drug Development -- Graphen 27x faster and 1/1335 cost to create a verified effective drug 
compound; and is high effective, low side effects and no toxicity
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Generative Model
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• Generative models produce a sample as output. 

• You might train the model on a library of photographs of cats, and it would learn to produce new images 

that look like cats. 

• You might train it on a library of known drug molecules, and it would learn to generate new “drug-like” 

molecules for use as candidates in a virtual screen. 

• Formally speaking, a generative model is trained on a collection of samples that are drawn from some 

(possibly unknown, probably very complex) probability distribution. 

• Its job is to produce new samples from that same probability distribution.

Generative Models
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Variational Autoencoders
• An autoencoder is a model that tries to make its output equal to its 

input. 

• You train it on a library of samples and adjust the model parameters so 

that on every sample the output is as close as possible to the input.

• That sounds trivial. Can’t it just learn to pass the input directly through 

to the output unchanged? 

• If that were actually possible it would indeed be trivial, but 
autoencoders usually have architectures that make it impossible. Most 

often this is done by forcing the data to go through a bottleneck, as 

shown at right. 

• For example, the input and output might each include 1,000 numbers, 
but in between would be a hidden layer containing only 10 numbers. 

• This forces the model to learn how to compress the input samples. It 

must represent 1,000 numbers worth of information using only 10 

numbers.
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Generative Adversarial Networks
• A generative adversarial network (GAN) has much in common with a VAE. 

• It uses the same exact decoder network to convert latent vectors into 

samples (except in a GAN, it is called the generator instead of the 

decoder). 

• But it trains that network in a different way. It works by passing random 

vectors into the generator and directly evaluating the outputs on how well 

they follow the expected distribution. 

• Effectively, you create a loss function to measure how well the generated 

samples match the training samples, then use that loss function to 

optimize the model.

• That sounds simple for a few seconds, until you think about it and realize it 
isn’t simple at all. Could you write a loss function to measure how well an 

image resembles a cat? 

• No, of course not! You wouldn’t know where to begin. So, instead of asking 

you to come up with that loss function yourself, a GAN learns the loss 
function from the data.
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Generative Adversarial Networks

• As shown at the right, a GAN consists of two parts. 

• The generator takes random vectors and generates synthetic samples. 

• The second part, called the discriminator, tries to distinguish the 
generated samples from real training samples. 

• It takes a sample as input and outputs a probability that this is a real 

training sample. It acts as a loss function for the generator.
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Applications of Generative Models in the Life Science

• Broadly speaking, generative models bring a few superpowers to the table. 

• First, they allow for a semblance of “creativity.” 

• New samples can be generated according to the learned distribution. 

• This allows for a powerful complement to a creative process that can tie into existing efforts in drug or 

protein design. 

• Second, being able to model complex systems accurately with generative models could allow 
scientists to build an understanding of complex biological processes.
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Generating New Ideas for Lead Compounds

• A major part of a modern drug discovery effort is coming up with new 

compounds.

• This is mostly done semiannually, with expert human chemists 

suggesting modifications to core structures. 

• Often, this will involve projecting a picture of the current molecular 

series on a screen and having a room full of senior chemists suggest 

modifications to the core structure of the molecule. 

• Some subset of these suggested molecules are actually synthesized 

and tested, and the process repeats until a suitable molecule is 

found or the program is dropped. 

• This process has powerful advantages since it can draw upon the 
deep intuition of expert chemists who may be able to identify flaws 

with a potential structure (perhaps it resembles a compound they’ve 

seen before which caused unexplained liver failure in rats) that may 

not be easy to identify algorithmically.
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Generating New Ideas for Lead Compounds

• At the same time, though, this process is very human-limited. 

• There aren’t that many talented and experienced senior chemists in the world, so the process can’t 

scale outward. 

• In addition, it makes it very challenging for a pharmaceutical division in a country that has historically 

lacked drug discovery expertise to bootstrap itself. 

• A generative model of molecular structures could serve to overcome these limitations.

• If the model were trained on a suitable molecular representation, it might be able to rapidly suggest 

new alternative compounds. 

• Access to such a model could help improve current processes by suggesting new chemical directions 
that may have been missed by human designers. 

• It’s worth noting that such design algorithms have serious caveats.
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Training Generative Models to create new molecules

• We will train a VAE to generate new molecules. 

• More specifically, it will output SMILES strings. 

• This choice of representation has distinct advantages and disadvantages compared to some of the 

other representations we have discussed. 

• On the one hand, SMILES strings are very simple to work with. 

• Each one is just a sequence of characters drawn from a fixed alphabet. 

• That allows us to use a very simple model to process them. 

• On the other hand, SMILES strings are required to obey a complex grammar. 

• If the model does not learn all the subtleties of the grammar, then most of the strings it produces will be 

invalid and not correspond to any molecule.
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Training Generative Models to create new molecules - I

• The first thing we need is a collection of SMILES strings on which to train the model.

• Fortunately, MoleculeNet provides us with lots to choose from. 

• For this example, we will use the MUV dataset. 

• The training set includes 74,469 molecules of varying sizes and structures. 

• Let’s begin by loading it:
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Training Generative Models to create new molecules - II

• Next, we need to define the vocabulary our model will work with. 

• What is the list of characters (or “tokens”) that can appear in a string? 

• How long are strings allowed to be? 

• We can determine these from the training data by creating a sorted list of every character that appears 

in any training molecule:
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Training Generative Models to create new molecules - III

• Now we need to create a model. What sort of architecture should we use for the

• encoder and decoder? This is an ongoing field of research. 

• For this example, we will use DeepChem’s AspuruGuzikAutoEncoder class, which implements a particular 
published model. 

• It uses a convolutional network for the encoder and a recurrent network for the decoder. You can consult the 

original paper if you are interested in the details, but they are not necessary to follow the example.

• Also notice that we use ExponentialDecay for the learning rate. The rate is initially set to 0.001, then decreased by 

a little bit (multiplied by 0.95) after every epoch. This helps optimization to proceed more smoothly in many 

problems:
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Training Generative Models to create new molecules - IV

• We are now ready to train the model. 

• Instead of using the standard fit() method that takes a Dataset, AspuruGuzikAutoEncoder provides its own 

fit_sequences() method.

• It takes a Python generator object that produces sequences of tokens (SMILES strings in our case). Let’s train for 

50 epochs:

• If everything has gone well, the model should now be able to generate entirely new molecules. 

• We just need to pick random latent vectors and pass them through the decoder. 

• Let’s create a batch of one thousand vectors, each of length 196 (the size of the model’s latent space).
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Training Generative Models to create new molecules - V

• As noted previously, not all outputs will actually be valid SMILES strings. 

• In fact, only a small fraction of them are. 

• Fortunately, we can easily use RDKit to check them and filter out the invalid ones:
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Training Generative Models to create new molecules - VI

• Several recent generative model publications use 

calculated molecular properties to determine which of 

the generated molecules to retain or discard. 

• One of the more common methods for determining 
whether molecules are similar to known drugs, or 

“drug-like,” is known as the quantitative estimate of 

drug-likeness (QED). 

• The QED metric, which was originally published by 
Bickerton and coworkers,1 scores molecules by 

comparing a set of properties calculated for each

• molecule with distributions of the same properties in 

marketed drugs. 

• This score ranges between 0 and 1, with values 

closer to 1 being considered more drug-like.
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Training Generative Models to create new molecules - VII

• While generative models provide an interesting means of producing ideas for new molecules, some 

key issues still need to be resolved to ensure their general applicability. 

• The first is ensuring that the generated molecules will be chemically stable and that they can be 

physically synthesized. 

• One current method to assess the quality of molecules produced by a generative model is to 

observe the fraction of the generated molecules that obey standard rules of chemical valence—in 

other words, ensuring that each carbon atom has four bonds, each oxygen atom has two bonds, 

each fluorine atom has one bond, and so on. 

• These factors become especially important when decoding from a latent space with a SMILES 

representation. 

• While a generative model may have learned the grammar of SMILES, there may be nuances that 
are still missing.
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Training Generative Models to create new molecules - VIII

• The fact that a molecule obeys standard rules of valence does not necessarily ensure 

that it will be chemically stable. 

• In some cases, a generative model may produce molecules containing functional 

groups that are known to readily decompose. 

• As an example, consider the molecule at the right. The functional group highlighted in 

the circle, known as a hemiacetal, is known to readily decompose.

• In practice, the probability of this molecule existing and being chemically stable is 
very small. 

• There are dozens of chemical functionalities like this which are known to be unstable 

or reactive. 

• When synthesizing molecules in a drug discovery project, medicinal chemists know to 

avoid introducing these functional groups. 

• One way of imparting this sort of “knowledge” to a generative model is to provide a 

set of filters that can be used to postprocess the model output and remove molecules 
that may be problematic.
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Virtual Screening
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Virtual Screening -- I

• Virtual screening can provide an efficient and cost-

effective means of identifying starting points for drug 

discovery programs. 

• Rather than carrying out an expensive, experimental 
high-throughput screen (HTS), we can use 

computational methods to virtually evaluate millions, 

or even tens of millions, of molecules. 

• Virtual screening methods are often grouped into two 
categories, structure-based virtual screening and 

ligand-based virtual screening.
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Structure-based Virtual Screening

• In a structure-based virtual screen, computational methods are 

used to identify molecules that will optimally fit into a cavity, 

known as a binding site, in a protein. 

• The binding of a molecule into the protein binding site can often 
inhibit the function of the protein. 

• For instance, proteins known as enzymes catalyze a variety of 

physiological chemical reactions. 

• By identifying and optimizing inhibitors of these enzymatic 

processes, scientists have been able to develop treatments for a 

wide range of diseases in oncology, inflammation, infection, and 

other therapeutic areas.
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Ligand-based Virtual Screening

• In a ligand-based virtual screen, we search for 

molecules that function similarly to one or more 

known molecules. 

• We may be looking to improve the function of an 
existing molecule, to avoid pharmacological liabilities 

associated with a known molecule, or to develop 

novel intellectual property. 

• A ligand-based virtual screen typically starts with a set 
of known molecules identified through any of a variety 

of experimental methods. 

• Computational methods are then used to develop a 

model based on experimental data, and this model is 
used to virtually screen a large set of molecules to 

find new chemical starting points.
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Example: COVID-19 Alpha Variant
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Positive <> Negative ➔ Positive <> Positive

Example: COVID-19 Beta Variant
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Example of Predicting Molecules to inhibit a protein - I

• We will build a graph convolution model to predict the ability 

of molecules to inhibit a protein known as ERK2. 

• This protein, also known as mitogen-activated protein kinase 

1, or MAPK1, plays an important role in the signaling 
pathways that regulate how cells multiply. 

• ERK2 has been implicated in a number of cancers, and 

ERK2 inhibitors are currently being tested in clinical trials for 

non-small-cell lung cancer and melanoma (skin cancer).
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Kinases are pivotal in multi-disease pathways

COPYRIGHT © 2024 GRAPHEN, INC. 30
Xiang H., et.al. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm Sin B. 2020 Apr;10(4):569-581.

Ligand

Receptor

Immune disorder

Levine, B., et.al. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

(NASH)(AD)

Graphen’s drug targets

518 Kinase 
Proteins

Quickly 
design as 
many as 
Kinase 
drugs as 
possible.



Graphen’s drugs can potentially cover around 70% of disease fields
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Example of Predicting Molecules to inhibit a protein - II

• We will train the model to distinguish a set of ERK2 active compounds from a set 

of decoy compounds. 

• The active and decoy compounds are derived from the DUD-E database, which is 

designed for testing predictive models. 

• In practice, we would typically obtain active and inactive molecules from the 

scientific literature, or from a database of biologically active molecules such as the 

ChEMBL database from the European Bioinformatics Institute (EBI). 

• In order to generate the best model, we would like to have decoys with property 

distributions similar to those of our active compounds. 

• Let’s say this was not the case and the inactive compounds had lower molecular 

weight than the active compounds. 

• In this case, our classifier might be trained simply to separate low molecular 

weight compounds from high molecular weight compounds.
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Example of Predicting Molecules to inhibit a protein - III

• In order to better understand the dataset, let’s examine a few calculated 

properties of our active and decoy molecules. 

• To build a reliable model, we need to ensure that the properties of the active 

molecules are similar to those of the decoy molecules.
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Example of Predicting Molecules to inhibit a protein - IV

Predicted False Negative Modules 

Predicted False Positive Module 
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Training a Predictive Model

• Let’s define a function to create a GraphConvModel. 

• In this case, we will be creating a classification model. 

• Since we will apply the model later on a different dataset, it’s a good idea to create a directory in 
which to store the model.

• We will create training and test sets to evaluate the model’s performance. 

• In this case, we will use the Random

• Splitter (DeepChem offers a number of other splitters too, such as the ScaffoldSplitter, which divides 

the dataset by chemical scaffold, and the ButinaSplitter, which first clusters the data then splits the 

dataset so that different clusters end up in the training and test sets)
•  
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Filtering from available compounds

• The GraphConvMdel we created can now be used to search the set of commercially available compounds 

we just filtered.

• Indeed, many of the molecules are very similar and might end up being redundant in our screen.  One way 

to be more efficient would be to cluster the molecules and only screen the highest-scoring molecule in 

each cluster. 

• RDKit has an implementation of the Butina clustering method, one of the most highly used methods in 
cheminformatics. 

• In the Butina clustering method, we group molecules based on their chemical similarity, which is calculated 

using a comparison of bit vectors (arrays of 1 and 0), also known as chemical fingerprints that represent 

the presence or absence of patterns of connected atoms in a molecule.
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Clustering the molecules

• A small amount of code is necessary to cluster a 

set of molecules. 

• The only parameter required for Butina clustering 

is the cluster cutoff. 

• If the Tanimoto similarity of two molecules is 

greater than the cutoff, the molecules are put into 

the same cluster. 

• If the similarity is less than the cutoff, the 

molecules are put into different clusters.
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Choose representative compounds in clusters

• Before clustering, we will create a new dataframe with 

only the 100 top-scoring molecules. 

• We can then create a new column containing the cluster 
identifier for each compound:

• We now see that in addition to the SMILES string, 
molecule name, and predicted values, we also have a 

cluster identifier as in the right figure.

• We can use the Pandas unique function to determine that 

we have 55 unique clusters:

• Ultimately, we would like to purchase these compounds 

and screen them experimentally. In order to do this, we 

need to save a CSV file listing the molecules we plan to 
purchase. 
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Summary -- I

• We have followed the steps of a ligand-based virtual screening work‐flow. 

• We used deep learning to build a classification model that was capable of distinguishing active from inactive 

molecules.

• The process began with evaluating our training data and ensuring that the molecular weight, LogP, and charge 

distributions were balanced between the active and decoy sets. 

• Once we’d made the necessary adjustments to the chemical structures of the decoy molecules, we were ready 

to build a model.

• The first step in building the model was generating a set of chemical features for the molecules being used. 

• We used the DeepChem GraphConv featurizer to generate a set of appropriate chemical features. 

• These features were then used to build a graph convolution model, which was subsequently used to predict the 

activity of a set of commercially available molecules. 

• In order to avoid molecules that could be problematic in biological assays, we used a set of computational rules 

encoded as SMARTS patterns to identify molecules containing chemical functionality previously known to 
interfere with assays or create subsequent liabilities.
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Summary -- II

• With our list of desired molecules in hand, we are in a position to test these molecules in biological assays. 

• Typically the next step in our workflow would be to obtain samples of the chemical compounds for testing. 

• If the molecules came from a corporate compound collection, a robotic system would collect the samples and 
prepare them for testing. 

• If the molecules were purchased from commercial sources, additional weighing and dilution with buffered water 

or another solvent would be necessary.
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Summary -- III

• Once the samples are prepared, they are tested in biological assays. 

• These assays can cover a wide range of endpoints, ranging from inhibiting bacterial growth to preventing the 

proliferation of cancer cells. 

• While the testing of these molecules is the final step in our virtual screening exercise, it is far from the end of the 

road for a drug discovery project. 

• Once we have run the initial biological assay on the molecules we identified through virtual screening, we 

analyze the results of the screen. 

• If we find experimentally active molecules, we will typically identify and test other similar molecules that will 

enable us to understand the relationships between different parts of the molecule and the biological activity that 

we are measuring. 

• This optimization process often involves the synthesis and testing of hundreds or even thousands of molecules 

to identify those with the desired combination of safety and biological activity.
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Advanced Techniques



AI in BioMedical

Traditional Drug development

Before Design, needs 
Target Structure



LLMs in Bio-Medicine Field

➢ProtGPT21

➢738M params

➢AntibodyGPT2

➢151M, 764M, 2.7B, 6.4B

➢ChemGPT3

➢4.7M, 19M, 1.2B

➢DNAGPT4

➢100M, 3B
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1. Ferruz N, Schmidt S, Höcker B. ProtGPT2 is a deep unsupervised language model for protein design. Nat Commun. 2022;13(1):4348. Published 2022 Jul 27. doi:10.1038/s41467-022-32007-7
2. https://huggingface.co/AntibodyGeneration
3. https://huggingface.co/ncfrey
4. https://github.com/TencentAILabHealthcare/DNAGPT

Hugging Face open source:
2022: 14 LLMs
2023: ~40 LLMs

https://huggingface.co/AntibodyGeneration
https://huggingface.co/ncfrey


MSA for co-evolution features in different species

Template for similar secondary structure features

Orientation

Distance Matrix

Model training

Protein Structure 
Model

The logics of Protein Structure Model



Graph-based Convolution Network

Convolution Neural Network

Recurrent Neural Network

Protein Structure Model Deep Learning for Protein Structure Model

• Order problem

• Global problem



Protein to Drug Development

• Protein is crucial for drug development, and the AlphaFold database has deciphered 
the structures of over 200 million proteins.

• AlphaFold can effectively interpret binding between different structures but cannot 
quantify the binding affinity.

• In drug development, aside from efficacy, approximately 20% of clinical trial failures 
are due to safety issues. AlphaFold cannot assess the safety and manufacturability of 
drugs.

• AlphaFold completes the first step in computational drug science, but there is still a 
long journey ahead...



Alphafold

Alphafold2

Protein Structure 
Model

Alphafold Evalution 

Ref. https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery

How about
Attention-Based? From CNN to Attention

Extract the mechanism of 
residue-residue interaction

CASP competition:
Before                   : 50%
            Alphafold
After                      : 75%

For 50 years



1. Training resources : 128 slides TPU v3 ≈ 300 slides GPU V100
2. Attention with Graph-Based Invariant Model Concatenate
3. Amber force Refine Side chains

Protein Structure 
Model

Alphafold2

Ref. https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery

Cross  Residue Interaction from MSA 
(Mutant Consistent Across Species)

Triangle constraint



Protein Structure 
Model

Alphafold2

Evoformer

Structure 
ModuleTriangle update and self-attention

Ref. https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery

Iterate update
Position And Rotation



Alphafold3

• Similar Data Structure input of Alphafold 2 – multimer.
• Module 1,2 and Alphafold2’s Evoformer are very similar. Pairformer simplifies MSA computation. Put more structure 

computation to the mapping between structure and sequence. 
• Module 3 changes Alphafold2’s position-rotation iterational decoding to Denoise Diffusion-based structure 

reconstruction by time. Strengthen the readiness of structure. 



Graphen Dynamic Structure Simulation

Graphen 
1st : 0.77

3.1 Å

More reasonable distance 
between ligands

• Non-Covelent Force simulation via atom 
position and rotation by Atom Quantum Force 
Model

• RL-base Learning for Structure-Structure 
interaction dynamic simulation and 
accumulate Quantum Force Path

AGS

MG ion
Ground True

Graphen
Simulation

Dynamics Interaction Change by Force estimate and Agent Simulation



NVIDIA LLM services for drug discovery

53

1. https://www.nvidia.com/zh-
tw/clara/biopharma/
2. https://blogs.nvidia.com.tw/blog/nvidia-unveils-
large-language-models-and-generative-ai-services-
to-advance-life-sciences-r-d/

➢ AlphaFold2: A deep learning model developed by DeepMind and used by over a million researchers
➢ DiffDock: This model predicts the 3D orientation and docking interactions of small molecules with high accuracy and computational 

efficiency
➢ MoFlow: This generative chemistry model builds molecules from scratch for molecular optimization and small molecule generation
➢ ProtGPT-2: This language model generates novel protein sequences, helping researchers design proteins with unique structures, properties, 

and functions

https://www.nvidia.com/zh-tw/clara/biopharma/
https://www.nvidia.com/zh-tw/clara/biopharma/
https://blogs.nvidia.com.tw/blog/nvidia-unveils-large-language-models-and-generative-ai-services-to-advance-life-sciences-r-d/
https://blogs.nvidia.com.tw/blog/nvidia-unveils-large-language-models-and-generative-ai-services-to-advance-life-sciences-r-d/
https://blogs.nvidia.com.tw/blog/nvidia-unveils-large-language-models-and-generative-ai-services-to-advance-life-sciences-r-d/


AI in BioMedical

https://github.com/baker-laboratory/RoseTTAFold-All-
Atom?tab=readme-ov-file

https://github.com/evolutionaryscale/esm
https://huggingface.co/spaces/as-cle-bert/proteins-with-esm

Protein Design (ESM3)

RoseTTAFold-All-Atom

• Predicting protein structure
• Predicting protein/nucleic acid complexes
• Predicting protein/small molecule 

complexes
• Predicting higher-order complexes
• Predicting covalently modified proteins

MolToxPred

Setiya A, Jani V, Sonavane U, Joshi R. MolToxPred: small 
molecule toxicity prediction using machine learning approach. 
RSC Adv. 2024 Jan 30;14(6):4201-4220. doi: 10.1039/d3ra07322j. 

PMID: 38292268; PMCID: PMC10826801.
https://github.com/bioinformatics-cdac/MolToxPred

Pocket2Drug

https://github.com/shiwentao00/Pocket2Drug
https://github.com/stonewiseAIDrugDesign/Lingo
3DMol

Lingo3DMol

Deep-PK

https://biosig.lab.uq.edu.au/deeppk/

https://github.com/evolutionaryscale/esm
https://github.com/shiwentao00/Pocket2Drug


Drug Development Procedure and Tools

Ready For 
Development

Or 
Screening

(?)

Sequential tool for drug development



Current Status and Challenges

Sequential model Problem

90%
90%

90%

90%

90%

5,841 of 382,000 generated 
structure

(1.53% effective drug rate)

Insilico Medicine

Exp.

• Better than the Traditional way, 
but still needs try-error cycle

• Not solve Error accumulation
Development 

Looping



How Graphen Solved the Problem 

Sequential tool for drug development End to End in single step by Multi-modal 

• Reduce accumulative errors caused by sequential multiple models
• Increase the efficiency of accurate generation of new drugs
• Expand the drug features



What is Multi-Modal

• Mixture of Features by different types of data

•  Cross-relational Learning and Inference

• 4 Types of Multi-modal



4 Types of Multi-Modal

Type A: High Dim. Feature Fusion (Alphafold2/3)

Type B: Additional Parameter Training (Adapter)

Type C: Cross-Training (BLIP2)

Type D: Token-base Fusion (CM3Leon)

Wadekar, S. N., Chaurasia, A., Chadha, A., & Culurciello, E. (2024). The Evolution of 
Multimodal Model Architectures. arXiv preprint arXiv:2405.17927.



Multi-Modal in Drug Development – From Bench to Real World

ADME
Encoder

Disease
Pathway
Encoder

Structure
Encoder

SMILE: OOOOOOOOOOOOOO

IC50: < 10 nM
PK T1/2: 12 hrs.

Structure
Decoder

Language
Decoder

Target is Protein A

Oral administration

Disease is XYZ

Drug-Protein A

Model

Model

Model

Not Multi-modal (only string input)

Multi-modal (Structure + String)

EQLLKALEFLLKELLEKL… what is this protein function

what is this protein function

Protein Sequence Description

This is Guanine nucleotide-binding proteins function as 
transducers downstream of G protein-coupled receptors 
(GPCRs) in numerous signaling cascades，R142-151、 R199-211、 
R-518, is main function domain for GDP binding.

This is a kind of protein for Guanine nucleotide-binding. 

Graphen Drugomics



Graphen Atom Toolkits

COPYRIGHT © 2022 GRAPHEN, INC. 61

https://www.graphen.ai/products/atom.html

https://www.graphen.ai/products/atom.html


Graphen Atom – 
a world leading 
AI drug platform

COPYRIGHT © 2025 GRAPHEN DRUGOMICS, INC. 62

https://www.graphen.ai/p
roducts/atom.html

The world’s only 
complete AI Drug 
design platform 
that includes 143 
tools in 12 
categories

https://www.graphen.ai/products/atom.html
https://www.graphen.ai/products/atom.html


Final Project (start forming teams)

EECS 6895 ADV. BIG DATA AND AI        COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 63

• Each team is composed of up to 3 people.

• Choose among these two areas. 

➢ Advanced AI Technology:
❖ Multi-Modality AI
❖ Perception AI
❖ Expression AI
❖ Reasoning AI

➢ Advanced AI for Bio Science:
❖ Protein-Ligan Interaction
❖ RNA Structure Prediction
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